Pub Date : 2024-09-01Epub Date: 2024-08-23DOI: 10.1107/S2053230X24007039
Tim Garbers, Piotr Neumann, Jan Wollenhaupt, Achim Dickmanns, Manfred S Weiss, Ralf Ficner
Crystallographic fragment screening has become a pivotal technique in structure-based drug design, particularly for bacterial targets with a crucial role in infectious disease mechanisms. The enzyme CdaA, which synthesizes an essential second messenger cyclic di-AMP (c-di-AMP) in many pathogenic bacteria, has emerged as a promising candidate for the development of novel antibiotics. To identify crystals suitable for fragment screening, CdaA enzymes from Streptococcus pneumoniae, Bacillus subtilis and Enterococcus faecium were purified and crystallized. Crystals of B. subtilis CdaA, which diffracted to the highest resolution of 1.1 Å, were used to perform the screening of 96 fragments, yielding data sets with resolutions spanning from 1.08 to 1.87 Å. A total of 24 structural hits across eight different sites were identified. Four fragments bind to regions that are highly conserved among pathogenic bacteria, specifically the active site (three fragments) and the dimerization interface (one fragment). The coordinates of the three active-site fragments were used to perform an in silico drug-repurposing screen using the OpenEye suite and the DrugBank database. This screen identified tenofovir, an approved drug, that is predicted to interact with the ATP-binding region of CdaA. Its inhibitory potential against pathogenic E. faecium CdaA has been confirmed by ITC measurements. These findings not only demonstrate the feasibility of this approach for identifying lead compounds for the design of novel antibacterial agents, but also pave the way for further fragment-based lead-optimization efforts targeting CdaA.
晶体片段筛选已成为基于结构的药物设计中的一项关键技术,尤其是针对在传染病机制中起关键作用的细菌靶点。CdaA 酶在许多致病细菌中合成重要的第二信使环状二-AMP(c-di-AMP),它已成为开发新型抗生素的有希望的候选对象。为了鉴定适合片段筛选的晶体,对肺炎链球菌、枯草杆菌和粪肠球菌的 CdaA 酶进行了纯化和结晶。利用衍射分辨率最高为 1.1 Å 的枯草杆菌 CdaA 晶体对 96 个片段进行了筛选,得到的数据集分辨率从 1.08 Å 到 1.87 Å 不等。在 8 个不同位点上共发现了 24 个结构点。其中四个片段与病原菌高度保守的区域结合,特别是活性位点(三个片段)和二聚化界面(一个片段)。使用 OpenEye 套件和 DrugBank 数据库对这三个活性位点片段的坐标进行了硅学药物再利用筛选。该筛选确定了一种已获批准的药物替诺福韦,据预测它能与 CdaA 的 ATP 结合区相互作用。它对致病性粪肠球菌 CdaA 的抑制潜力已通过 ITC 测量得到证实。这些发现不仅证明了这种方法在鉴定先导化合物以设计新型抗菌剂方面的可行性,还为进一步针对 CdaA 进行基于片段的先导化合物优化工作铺平了道路。
{"title":"Crystallographic fragment screen of the c-di-AMP-synthesizing enzyme CdaA from Bacillus subtilis.","authors":"Tim Garbers, Piotr Neumann, Jan Wollenhaupt, Achim Dickmanns, Manfred S Weiss, Ralf Ficner","doi":"10.1107/S2053230X24007039","DOIUrl":"10.1107/S2053230X24007039","url":null,"abstract":"<p><p>Crystallographic fragment screening has become a pivotal technique in structure-based drug design, particularly for bacterial targets with a crucial role in infectious disease mechanisms. The enzyme CdaA, which synthesizes an essential second messenger cyclic di-AMP (c-di-AMP) in many pathogenic bacteria, has emerged as a promising candidate for the development of novel antibiotics. To identify crystals suitable for fragment screening, CdaA enzymes from Streptococcus pneumoniae, Bacillus subtilis and Enterococcus faecium were purified and crystallized. Crystals of B. subtilis CdaA, which diffracted to the highest resolution of 1.1 Å, were used to perform the screening of 96 fragments, yielding data sets with resolutions spanning from 1.08 to 1.87 Å. A total of 24 structural hits across eight different sites were identified. Four fragments bind to regions that are highly conserved among pathogenic bacteria, specifically the active site (three fragments) and the dimerization interface (one fragment). The coordinates of the three active-site fragments were used to perform an in silico drug-repurposing screen using the OpenEye suite and the DrugBank database. This screen identified tenofovir, an approved drug, that is predicted to interact with the ATP-binding region of CdaA. Its inhibitory potential against pathogenic E. faecium CdaA has been confirmed by ITC measurements. These findings not only demonstrate the feasibility of this approach for identifying lead compounds for the design of novel antibacterial agents, but also pave the way for further fragment-based lead-optimization efforts targeting CdaA.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"200-209"},"PeriodicalIF":1.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1107/S2053230X24007970
