Pub Date : 2015-07-01Epub Date: 2015-06-30DOI: 10.1107/S1399004715009219
Randy Suryadinata, Shane A Seabrook, Timothy E Adams, Stewart D Nuttall, Thomas S Peat
The assembly and anchorage of various pathogenic proteins on the surface of Gram-positive bacteria is mediated by the sortase family of enzymes. These cysteine transpeptidases catalyze a unique sorting signal motif located at the C-terminus of their target substrate and promote the covalent attachment of these proteins onto an amino nucleophile located on another protein or on the bacterial cell wall. Each of the six distinct classes of sortases displays a unique biological role, with sequential activation of multiple sortases often observed in many Gram-positive bacteria to decorate their peptidoglycans. Less is known about the members of the class D family of sortases (SrtD), but they have a suggested role in spore formation in an oxygen-limiting environment. Here, the crystal structure of the SrtD enzyme from Clostridium perfringens was determined at 1.99 Å resolution. Comparative analysis of the C. perfringens SrtD structure reveals the typical eight-stranded β-barrel fold observed in all other known sortases, along with the conserved catalytic triad consisting of cysteine, histidine and arginine residues. Biochemical approaches further reveal the specifics of the SrtD catalytic activity in vitro, with a significant preference for the LPQTGS sorting motif. Additionally, the catalytic activity of SrtD is most efficient at 316 K and can be further improved in the presence of magnesium cations. Since C. perfringens spores are heat-resistant and lead to foodborne illnesses, characterization of the spore-promoting sortase SrtD may lead to the development of new antimicrobial agents.
{"title":"Structural and biochemical analyses of a Clostridium perfringens sortase D transpeptidase.","authors":"Randy Suryadinata, Shane A Seabrook, Timothy E Adams, Stewart D Nuttall, Thomas S Peat","doi":"10.1107/S1399004715009219","DOIUrl":"10.1107/S1399004715009219","url":null,"abstract":"<p><p>The assembly and anchorage of various pathogenic proteins on the surface of Gram-positive bacteria is mediated by the sortase family of enzymes. These cysteine transpeptidases catalyze a unique sorting signal motif located at the C-terminus of their target substrate and promote the covalent attachment of these proteins onto an amino nucleophile located on another protein or on the bacterial cell wall. Each of the six distinct classes of sortases displays a unique biological role, with sequential activation of multiple sortases often observed in many Gram-positive bacteria to decorate their peptidoglycans. Less is known about the members of the class D family of sortases (SrtD), but they have a suggested role in spore formation in an oxygen-limiting environment. Here, the crystal structure of the SrtD enzyme from Clostridium perfringens was determined at 1.99 Å resolution. Comparative analysis of the C. perfringens SrtD structure reveals the typical eight-stranded β-barrel fold observed in all other known sortases, along with the conserved catalytic triad consisting of cysteine, histidine and arginine residues. Biochemical approaches further reveal the specifics of the SrtD catalytic activity in vitro, with a significant preference for the LPQTGS sorting motif. Additionally, the catalytic activity of SrtD is most efficient at 316 K and can be further improved in the presence of magnesium cations. Since C. perfringens spores are heat-resistant and lead to foodborne illnesses, characterization of the spore-promoting sortase SrtD may lead to the development of new antimicrobial agents.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":" ","pages":"1505-13"},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715009219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34262930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-23DOI: 10.1107/S139900471500704X
Isabelle Miras, Frederick Saul, Mireille Nowakowski, Patrick Weber, Ahmed Haouz, William Shepard, Mathieu Picardeau
Pathogenic Leptospira spp. are the agents of leptospirosis, an emerging zoonotic disease. Analyses of Leptospira genomes have shown that the pathogenic leptospires (but not the saprophytes) possess a large number of genes encoding proteins containing leucine-rich repeat (LRR) domains. In other pathogenic bacteria, proteins with LRR domains have been shown to be involved in mediating host-cell attachment and invasion, but their functions remain unknown in Leptospira. To gain insight into the potential function of leptospiral LRR proteins, the crystal structures of four LRR proteins that represent a novel subfamily with consecutive stretches of a 23-amino-acid LRR repeat motif have been solved. The four proteins analyzed adopt the characteristic α/β-solenoid horseshoe fold. The exposed residues of the inner concave surfaces of the solenoid, which constitute a putative functional binding site, are not conserved. The various leptospiral LRR proteins could therefore recognize distinct structural motifs of different host proteins and thus serve separate and complementary functions in the physiology of these bacteria.
