Candida albicans deploys various morphological forms through complex switching mechanisms, ensuring its survival and thriving as a commensal or pathogen in vastly different human niches. In this study, we demonstrate that a novel ''rod'' morphological form of C. albicans coexists and is interchangeable with previously reported white, gray, and opaque forms, constituting a tetra-stable phenotypic switching system. Rod cells arise from the efg1 mutant of SC5314 cells or from the clinical BJ1097 strain cultured under glucose-free conditions. They are characterized by a distinct gene expression profile and can be stably maintained through in vitro passaging or in vivo inhabitation of the gastrointestinal (GI) tract of mice. Remarkably, the majority of the efg1 mutant cells become rod cells in N-acetylglucosamine (GlcNAc)-containing medium, and the GlcNAc sensor Ngs1 is instrumental in converting the white or gray cells to the rod cells. Conversely, glucose inhibits rod cells through Cph1; consequently, the loss of Cph1 in the efg1 mutant cells permits their conversion to rod cells in glucose-replete media. Notably, rod cells of the efg1/ cph1 mutant display superior adaptation and longer persistence in the murine GI environment than wild-type white cells. Taken together, these findings establish rod cells as a previously unappreciated form that is not only morphologically and transcriptionally distinguishable but also defined by specific genetic and environmental determinants, shedding light on complex fungus-host interactions.
{"title":"The rod cell, a small form of <i>Candida albicans</i>, possesses superior fitness to the host gut and adaptation to commensalism.","authors":"Yinxing Xu, Wencheng Zhu, Baodi Dai, Hui Xiao, Jiangye Chen","doi":"10.3724/abbs.2024066","DOIUrl":"10.3724/abbs.2024066","url":null,"abstract":"<p><p><i>Candida albicans</i> deploys various morphological forms through complex switching mechanisms, ensuring its survival and thriving as a commensal or pathogen in vastly different human niches. In this study, we demonstrate that a novel ''rod'' morphological form of <i>C</i>. <i>albicans</i> coexists and is interchangeable with previously reported white, gray, and opaque forms, constituting a tetra-stable phenotypic switching system. Rod cells arise from the <i>efg1</i> mutant of SC5314 cells or from the clinical BJ1097 strain cultured under glucose-free conditions. They are characterized by a distinct gene expression profile and can be stably maintained through <i>in vitro</i> passaging or <i>in vivo</i> inhabitation of the gastrointestinal (GI) tract of mice. Remarkably, the majority of the <i>efg1</i> mutant cells become rod cells in N-acetylglucosamine (GlcNAc)-containing medium, and the GlcNAc sensor Ngs1 is instrumental in converting the white or gray cells to the rod cells. Conversely, glucose inhibits rod cells through Cph1; consequently, the loss of Cph1 in the <i>efg1</i> mutant cells permits their conversion to rod cells in glucose-replete media. Notably, rod cells of the <i>efg1</i>/ <i>cph1</i> mutant display superior adaptation and longer persistence in the murine GI environment than wild-type white cells. Taken together, these findings establish rod cells as a previously unappreciated form that is not only morphologically and transcriptionally distinguishable but also defined by specific genetic and environmental determinants, shedding light on complex fungus-host interactions.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiazheng Liu, Limei Lin, Lina Zhang, Hongtu Ma, Xi Chen, Keliang Pang, Linlin Li, Hua Han
Three-dimensional (3D) reconstruction serves as a crucial instrument for the analysis of biological structures. In particular, a comprehensive and accurate 3D ultrastructural examination of rat sperm is vital for understanding and diagnosing male fertility issues and the underlying causes of infertility. In this study, we utilize the automated tape-collecting ultramicrotome scanning electron microscopy (ATUM-SEM) imaging technique, which is a highly effective method for 3D cellular ultrastructural analysis. Our findings reveal that during spermiogenesis, the volume of the nucleus significantly decreases, shrinking to just 10% of its original size. The acrosomal vesicles derived from the Golgi apparatus converge and elongate along the spermatid nucleus. These vesicles then attach to the nucleus via a cap-like structure, thereby defining the head side of the spermatozoa. In the initial stages of spermiogenesis, the mitochondria in spermatids are distributed beneath the cell membrane. As the process progresses, these mitochondria gradually migrate to the sperm tail, where they form the mitochondrial sheath. This sheath plays a crucial role in providing the energy required for the movement of the sperm. In addition, we reconstruct the mRNA-stroring structure-chromatoid body in sperm cells, which are cloud-like or net-like structures in the cytoplasm. The precise and comprehensive nature of 3D ultrastructural examination allows for a deeper understanding of the morphological process of spermiogenesis, thereby contributing to our knowledge of male fertility and the causes of infertility. Our research has significantly advanced the understanding of the 3D ultrastructure of sperm more comprehensively than ever before.