Yi Xue, Zhen Wu, Xue Kang
The immunoglobulin (Ig)-like domain is found in a broad range of proteins with diverse functional roles. While an essential β-sandwich fold is maintained, considerable structural variations exist and are critical for functional diversity. The Rib-domain family, primarily found as tandem-repeat modules in the surface proteins of Gram-positive bacteria, represents another significant structural variant of the Ig-like fold. However, limited structural and functional exploration of this family has been conducted, which significantly restricts the understanding of its evolution and significance within the Ig superclass. In this work, a high-resolution crystal structure of a Rib domain derived from the probiotic bacterium Limosilactobacillus reuteri is presented. This protein, while sharing significant structural similarity with homologous domains from other bacteria, exhibits a significantly increased thermal resistance. The potential structural features contributing to this stability are discussed. Moreover, the presence of two copper-binding sites, with one positioned on the interface, suggests potential functional roles that warrant further investigation.
{"title":"Crystal structure of the Rib domain of the cell-wall-anchored surface protein from Limosilactobacillus reuteri","authors":"Yi Xue, Zhen Wu, Xue Kang","doi":"10.1107/S2053230X24007970","DOIUrl":"10.1107/S2053230X24007970","url":null,"abstract":"<p>The immunoglobulin (Ig)-like domain is found in a broad range of proteins with diverse functional roles. While an essential β-sandwich fold is maintained, considerable structural variations exist and are critical for functional diversity. The Rib-domain family, primarily found as tandem-repeat modules in the surface proteins of Gram-positive bacteria, represents another significant structural variant of the Ig-like fold. However, limited structural and functional exploration of this family has been conducted, which significantly restricts the understanding of its evolution and significance within the Ig superclass. In this work, a high-resolution crystal structure of a Rib domain derived from the probiotic bacterium <i>Limosilactobacillus reuteri</i> is presented. This protein, while sharing significant structural similarity with homologous domains from other bacteria, exhibits a significantly increased thermal resistance. The potential structural features contributing to this stability are discussed. Moreover, the presence of two copper-binding sites, with one positioned on the interface, suggests potential functional roles that warrant further investigation.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"80 9","pages":"228-233"},"PeriodicalIF":1.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M-RAS plays a crucial role in the RAF–MEK signaling pathway. When activated by GTP, M-RAS forms a complex with SHOC2 and PP1C, initiating downstream RAF–MEK signal transduction. In this study, the crystal structure of the GDP-bound human M-RAS protein is presented with two forms of crystal packing. Both the full-length and truncated human M-RAS structures aligned well with the high-confidence section of the AlphaFold2-predicted structure with low r.m.s.d., except for the Switch regions. Despite high sequence similarity to the available mouse M-RAS structure, the full-length human M-RAS structure exhibits unique crystal packing. This inactive human M-RAS structure could offer novel insights for the design of selective compounds targeting M-RAS.