{"title":"Structural characterization of a novel subfamily of leucine-rich repeat proteins from the human pathogen Leptospira interrogans.","authors":"Isabelle Miras, Frederick Saul, Mireille Nowakowski, Patrick Weber, Ahmed Haouz, William Shepard, Mathieu Picardeau","doi":"10.1107/S139900471500704X","DOIUrl":"https://doi.org/10.1107/S139900471500704X","url":null,"abstract":"<p><p>Pathogenic Leptospira spp. are the agents of leptospirosis, an emerging zoonotic disease. Analyses of Leptospira genomes have shown that the pathogenic leptospires (but not the saprophytes) possess a large number of genes encoding proteins containing leucine-rich repeat (LRR) domains. In other pathogenic bacteria, proteins with LRR domains have been shown to be involved in mediating host-cell attachment and invasion, but their functions remain unknown in Leptospira. To gain insight into the potential function of leptospiral LRR proteins, the crystal structures of four LRR proteins that represent a novel subfamily with consecutive stretches of a 23-amino-acid LRR repeat motif have been solved. The four proteins analyzed adopt the characteristic α/β-solenoid horseshoe fold. The exposed residues of the inner concave surfaces of the solenoid, which constitute a putative functional binding site, are not conserved. The various leptospiral LRR proteins could therefore recognize distinct structural motifs of different host proteins and thus serve separate and complementary functions in the physiology of these bacteria. </p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1351-9"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S139900471500704X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33253299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-14DOI: 10.1107/S1399004715005507
Roberto Improta, Luigi Vitagliano, Luciana Esposito
By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model.
通过结合小模型肽的量子力学分析和高分辨率蛋白质结构的统计调查,揭示了多肽主干键长度的系统构象依赖性,包括肽键(C- o和C- n)和以C(α)原子为中心的键。根据蛋白质结构的计算和调查,所有这些键长确实显示出ψ角的系统性变化。计算数据和统计数据之间的总体一致表明,这些趋势基本上是由局部效应驱动的。C(α)距离对ψ的依赖是由C(α)部分的σ系统和肽键的C- o π系统之间的相互作用决定的。每个键距离的最大值和最小值分别为与相邻CONH肽面垂直和平行的特定键构象。另一方面,C-O和C-N距离的变化与N原子的孤对与C-O π*体系之间的相互作用强度有关,这种相互作用强度由ψ角调制。C-O和C-N距离是相关的,但它们的趋势与肽键平面度没有严格联系,尽管在经典共振模型的基础上,所有这些参数之间都有相关性。
{"title":"Bond distances in polypeptide backbones depend on the local conformation.","authors":"Roberto Improta, Luigi Vitagliano, Luciana Esposito","doi":"10.1107/S1399004715005507","DOIUrl":"https://doi.org/10.1107/S1399004715005507","url":null,"abstract":"<p><p>By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model. </p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1272-83"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715005507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33248376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-14DOI: 10.1107/S1399004715006239
Alessandra Bianchin, Frederic Allemand, Angus Bell, Anthony J Chubb, Jean François Guichou
Antimalarial chemotherapy continues to be challenging in view of the emergence of drug resistance, especially artemisinin resistance in Southeast Asia. It is critical that novel antimalarial drugs are identified that inhibit new targets with unexplored mechanisms of action. It has been demonstrated that the immunosuppressive drug rapamycin, which is currently in clinical use to prevent organ-transplant rejection, has antimalarial effects. The Plasmodium falciparum target protein is PfFKBP35, a unique immunophilin FK506-binding protein (FKBP). This protein family binds rapamycin, FK506 and other immunosuppressive and non-immunosuppressive macrolactones. Here, two crystallographic structures of rapamycin in complex with the FK506-binding domain of PfFKBP35 at high resolution, in both its oxidized and reduced forms, are reported. In comparison with the human FKBP12-rapamycin complex reported previously, the structures reveal differences in the β4-β6 segment that lines the rapamycin binding site. Structural differences between the Plasmodium protein and human hFKBP12 include the replacement of Cys106 and Ser109 by His87 and Ile90, respectively. The proximity of Cys106 to the bound rapamycin molecule (4-5 Å) suggests possible routes for the rational design of analogues of rapamycin with specific antiparasitic activity. Comparison of the structures with the PfFKBD-FK506 complex shows that both drugs interact with the same binding-site residues. These two new structures highlight the structural differences and the specific interactions that must be kept in consideration for the rational design of rapamycin analogues with antimalarial activity that specifically bind to PfFKBP35 without immunosuppressive effects.