{"title":"Three-dimensional reconstruction of rat sperm using volume electron microscopy.","authors":"Jiazheng Liu, Limei Lin, Lina Zhang, Hongtu Ma, Xi Chen, Keliang Pang, Linlin Li, Hua Han","doi":"10.3724/abbs.2024144","DOIUrl":"https://doi.org/10.3724/abbs.2024144","url":null,"abstract":"<p><p>Three-dimensional (3D) reconstruction serves as a crucial instrument for the analysis of biological structures. In particular, a comprehensive and accurate 3D ultrastructural examination of rat sperm is vital for understanding and diagnosing male fertility issues and the underlying causes of infertility. In this study, we utilize the automated tape-collecting ultramicrotome scanning electron microscopy (ATUM-SEM) imaging technique, which is a highly effective method for 3D cellular ultrastructural analysis. Our findings reveal that during spermiogenesis, the volume of the nucleus significantly decreases, shrinking to just 10% of its original size. The acrosomal vesicles derived from the Golgi apparatus converge and elongate along the spermatid nucleus. These vesicles then attach to the nucleus via a cap-like structure, thereby defining the head side of the spermatozoa. In the initial stages of spermiogenesis, the mitochondria in spermatids are distributed beneath the cell membrane. As the process progresses, these mitochondria gradually migrate to the sperm tail, where they form the mitochondrial sheath. This sheath plays a crucial role in providing the energy required for the movement of the sperm. In addition, we reconstruct the mRNA-stroring structure-chromatoid body in sperm cells, which are cloud-like or net-like structures in the cytoplasm. The precise and comprehensive nature of 3D ultrastructural examination allows for a deeper understanding of the morphological process of spermiogenesis, thereby contributing to our knowledge of male fertility and the causes of infertility. Our research has significantly advanced the understanding of the 3D ultrastructure of sperm more comprehensively than ever before.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N6-methyladenosine (m 6A) is the most prevalent epigenetic modification found in eukaryotic mRNAs and plays a crucial role in regulating gene expression by influencing numerous aspects of mRNA metabolism. The m 6A writer for mRNAs and long non-coding RNAs consists of the catalytic subunit m 6A-METTL complex (MTC) (including METTL3/METTL14) and the regulatory subunit m 6A-METTL-associated complex (MACOM) (including HAKAI, WTAP, VIRMA, ZC3H13, and RBM15/15B). In this review, we focus on recent advances in our understanding of the structural and functional properties of m 6A writers and the possible mechanism by which they recognize RNA substrates and perform selective m 6A modifications.