{"title":"Crystal structure of the GDP-bound human M-RAS protein in two crystal forms","authors":"Stephanie M. Bester, Rebecca Abrahamsen, Luiza Rodrigues Samora, Wen-I Wu, Tung-Chung Mou","doi":"10.1107/S2053230X24007969","DOIUrl":"10.1107/S2053230X24007969","url":null,"abstract":"<p>M-RAS plays a crucial role in the RAF–MEK signaling pathway. When activated by GTP, M-RAS forms a complex with SHOC2 and PP1C, initiating downstream RAF–MEK signal transduction. In this study, the crystal structure of the GDP-bound human M-RAS protein is presented with two forms of crystal packing. Both the full-length and truncated human M-RAS structures aligned well with the high-confidence section of the <i>AlphaFold</i>2-predicted structure with low r.m.s.d., except for the Switch regions. Despite high sequence similarity to the available mouse M-RAS structure, the full-length human M-RAS structure exhibits unique crystal packing. This inactive human M-RAS structure could offer novel insights for the design of selective compounds targeting M-RAS.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"80 9","pages":"220-227"},"PeriodicalIF":1.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein tyrosine phosphatase non-receptor type 2 (PTPN2) has recently been recognized as a promising target for cancer immunotherapy. Despite extensive structural and functional studies of other protein tyrosine phosphatases, there is limited structural understanding of PTPN2. Currently, there are only five published PTPN2 structures and none are truly unbound due to the presence of a mutation, an inhibitor or a loop (related to crystal packing) in the active site. In this report, a novel crystal packing is revealed that resulted in a true apo PTPN2 crystal structure with an unbound active site, allowing the active site to be observed in a native apo state for the first time. Key residues related to accommodation in the active site became identifiable upon comparison with previously published PTPN2 structures. Structures of PTPN2 in complex with an established PTPN1 active-site inhibitor and an allosteric inhibitor were achieved through soaking experiments using these apo PTPN2 crystals. The increased structural understanding of apo PTPN2 and the ability to soak in inhibitors will aid the development of future PTPN2 inhibitors.
{"title":"Enhancing the apo protein tyrosine phosphatase non-receptor type 2 crystal soaking strategy through inhibitor-accessible binding sites","authors":"Stephanie M. Bester, Rebecca Linwood, Ryoko Kataoka, Wen-I Wu, Tung-Chung Mou","doi":"10.1107/S2053230X24007866","DOIUrl":"10.1107/S2053230X24007866","url":null,"abstract":"<p>Protein tyrosine phosphatase non-receptor type 2 (PTPN2) has recently been recognized as a promising target for cancer immunotherapy. Despite extensive structural and functional studies of other protein tyrosine phosphatases, there is limited structural understanding of PTPN2. Currently, there are only five published PTPN2 structures and none are truly unbound due to the presence of a mutation, an inhibitor or a loop (related to crystal packing) in the active site. In this report, a novel crystal packing is revealed that resulted in a true apo PTPN2 crystal structure with an unbound active site, allowing the active site to be observed in a native apo state for the first time. Key residues related to accommodation in the active site became identifiable upon comparison with previously published PTPN2 structures. Structures of PTPN2 in complex with an established PTPN1 active-site inhibitor and an allosteric inhibitor were achieved through soaking experiments using these apo PTPN2 crystals. The increased structural understanding of apo PTPN2 and the ability to soak in inhibitors will aid the development of future PTPN2 inhibitors.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"80 9","pages":"210-219"},"PeriodicalIF":1.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tricks and tips for trips","authors":"Mark J. van Raaij","doi":"10.1107/S2053230X24007593","DOIUrl":"10.1107/S2053230X24007593","url":null,"abstract":"<p>Finding out about sample preparation and transportation of structural biology samples in <i>Acta Crystallographica F, Structural Biology Communications</i>.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"80 8","pages":"164"},"PeriodicalIF":1.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-11DOI: 10.1107/S2053230X24006174
Sarah E J Bowman, James Byrnes, Silvia Russi, Christina M Zimanyi
Preparation of biomacromolecules for structural biology studies is a complex and time-consuming process. The goal is to produce a highly concentrated, highly pure product that is often shipped to large facilities with tools to prepare the samples for crystallization trials or for measurements at synchrotrons and cryoEM centers. The aim of this article is to provide guidance and to discuss general considerations for shipping biomacromolecular samples. Details are also provided about shipping samples for specific experiment types, including solution- and cryogenic-based techniques. These guidelines are provided with the hope that the time and energy invested in sample preparation is not lost due to shipping logistics.