{"title":"Two crystal structures of the FK506-binding domain of Plasmodium falciparum FKBP35 in complex with rapamycin at high resolution.","authors":"Alessandra Bianchin, Frederic Allemand, Angus Bell, Anthony J Chubb, Jean François Guichou","doi":"10.1107/S1399004715006239","DOIUrl":"https://doi.org/10.1107/S1399004715006239","url":null,"abstract":"<p><p>Antimalarial chemotherapy continues to be challenging in view of the emergence of drug resistance, especially artemisinin resistance in Southeast Asia. It is critical that novel antimalarial drugs are identified that inhibit new targets with unexplored mechanisms of action. It has been demonstrated that the immunosuppressive drug rapamycin, which is currently in clinical use to prevent organ-transplant rejection, has antimalarial effects. The Plasmodium falciparum target protein is PfFKBP35, a unique immunophilin FK506-binding protein (FKBP). This protein family binds rapamycin, FK506 and other immunosuppressive and non-immunosuppressive macrolactones. Here, two crystallographic structures of rapamycin in complex with the FK506-binding domain of PfFKBP35 at high resolution, in both its oxidized and reduced forms, are reported. In comparison with the human FKBP12-rapamycin complex reported previously, the structures reveal differences in the β4-β6 segment that lines the rapamycin binding site. Structural differences between the Plasmodium protein and human hFKBP12 include the replacement of Cys106 and Ser109 by His87 and Ile90, respectively. The proximity of Cys106 to the bound rapamycin molecule (4-5 Å) suggests possible routes for the rational design of analogues of rapamycin with specific antiparasitic activity. Comparison of the structures with the PfFKBD-FK506 complex shows that both drugs interact with the same binding-site residues. These two new structures highlight the structural differences and the specific interactions that must be kept in consideration for the rational design of rapamycin analogues with antimalarial activity that specifically bind to PfFKBP35 without immunosuppressive effects.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1319-27"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715006239","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33248380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-14DOI: 10.1107/S139900471500423X
Danny Axford, James Foadi, Nien Jen Hu, Hassanul Ghani Choudhury, So Iwata, Konstantinos Beis, Gwyndaf Evans, Yilmaz Alguel
The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.