N 6-甲基腺苷(m 6A)是真核生物 mRNA 中最常见的表观遗传修饰,通过影响 mRNA 代谢的多个方面,在调节基因表达方面发挥着至关重要的作用。mRNA 和长非编码 RNA 的 m 6A 作者由催化亚基 m 6A-METTL 复合物(MTC)(包括 METTL3/METTL14)和调控亚基 m 6A-METTL 相关复合物(MACOM)(包括 HAKAI、WTAP、VIRMA、ZC3H13 和 RBM15/15B)组成。在这篇综述中,我们将重点介绍最近在了解 m 6A 写子的结构和功能特性方面取得的进展,以及它们识别 RNA 底物并进行选择性 m 6A 修饰的可能机制。
{"title":"Structures and mechanisms of the RNA m <sup>6</sup>A writer.","authors":"Ting Deng, Jinbiao Ma","doi":"10.3724/abbs.2024152","DOIUrl":"https://doi.org/10.3724/abbs.2024152","url":null,"abstract":"<p><p><i>N</i> <sup>6</sup>-methyladenosine (m <sup>6</sup>A) is the most prevalent epigenetic modification found in eukaryotic mRNAs and plays a crucial role in regulating gene expression by influencing numerous aspects of mRNA metabolism. The m <sup>6</sup>A writer for mRNAs and long non-coding RNAs consists of the catalytic subunit m <sup>6</sup>A-METTL complex (MTC) (including METTL3/METTL14) and the regulatory subunit m <sup>6</sup>A-METTL-associated complex (MACOM) (including HAKAI, WTAP, VIRMA, ZC3H13, and RBM15/15B). In this review, we focus on recent advances in our understanding of the structural and functional properties of m <sup>6</sup>A writers and the possible mechanism by which they recognize RNA substrates and perform selective m <sup>6</sup>A modifications.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
{"title":"Nuclear mRNA export.","authors":"Suli Chen, Qingyi Jiang, Jing Fan, Hong Cheng","doi":"10.3724/abbs.2024145","DOIUrl":"https://doi.org/10.3724/abbs.2024145","url":null,"abstract":"<p><p>In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rengui Jiang, Xuyu He, Weidong Chen, Huoying Cai, Zhaohai Su, Zheng Xie, Bilong Zhang, Jiangyong Yang, Yueting Wang, Ling Huang, Gang Cao, Xiutong Zhong, Hui Xie, Hengqing Zhu, Jun Cao, Weiling Lu
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.
{"title":"lncRNA H19 facilitates vascular neointima formation by targeting miR-125a-3p/FLT1 axis.","authors":"Rengui Jiang, Xuyu He, Weidong Chen, Huoying Cai, Zhaohai Su, Zheng Xie, Bilong Zhang, Jiangyong Yang, Yueting Wang, Ling Huang, Gang Cao, Xiutong Zhong, Hui Xie, Hengqing Zhu, Jun Cao, Weiling Lu","doi":"10.3724/abbs.2024087","DOIUrl":"10.3724/abbs.2024087","url":null,"abstract":"<p><p>The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The subcellular localization of RNA is critical to a variety of physiological and pathological processes. Dissecting the spatiotemporal regulation of the transcriptome is key to understanding cell function and fate. However, it remains challenging to effectively enrich and catalogue RNAs from various subcellular structures using traditional approaches. In recent years, proximity labeling has emerged as an alternative strategy for efficient isolation and purification of RNA from these intricate subcellular compartments. This review focuses on examining RNA-related proximity labeling tools and exploring their application in elucidating the spatiotemporal regulation of RNA at the subcellular level.
{"title":"Mapping subcellular RNA localization with proximity labeling.","authors":"Jiapeng Liu, Binglin Zhong, Shuojun Li, Shuo Han","doi":"10.3724/abbs.2024147","DOIUrl":"https://doi.org/10.3724/abbs.2024147","url":null,"abstract":"<p><p>The subcellular localization of RNA is critical to a variety of physiological and pathological processes. Dissecting the spatiotemporal regulation of the transcriptome is key to understanding cell function and fate. However, it remains challenging to effectively enrich and catalogue RNAs from various subcellular structures using traditional approaches. In recent years, proximity labeling has emerged as an alternative strategy for efficient isolation and purification of RNA from these intricate subcellular compartments. This review focuses on examining RNA-related proximity labeling tools and exploring their application in elucidating the spatiotemporal regulation of RNA at the subcellular level.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiling Nie, Yang Yu, Siqi Zhou, Yue Xu, Xi Chen, Xun Qin, Zhangyu Liu, Jiayu Huang, Hailiang Zhang, Jin Yao, Qin Jiang, Bingbing Wei, Xiaojian Qin
Transcription factor 3 (TCF3), a pivotal member of the TCF/LEF family, plays a critical role in tumorigenesis. Nonetheless, its impact on the tumor microenvironment (TME) and cancer phenotypes remains elusive. We perform an exhaustive analysis of TCF3 expression, DNA variation profiles, prognostic implications, and associations with the TME and immunological aspects. This study is based on a large-scale pan-cancer cohort, encompassing over 17,000 cancer patients from multiple independent datasets, validated by in vitro assays. Our results show that TCF3/4/7 exhibits differential expression patterns between normal and tumor tissues across pan-cancer analyses. Mutational analysis of TCF3 across diverse cancer types reveals the highest alteration rates in biliary tract cancer. Additionally, mutations and single nucleotide variants in TCF3/4/7 are found to exert varied effects on patient prognosis. Importantly, TCF3 emerges as a robust predictor of survival across all cancer cohorts and among patients receiving immune checkpoint inhibitors. Elevated TCF3 expression is correlated with more aggressive cancer subtypes, as validated by immunohistochemistry and diverse cohort data. Furthermore, TCF3 expression is positively correlated with intratumoral heterogeneity and angiogenesis. In vitro investigations demonstrate that TCF3 is involved in epithelial-mesenchymal transition, migration, invasion, and angiogenesis. These effects are likely mediated through the interaction of TCF3 with the NF-κB/MMP2 pathway, which is modulated by IL-17A in human uveal melanoma MUM2B cells. This study elucidates, for the first time, the significant associations of TCF3 with DNA variation profiles, prognostic outcomes, and the TME in multiple cancer contexts. TCF3 holds promise as a molecular marker for diagnosis and as a potential target for novel therapeutic strategies, particularly in uveal melanoma.
