Pub Date : 2025-02-01Epub Date: 2025-01-13DOI: 10.1107/S2053230X2500010X
Jose Malanho da Silva, Jose Lanuza, Francesco Bruno, Vito Calderone, Enrico Ravera
Hen egg-white lysozyme (HEWL) is a small polycationic protein which is highly soluble and stable. This has led to it becoming a `molecular laboratory' where chemical biological operations and structural techniques are tested. To date, HEWL accounts for 1233 PDB entries, roughly 0.5% of the total, making it the best-represented protein in the PDB. With the aim of unambiguously identifying the N atom of the His15 side chain that is most reactive towards iodoacetamide, the structure of chemically modified HEWL was determined by crystallizing it using the `15 minutes lysozyme' protocol. This protocol invariably yields tetragonal crystals of the unmodified protein. To our surprise, we found that the crystals of the modified protein had similar unit-cell parameters but that refinement was only possible when considering an orthorhombic system.
{"title":"The structure of His15 acetamide-modified hen egg-white lysozyme: a nice surprise from an old friend.","authors":"Jose Malanho da Silva, Jose Lanuza, Francesco Bruno, Vito Calderone, Enrico Ravera","doi":"10.1107/S2053230X2500010X","DOIUrl":"10.1107/S2053230X2500010X","url":null,"abstract":"<p><p>Hen egg-white lysozyme (HEWL) is a small polycationic protein which is highly soluble and stable. This has led to it becoming a `molecular laboratory' where chemical biological operations and structural techniques are tested. To date, HEWL accounts for 1233 PDB entries, roughly 0.5% of the total, making it the best-represented protein in the PDB. With the aim of unambiguously identifying the N atom of the His15 side chain that is most reactive towards iodoacetamide, the structure of chemically modified HEWL was determined by crystallizing it using the `15 minutes lysozyme' protocol. This protocol invariably yields tetragonal crystals of the unmodified protein. To our surprise, we found that the crystals of the modified protein had similar unit-cell parameters but that refinement was only possible when considering an orthorhombic system.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"41-46"},"PeriodicalIF":1.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-15DOI: 10.1107/S2053230X25000068
Michael R Rankin, Janet L Smith
X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported. By comparing unit-cell parameters with those in the PDB, contaminants such as CA2 can be identified, preventing futile molecular-replacement attempts. Crystallographers can use these new lattice parameters to diagnose CA2 contamination in similar experiments.
X 射线晶体学仍然是确定蛋白质三维结构的主要方法。然而,这一资源密集型过程可能会受到来自表达源的杂质蛋白意外结晶的阻碍。本文报告了偶然发现大肠杆菌碳酸酐酶 2(CA2)的两种新晶体形式和一种新的高分辨率结构的情况,这两种新晶体形式和一种新的高分辨率结构是在一个无关目标的结晶过程中产生的。通过比较单胞参数和 PDB 中的参数,可以识别出 CA2 等污染物,从而避免徒劳的分子置换尝试。结晶学家可以利用这些新的晶格参数来诊断类似实验中的 CA2 污染。
{"title":"Serendipitous high-resolution structure of Escherichia coli carbonic anhydrase 2.","authors":"Michael R Rankin, Janet L Smith","doi":"10.1107/S2053230X25000068","DOIUrl":"10.1107/S2053230X25000068","url":null,"abstract":"<p><p>X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported. By comparing unit-cell parameters with those in the PDB, contaminants such as CA2 can be identified, preventing futile molecular-replacement attempts. Crystallographers can use these new lattice parameters to diagnose CA2 contamination in similar experiments.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"47-52"},"PeriodicalIF":1.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-13DOI: 10.1107/S2053230X25000081
Jakob Ruickoldt, Petra Wendler
Screening of cryo-EM samples is essential for the generation of high-resolution cryo-EM structures. Often, it is cumbersome to correlate the appearance of specific grid squares and micrograph quality. Here, CryoCrane (Correlate atlas and exposures), a visualization tool for cryo-EM screening data, is presented. It aims to provide an intuitive way to visualize micrographs and to speed up data analysis.
{"title":"CryoCrane: an open-source GUI for analyzing cryo-EM screening data sets.","authors":"Jakob Ruickoldt, Petra Wendler","doi":"10.1107/S2053230X25000081","DOIUrl":"10.1107/S2053230X25000081","url":null,"abstract":"<p><p>Screening of cryo-EM samples is essential for the generation of high-resolution cryo-EM structures. Often, it is cumbersome to correlate the appearance of specific grid squares and micrograph quality. Here, CryoCrane (Correlate atlas and exposures), a visualization tool for cryo-EM screening data, is presented. It aims to provide an intuitive way to visualize micrographs and to speed up data analysis.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"62-65"},"PeriodicalIF":1.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1107/S2053230X25000378
N. D. Clark, C. Li, M. G. Malkowski
Periodontal diseases afflict 20–50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors. One such virulence factor is TDE0362, a multidomain protein with a carboxy-terminal papain-superfamily cysteine protease (C0362). Most papain-superfamily cysteine proteases are produced as proenzymes with a prodomain that interacts with the prosegment binding loop (PBL), requiring proteolytic processing for full activation. Previous studies have indicated that C0362 is not produced as a proenzyme, suggesting an alternative regulatory mechanism. We previously determined the crystal structure of C0362 captured in an inactive conformation with an oxidized catalytic cysteine and a disordered PBL. In this follow-up study, we evaluated the active-site architecture and the PBL in two mutant (Y559A and C412S) structures and an inhibitor-bound (E64) structure to provide insight into the role that the PBL plays in the generation of active enzyme. Our results implicate Tyr559 as playing a critical role in the transition of the enzyme to an active state. We subsequently utilized the structural information to generate models of C0362 bound to human complement factors C3 and C4. Collectively, our results provide insight into the regulatory mechanism and putative substrate-binding interfaces of C0362, highlighting avenues of further research towards inhibition of this essential virulence factor.