演示了利用同步辐射 X 射线衍射数据在室温下直接在蒸汽扩散结晶板(原位)中采集的积分膜蛋白的结构测定。原位曝光晶体无需人工处理样品,由于是在室温下进行,因此消除了样品低温冷却引起的低温保护和潜在结构异常的复杂性。该方法的关键在于能够限制辐射损伤,即从许多样品中为每个样品记录少量数据,然后使用专用软件将得到的数据集组合起来。通过对流感嗜血杆菌 TehA 进行 2.3 Å 分辨率的结构测定,证明了该方法的有效性。所介绍的方法为利用第三代同步辐射光束线在室温下快速、高效地测定膜蛋白结构提供了有效的方案。
{"title":"Structure determination of an integral membrane protein at room temperature from crystals in situ.","authors":"Danny Axford, James Foadi, Nien Jen Hu, Hassanul Ghani Choudhury, So Iwata, Konstantinos Beis, Gwyndaf Evans, Yilmaz Alguel","doi":"10.1107/S139900471500423X","DOIUrl":"10.1107/S139900471500423X","url":null,"abstract":"<p><p>The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines. </p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1228-37"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33374783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-14DOI: 10.1107/S1399004715006203
Avital Lahav, Haim Rozenberg, Anna Parnis, Dan Cassel, Noam Adir
The heptameric COPI coat (coatomer) plays an essential role in vesicular transport in the early secretory system of eukaryotic cells. While the structures of some of the subunits have been determined, that of the δ-COP subunit has not been reported to date. The δ-COP subunit is part of a subcomplex with structural similarity to tetrameric clathrin adaptors (APs), where δ-COP is the structural homologue of the AP μ subunit. Here, the crystal structure of the μ homology domain (MHD) of δ-COP (δ-MHD) obtained by phasing using a combined SAD-MR method is presented at 2.15 Å resolution. The crystallographic asymmetric unit contains two monomers that exhibit short sections of disorder, which may allude to flexible regions of the protein. The δ-MHD is composed of two subdomains connected by unstructured linkers. Comparison between this structure and those of known MHD domains from the APs shows significant differences in the positions of specific loops and β-sheets, as well as a more general change in the relative positions of the protein subdomains. The identified difference may be the major source of cargo-binding specificity. Finally, the crystal structure is used to analyze the potential effect of the I422T mutation in δ-COP previously reported to cause a neurodegenerative phenotype in mice.
{"title":"Structure of the bovine COPI δ subunit μ homology domain at 2.15 Å resolution.","authors":"Avital Lahav, Haim Rozenberg, Anna Parnis, Dan Cassel, Noam Adir","doi":"10.1107/S1399004715006203","DOIUrl":"https://doi.org/10.1107/S1399004715006203","url":null,"abstract":"<p><p>The heptameric COPI coat (coatomer) plays an essential role in vesicular transport in the early secretory system of eukaryotic cells. While the structures of some of the subunits have been determined, that of the δ-COP subunit has not been reported to date. The δ-COP subunit is part of a subcomplex with structural similarity to tetrameric clathrin adaptors (APs), where δ-COP is the structural homologue of the AP μ subunit. Here, the crystal structure of the μ homology domain (MHD) of δ-COP (δ-MHD) obtained by phasing using a combined SAD-MR method is presented at 2.15 Å resolution. The crystallographic asymmetric unit contains two monomers that exhibit short sections of disorder, which may allude to flexible regions of the protein. The δ-MHD is composed of two subdomains connected by unstructured linkers. Comparison between this structure and those of known MHD domains from the APs shows significant differences in the positions of specific loops and β-sheets, as well as a more general change in the relative positions of the protein subdomains. The identified difference may be the major source of cargo-binding specificity. Finally, the crystal structure is used to analyze the potential effect of the I422T mutation in δ-COP previously reported to cause a neurodegenerative phenotype in mice.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1328-34"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715006203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33248381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-14DOI: 10.1107/S1399004715006604
Simon Ladevèze, Gianluca Cioci, Pierre Roblin, Lionel Mourey, Samuel Tranier, Gabrielle Potocki-Véronèse
The first crystal structure of Uhgb_MP, a β-1,4-mannopyranosyl-chitobiose phosphorylase belonging to the GH130 family which is involved in N-glycan degradation by human gut bacteria, was solved at 1.85 Å resolution in the apo form and in complex with mannose and N-acetylglucosamine. SAXS and crystal structure analysis revealed a hexameric structure, a specific feature of GH130 enzymes among other glycoside phosphorylases. Mapping of the -1 and +1 subsites in the presence of phosphate confirmed the conserved Asp104 as the general acid/base catalytic residue, which is in agreement with a single-step reaction mechanism involving Man O3 assistance for proton transfer. Analysis of this structure, the first to be solved for a member of the GH130_2 subfamily, revealed Met67, Phe203 and the Gly121-Pro125 loop as the main determinants of the specificity of Uhgb_MP and its homologues towards the N-glycan core oligosaccharides and mannan, and the molecular bases of the key role played by GH130 enzymes in the catabolism of dietary fibre and host glycans.