{"title":"TCF3 as a multidimensional biomarker: oncogenicity, genomic alterations, and immune landscape in pan-cancer analysis.","authors":"Huiling Nie, Yang Yu, Siqi Zhou, Yue Xu, Xi Chen, Xun Qin, Zhangyu Liu, Jiayu Huang, Hailiang Zhang, Jin Yao, Qin Jiang, Bingbing Wei, Xiaojian Qin","doi":"10.3724/abbs.2024126","DOIUrl":"https://doi.org/10.3724/abbs.2024126","url":null,"abstract":"<p><p>Transcription factor 3 (TCF3), a pivotal member of the TCF/LEF family, plays a critical role in tumorigenesis. Nonetheless, its impact on the tumor microenvironment (TME) and cancer phenotypes remains elusive. We perform an exhaustive analysis of TCF3 expression, DNA variation profiles, prognostic implications, and associations with the TME and immunological aspects. This study is based on a large-scale pan-cancer cohort, encompassing over 17,000 cancer patients from multiple independent datasets, validated by <i>in vitro</i> assays. Our results show that TCF3/4/7 exhibits differential expression patterns between normal and tumor tissues across pan-cancer analyses. Mutational analysis of TCF3 across diverse cancer types reveals the highest alteration rates in biliary tract cancer. Additionally, mutations and single nucleotide variants in TCF3/4/7 are found to exert varied effects on patient prognosis. Importantly, TCF3 emerges as a robust predictor of survival across all cancer cohorts and among patients receiving immune checkpoint inhibitors. Elevated TCF3 expression is correlated with more aggressive cancer subtypes, as validated by immunohistochemistry and diverse cohort data. Furthermore, TCF3 expression is positively correlated with intratumoral heterogeneity and angiogenesis. <i>In vitro</i> investigations demonstrate that TCF3 is involved in epithelial-mesenchymal transition, migration, invasion, and angiogenesis. These effects are likely mediated through the interaction of TCF3 with the NF-κB/MMP2 pathway, which is modulated by IL-17A in human uveal melanoma MUM2B cells. This study elucidates, for the first time, the significant associations of TCF3 with DNA variation profiles, prognostic outcomes, and the TME in multiple cancer contexts. TCF3 holds promise as a molecular marker for diagnosis and as a potential target for novel therapeutic strategies, particularly in uveal melanoma.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuexue Zhu, Xinyu Meng, Xinyao Du, Chenyang Zhao, Xinyu Ma, Yuanyuan Wen, Shijie Zhang, Bao Hou, Weiwei Cai, Bin Du, Zhijun Han, Fei Xu, Liying Qiu, Haijian Sun
Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.