{"title":"Preparing research samples for safe arrival at centers and facilities: recipes for successful experiments.","authors":"Sarah E J Bowman, James Byrnes, Silvia Russi, Christina M Zimanyi","doi":"10.1107/S2053230X24006174","DOIUrl":"10.1107/S2053230X24006174","url":null,"abstract":"<p><p>Preparation of biomacromolecules for structural biology studies is a complex and time-consuming process. The goal is to produce a highly concentrated, highly pure product that is often shipped to large facilities with tools to prepare the samples for crystallization trials or for measurements at synchrotrons and cryoEM centers. The aim of this article is to provide guidance and to discuss general considerations for shipping biomacromolecular samples. Details are also provided about shipping samples for specific experiment types, including solution- and cryogenic-based techniques. These guidelines are provided with the hope that the time and energy invested in sample preparation is not lost due to shipping logistics.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"165-172"},"PeriodicalIF":1.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1107/S2053230X24006915
Haihai Jiang, Cheng Lin, Jingyi Chang, Xiaofang Zou, Jin Zhang, Jian Li
Enteroviruses cause a wide range of disorders with varying presentations and severities, and some enteroviruses have emerged as serious public health concerns. These include Coxsackievirus B3 (CVB3), an active causative agent of viral myocarditis, and Coxsackievirus B4 (CVB4), which may accelerate the progression of type 1 diabetes. The 3C proteases from CVB3 and CVB4 play important roles in the propagation of these viruses. In this study, the 3C proteases from CVB3 and CVB4 were expressed in Escherichia coli and purified by affinity chromatography and gel-filtration chromatography. The crystals of the CVB3 and CVB4 3C proteases diffracted to 2.10 and 2.01 Å resolution, respectively. The crystal structures were solved by the molecular-replacement method and contained a typical chymotrypsin-like fold and a conserved His40–Glu71–Cys147 catalytic triad. Comparison with the structures of 3C proteases from other enteroviruses revealed high similarity with minor differences, which will guide the design of 3C-targeting inhibitors with broad-spectrum properties.
{"title":"Crystal structures of the 3C proteases from Coxsackievirus B3 and B4","authors":"Haihai Jiang, Cheng Lin, Jingyi Chang, Xiaofang Zou, Jin Zhang, Jian Li","doi":"10.1107/S2053230X24006915","DOIUrl":"10.1107/S2053230X24006915","url":null,"abstract":"<p>Enteroviruses cause a wide range of disorders with varying presentations and severities, and some enteroviruses have emerged as serious public health concerns. These include Coxsackievirus B3 (CVB3), an active causative agent of viral myocarditis, and Coxsackievirus B4 (CVB4), which may accelerate the progression of type 1 diabetes. The 3C proteases from CVB3 and CVB4 play important roles in the propagation of these viruses. In this study, the 3C proteases from CVB3 and CVB4 were expressed in <i>Escherichia coli</i> and purified by affinity chromatography and gel-filtration chromatography. The crystals of the CVB3 and CVB4 3C proteases diffracted to 2.10 and 2.01 Å resolution, respectively. The crystal structures were solved by the molecular-replacement method and contained a typical chymotrypsin-like fold and a conserved His40–Glu71–Cys147 catalytic triad. Comparison with the structures of 3C proteases from other enteroviruses revealed high similarity with minor differences, which will guide the design of 3C-targeting inhibitors with broad-spectrum properties.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"80 8","pages":"183-190"},"PeriodicalIF":1.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}