{"title":"Structural bases for N-glycan processing by mannoside phosphorylase.","authors":"Simon Ladevèze, Gianluca Cioci, Pierre Roblin, Lionel Mourey, Samuel Tranier, Gabrielle Potocki-Véronèse","doi":"10.1107/S1399004715006604","DOIUrl":"https://doi.org/10.1107/S1399004715006604","url":null,"abstract":"<p><p>The first crystal structure of Uhgb_MP, a β-1,4-mannopyranosyl-chitobiose phosphorylase belonging to the GH130 family which is involved in N-glycan degradation by human gut bacteria, was solved at 1.85 Å resolution in the apo form and in complex with mannose and N-acetylglucosamine. SAXS and crystal structure analysis revealed a hexameric structure, a specific feature of GH130 enzymes among other glycoside phosphorylases. Mapping of the -1 and +1 subsites in the presence of phosphate confirmed the conserved Asp104 as the general acid/base catalytic residue, which is in agreement with a single-step reaction mechanism involving Man O3 assistance for proton transfer. Analysis of this structure, the first to be solved for a member of the GH130_2 subfamily, revealed Met67, Phe203 and the Gly121-Pro125 loop as the main determinants of the specificity of Uhgb_MP and its homologues towards the N-glycan core oligosaccharides and mannan, and the molecular bases of the key role played by GH130 enzymes in the catabolism of dietary fibre and host glycans.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1335-46"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715006604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33248382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-23DOI: 10.1107/S1399004715008317
Simone Weyand, Christopher G Tate
{"title":"Advances in membrane protein crystallography: in situ and in meso data collection.","authors":"Simone Weyand, Christopher G Tate","doi":"10.1107/S1399004715008317","DOIUrl":"10.1107/S1399004715008317","url":null,"abstract":"","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1226-7"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33374782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-01Epub Date: 2015-05-23DOI: 10.1107/S139900471500721X
Xing Shen, Wataru Saburi, Zuoqi Gai, Koji Kato, Teruyo Ojima-Kato, Jian Yu, Keisuke Komoda, Yusuke Kido, Hirokazu Matsui, Haruhide Mori, Min Yao
α-Glucosidases, which catalyze the hydrolysis of the α-glucosidic linkage at the nonreducing end of the substrate, are important for the metabolism of α-glucosides. Halomonas sp. H11 α-glucosidase (HaG), belonging to glycoside hydrolase family 13 (GH13), only has high hydrolytic activity towards the α-(1 → 4)-linked disaccharide maltose among naturally occurring substrates. Although several three-dimensional structures of GH13 members have been solved, the disaccharide specificity and α-(1 → 4) recognition mechanism of α-glucosidase are unclear owing to a lack of corresponding substrate-bound structures. In this study, four crystal structures of HaG were solved: the apo form, the glucosyl-enzyme intermediate complex, the E271Q mutant in complex with its natural substrate maltose and a complex of the D202N mutant with D-glucose and glycerol. These structures explicitly provide insights into the substrate specificity and catalytic mechanism of HaG. A peculiar long β → α loop 4 which exists in α-glucosidase is responsible for the strict recognition of disaccharides owing to steric hindrance. Two residues, Thr203 and Phe297, assisted with Gly228, were found to determine the glycosidic linkage specificity of the substrate at subsite +1. Furthermore, an explanation of the α-glucosidase reaction mechanism is proposed based on the glucosyl-enzyme intermediate structure.