{"title":"Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway.","authors":"Xuexue Zhu, Xinyu Meng, Xinyao Du, Chenyang Zhao, Xinyu Ma, Yuanyuan Wen, Shijie Zhang, Bao Hou, Weiwei Cai, Bin Du, Zhijun Han, Fei Xu, Liying Qiu, Haijian Sun","doi":"10.3724/abbs.2024141","DOIUrl":"https://doi.org/10.3724/abbs.2024141","url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Liu, Zhiyuan Chen, Zhaoxing Li, Xinya Zhao, Weigang Zhang, Ao Zhang, Longxing Wen, Xiaoming Wang, Shuying Zhou, Daohai Qian
Chemoresistance is the primary reason for poor prognosis in patients with pancreatic cancer (PC). Recent studies have indicated that ferroptosis may improve chemoresistance, but the underlying mechanisms remain unclear. In this study, significant upregulation of heat shock protein 90α (Hsp90α) expression is detected in the peripheral blood and tissue samples of patients with chemoresistant PC. Further studies reveal that Hsp90α promotes the proliferation, migration, and invasion of a chemoresistant pancreatic cell line (Panc-1-gem) by suppressing ferroptosis. Hsp90α competitively binds to Kelch-like ECH-associated protein 1 (Keap1), liberating nuclear factor erythroid 2-related factor 2 (Nrf2) from Keap1 sequestration. Nrf2 subsequently translocates into the nucleus and activates the glutathione peroxidase 4 (GPX4) pathway, thereby suppressing ferroptosis. This process further worsens the chemoresistance of PC cells. This study provides valuable insight into potential molecular targets to overcome chemoresistance in PC. It sheds light on the intricate mechanisms linking Hsp90α and ferroptosis to chemoresistance in PC and provides a theoretical foundation for the development of novel therapeutic strategies.
化疗耐药性是胰腺癌(PC)患者预后不良的主要原因。最近的研究表明,铁蛋白沉积可改善化疗耐药性,但其潜在机制仍不清楚。本研究发现,在化疗耐药 PC 患者的外周血和组织样本中,热休克蛋白 90α(Hsp90α)表达明显上调。进一步的研究发现,Hsp90α通过抑制铁突变促进了化疗耐药胰腺细胞系(Panc-1-gem)的增殖、迁移和侵袭。Hsp90α 与 Kelch-like ECH-associated protein 1(Keap1)竞争性结合,将核因子红细胞 2 相关因子 2(Nrf2)从 Keap1 的封闭中释放出来。Nrf2 随后转位到细胞核中,激活谷胱甘肽过氧化物酶 4(GPX4)通路,从而抑制铁氧化。这一过程进一步加剧了 PC 细胞的化疗抗性。这项研究为克服PC化疗耐药性的潜在分子靶点提供了宝贵的见解。它揭示了Hsp90α和铁突变与PC化疗耐药性之间错综复杂的机制,为开发新型治疗策略提供了理论基础。
{"title":"Hsp90α promotes chemoresistance in pancreatic cancer by regulating Keap1-Nrf2 axis and inhibiting ferroptosis.","authors":"Bin Liu, Zhiyuan Chen, Zhaoxing Li, Xinya Zhao, Weigang Zhang, Ao Zhang, Longxing Wen, Xiaoming Wang, Shuying Zhou, Daohai Qian","doi":"10.3724/abbs.2024138","DOIUrl":"https://doi.org/10.3724/abbs.2024138","url":null,"abstract":"<p><p>Chemoresistance is the primary reason for poor prognosis in patients with pancreatic cancer (PC). Recent studies have indicated that ferroptosis may improve chemoresistance, but the underlying mechanisms remain unclear. In this study, significant upregulation of heat shock protein 90α (Hsp90α) expression is detected in the peripheral blood and tissue samples of patients with chemoresistant PC. Further studies reveal that Hsp90α promotes the proliferation, migration, and invasion of a chemoresistant pancreatic cell line (Panc-1-gem) by suppressing ferroptosis. Hsp90α competitively binds to Kelch-like ECH-associated protein 1 (Keap1), liberating nuclear factor erythroid 2-related factor 2 (Nrf2) from Keap1 sequestration. Nrf2 subsequently translocates into the nucleus and activates the glutathione peroxidase 4 (GPX4) pathway, thereby suppressing ferroptosis. This process further worsens the chemoresistance of PC cells. This study provides valuable insight into potential molecular targets to overcome chemoresistance in PC. It sheds light on the intricate mechanisms linking Hsp90α and ferroptosis to chemoresistance in PC and provides a theoretical foundation for the development of novel therapeutic strategies.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}