{"title":"Structural insights into the role of the prosegment binding loop in a papain-superfamily cysteine protease from Treponema denticola","authors":"N. D. Clark, C. Li, M. G. Malkowski","doi":"10.1107/S2053230X25000378","DOIUrl":"10.1107/S2053230X25000378","url":null,"abstract":"<p>Periodontal diseases afflict 20–50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of <i>Treponema denticola</i>, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors. One such virulence factor is TDE0362, a multidomain protein with a carboxy-terminal papain-superfamily cysteine protease (C0362). Most papain-superfamily cysteine proteases are produced as proenzymes with a prodomain that interacts with the prosegment binding loop (PBL), requiring proteolytic processing for full activation. Previous studies have indicated that C0362 is not produced as a proenzyme, suggesting an alternative regulatory mechanism. We previously determined the crystal structure of C0362 captured in an inactive conformation with an oxidized catalytic cysteine and a disordered PBL. In this follow-up study, we evaluated the active-site architecture and the PBL in two mutant (Y559A and C412S) structures and an inhibitor-bound (E64) structure to provide insight into the role that the PBL plays in the generation of active enzyme. Our results implicate Tyr559 as playing a critical role in the transition of the enzyme to an active state. We subsequently utilized the structural information to generate models of C0362 bound to human complement factors C3 and C4. Collectively, our results provide insight into the regulatory mechanism and putative substrate-binding interfaces of C0362, highlighting avenues of further research towards inhibition of this essential virulence factor.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 2","pages":"53-61"},"PeriodicalIF":1.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1107/S2053230X25000044
Takuya Usui, Sayaka Ono, Akiyoshi Nakamura, Koji Kato, Toyoyuki Ose, Min Yao
The bacterial enzyme tRNA 2-selenouridine synthase (SelU) catalyzes the conversion of 5-substituted 2-thiouridine (R5S2U) to 5-substituted 2-selenouridine (R5Se2U) at the wobble positions of several tRNAs. Seleno-modification potentially regulates translation efficiency in response to selenium availability. Notably, SelU uses the 2-geranylthiouridine (R5geS2U) intermediate for sulfur removal, and this geranylthiol (geS) is a unique leaving group among tRNA-maturation enzymes. However, the underlying sequence of the SelU reaction remains unclear. Here, a crystallographic study of the Escherichia coli SelU–tRNA complex is reported. Robust and well formed SelU–tRNA crystals were obtained after several optimizations, including co-expression with tRNA and additive screening. Diffraction data were collected at a resolution of 3.10 Å using a wavelength of 1.0000 Å. The crystals belonged to space group C2, and the phase was determined by molecular replacement using the AlphaFold2-predicted SelU structure as a search model. Electron-density mapping revealed the presence of two SelU–tRNA complexes in the asymmetric unit.
{"title":"Crystallographic analysis of the Escherichia coli tRNA seleno-modification enzyme in complex with tRNA","authors":"Takuya Usui, Sayaka Ono, Akiyoshi Nakamura, Koji Kato, Toyoyuki Ose, Min Yao","doi":"10.1107/S2053230X25000044","DOIUrl":"10.1107/S2053230X25000044","url":null,"abstract":"<p>The bacterial enzyme tRNA 2-selenouridine synthase (SelU) catalyzes the conversion of 5-substituted 2-thiouridine (R5S2U) to 5-substituted 2-selenouridine (R5Se2U) at the wobble positions of several tRNAs. Seleno-modification potentially regulates translation efficiency in response to selenium availability. Notably, SelU uses the 2-geranylthiouridine (R5geS2U) intermediate for sulfur removal, and this geranylthiol (geS) is a unique leaving group among tRNA-maturation enzymes. However, the underlying sequence of the SelU reaction remains unclear. Here, a crystallographic study of the <i>Escherichia coli</i> SelU–tRNA complex is reported. Robust and well formed SelU–tRNA crystals were obtained after several optimizations, including co-expression with tRNA and additive screening. Diffraction data were collected at a resolution of 3.10 Å using a wavelength of 1.0000 Å. The crystals belonged to space group <i>C</i>2, and the phase was determined by molecular replacement using the <i>AlphaFold</i>2-predicted SelU structure as a search model. Electron-density mapping revealed the presence of two SelU–tRNA complexes in the asymmetric unit.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 2","pages":"35-40"},"PeriodicalIF":1.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}