{"title":"Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism.","authors":"Xing Shen, Wataru Saburi, Zuoqi Gai, Koji Kato, Teruyo Ojima-Kato, Jian Yu, Keisuke Komoda, Yusuke Kido, Hirokazu Matsui, Haruhide Mori, Min Yao","doi":"10.1107/S139900471500721X","DOIUrl":"https://doi.org/10.1107/S139900471500721X","url":null,"abstract":"<p><p>α-Glucosidases, which catalyze the hydrolysis of the α-glucosidic linkage at the nonreducing end of the substrate, are important for the metabolism of α-glucosides. Halomonas sp. H11 α-glucosidase (HaG), belonging to glycoside hydrolase family 13 (GH13), only has high hydrolytic activity towards the α-(1 → 4)-linked disaccharide maltose among naturally occurring substrates. Although several three-dimensional structures of GH13 members have been solved, the disaccharide specificity and α-(1 → 4) recognition mechanism of α-glucosidase are unclear owing to a lack of corresponding substrate-bound structures. In this study, four crystal structures of HaG were solved: the apo form, the glucosyl-enzyme intermediate complex, the E271Q mutant in complex with its natural substrate maltose and a complex of the D202N mutant with D-glucose and glycerol. These structures explicitly provide insights into the substrate specificity and catalytic mechanism of HaG. A peculiar long β → α loop 4 which exists in α-glucosidase is responsible for the strict recognition of disaccharides owing to steric hindrance. Two residues, Thr203 and Phe297, assisted with Gly228, were found to determine the glycosidic linkage specificity of the substrate at subsite +1. Furthermore, an explanation of the α-glucosidase reaction mechanism is proposed based on the glucosyl-enzyme intermediate structure.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1382-91"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S139900471500721X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33253302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the general stress response of Bacillus subtilis, which is governed by the sigma factor σ(B), stress signalling is relayed by a cascade of Rsb proteins that regulate σ(B) activity. RsbX, a PPM II phosphatase, halts the response by dephosphorylating the stressosome composed of RsbR and RsbS. The crystal structure of RsbX reveals a reorganization of the catalytic centre, with the second Mn(2+) ion uniquely coordinated by Gly47 O from the β4-α1 loop instead of a water molecule as in PPM I phosphatases. An extra helical turn of α1 tilts the loop towards the metal-binding site, and the β2-β3 loop swings outwards to accommodate this tilting. The residues critical for this defining feature of the PPM II phosphatases are highly conserved. Formation of the catalytic centre is metal-specific, as crystallization with Mg(2+) ions resulted in a shift of the β4-α1 loop that led to loss of the second ion. RsbX also lacks the flap subdomain characteristic of PPM I phosphatases. On the basis of a stressosome model, the activity of RsbX towards RsbR-P and RsbS-P may be influenced by the different accessibilities of their phosphorylation sites.
{"title":"Structure of the RsbX phosphatase involved in the general stress response of Bacillus subtilis.","authors":"Aik Hong Teh, Masatomo Makino, Takeshi Hoshino, Seiki Baba, Nobutaka Shimizu, Masaki Yamamoto, Takashi Kumasaka","doi":"10.1107/S1399004715007166","DOIUrl":"https://doi.org/10.1107/S1399004715007166","url":null,"abstract":"<p><p>In the general stress response of Bacillus subtilis, which is governed by the sigma factor σ(B), stress signalling is relayed by a cascade of Rsb proteins that regulate σ(B) activity. RsbX, a PPM II phosphatase, halts the response by dephosphorylating the stressosome composed of RsbR and RsbS. The crystal structure of RsbX reveals a reorganization of the catalytic centre, with the second Mn(2+) ion uniquely coordinated by Gly47 O from the β4-α1 loop instead of a water molecule as in PPM I phosphatases. An extra helical turn of α1 tilts the loop towards the metal-binding site, and the β2-β3 loop swings outwards to accommodate this tilting. The residues critical for this defining feature of the PPM II phosphatases are highly conserved. Formation of the catalytic centre is metal-specific, as crystallization with Mg(2+) ions resulted in a shift of the β4-α1 loop that led to loss of the second ion. RsbX also lacks the flap subdomain characteristic of PPM I phosphatases. On the basis of a stressosome model, the activity of RsbX towards RsbR-P and RsbS-P may be influenced by the different accessibilities of their phosphorylation sites.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1392-9"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715007166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33253303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}