Sheng'ou Lu, Binjie Xu, Lingling Xuan, Xiaodong Pi, Deren Yang and Xuefeng Han
Basal and prismatic slips induced by thermoelastic stresses during the growth of 4H-SiC are investigated by using the finite element method (FEM) and considering factors such as the crystal diameter, temperature, and off-axis angle. It is found that with the increase of the crystal diameter from 6 to 8 inches, the prismatic slip more likely occurs, leading to a higher density of basal plane dislocations (BPDs). However, the basal slip hardly changes. The temperature difference, rather than the growth temperature, is the primary factor contributing to the increase in the slip stresses. The stresses of the basal slip are significantly affected by a small off-axis angle, whereas those of the prismatic slip are not unaffected until the off-axis angle reaches 30 degrees. The mechanism for the decrease of the density of BPDs along the growth direction in an 8 inch 4H-SiC crystal is elucidated. We verify that the prismatic slip in an 8 inch 4H-SiC crystal contributes more to the BPD formation than the basal slip.
{"title":"Comparing basal and prismatic slips induced by thermal stresses in 4H-SiC crystals","authors":"Sheng'ou Lu, Binjie Xu, Lingling Xuan, Xiaodong Pi, Deren Yang and Xuefeng Han","doi":"10.1039/D4CE00927D","DOIUrl":"https://doi.org/10.1039/D4CE00927D","url":null,"abstract":"<p >Basal and prismatic slips induced by thermoelastic stresses during the growth of 4H-SiC are investigated by using the finite element method (FEM) and considering factors such as the crystal diameter, temperature, and off-axis angle. It is found that with the increase of the crystal diameter from 6 to 8 inches, the prismatic slip more likely occurs, leading to a higher density of basal plane dislocations (BPDs). However, the basal slip hardly changes. The temperature difference, rather than the growth temperature, is the primary factor contributing to the increase in the slip stresses. The stresses of the basal slip are significantly affected by a small off-axis angle, whereas those of the prismatic slip are not unaffected until the off-axis angle reaches 30 degrees. The mechanism for the decrease of the density of BPDs along the growth direction in an 8 inch 4H-SiC crystal is elucidated. We verify that the prismatic slip in an 8 inch 4H-SiC crystal contributes more to the BPD formation than the basal slip.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 44","pages":" 6244-6254"},"PeriodicalIF":2.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Zhang, Yu Wang, Mengyu Xu, Alex M. Kokot, Jie Qiu and Peter C. Burns
A novel neptunyl(VI) phosphate compound, (NpO2)3(PO4)2(Terpy), was synthesized by hydrothermal reaction. It crystallizes in the orthorhombic space group Pca21 with unit-cell parameters a = 13.9944 Å, b = 12.1989 Å, c = 13.1277 Å, V = 2241.1 Å3, and Z = 4. Related to the layered structure of the uranophane topology, it contains the first reported (NpVIO2)2(PO4)22− sheets, which are bonded via π–π interactions between the NpVIO2(Terpy)2+ ligands that are perpendicular to the sheets.
{"title":"Hydrothermal synthesis and structure of organically templated layered neptunyl(vi) phosphate (NpO2)3(PO4)2(Terpy)†","authors":"Lei Zhang, Yu Wang, Mengyu Xu, Alex M. Kokot, Jie Qiu and Peter C. Burns","doi":"10.1039/D4CE00121D","DOIUrl":"https://doi.org/10.1039/D4CE00121D","url":null,"abstract":"<p >A novel neptunyl(<small>VI</small>) phosphate compound, (NpO<small><sub>2</sub></small>)<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>(Terpy), was synthesized by hydrothermal reaction. It crystallizes in the orthorhombic space group <em>Pca</em>2<small><sub>1</sub></small> with unit-cell parameters <em>a</em> = 13.9944 Å, <em>b</em> = 12.1989 Å, <em>c</em> = 13.1277 Å, <em>V</em> = 2241.1 Å<small><sup>3</sup></small>, and <em>Z</em> = 4. Related to the layered structure of the uranophane topology, it contains the first reported (Np<small><sup>VI</sup></small>O<small><sub>2</sub></small>)<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small><small><sup>2−</sup></small> sheets, which are bonded <em>via</em> π–π interactions between the Np<small><sup>VI</sup></small>O<small><sub>2</sub></small>(Terpy)<small><sup>2+</sup></small> ligands that are perpendicular to the sheets.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 42","pages":" 5991-5995"},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianyun Peng, Shaojie Li, Feng Liu, Guangxian Li and Xia Liao
In order to prepare polylactic acid (PLA) foam material with excellent performance by utilizing nitrogen (N2), the crystallization behavior of PLA under N2 needs to be urgently studied. This article in situ investigated for the first time the impact of N2 on the crystallization kinetics of PLA. Meanwhile, the influence of N2 on the crystal structure and crystallization process of PLA was studied. Research has shown that at different crystallization temperatures and N2 pressures, N2 exhibited different effects on the crystallization kinetics and crystal structure of PLA. At low crystallization temperature and N2 pressure, N2 promoted the growth of PLA spherulites. As the crystallization temperature increases, the maximum N2 pressure that could accelerate the spherulite growth rate of PLA was also higher. Furthermore, under experimental pressure, N2 would cause more α′ crystals to form in PLA at low crystallization temperatures. At high crystallization temperatures, the N2 pressure showed much less impact on the crystalline structure of PLA than that of temperature. In addition, N2 inhibited the cold crystallization of PLA, reducing the crystallization temperature range and cold crystallization enthalpy.
{"title":"Effect of the interchain interaction on the crystallization kinetics and crystal structure of polylactic acid under nitrogen","authors":"Qianyun Peng, Shaojie Li, Feng Liu, Guangxian Li and Xia Liao","doi":"10.1039/D4CE00767K","DOIUrl":"https://doi.org/10.1039/D4CE00767K","url":null,"abstract":"<p >In order to prepare polylactic acid (PLA) foam material with excellent performance by utilizing nitrogen (N<small><sub>2</sub></small>), the crystallization behavior of PLA under N<small><sub>2</sub></small> needs to be urgently studied. This article <em>in situ</em> investigated for the first time the impact of N<small><sub>2</sub></small> on the crystallization kinetics of PLA. Meanwhile, the influence of N<small><sub>2</sub></small> on the crystal structure and crystallization process of PLA was studied. Research has shown that at different crystallization temperatures and N<small><sub>2</sub></small> pressures, N<small><sub>2</sub></small> exhibited different effects on the crystallization kinetics and crystal structure of PLA. At low crystallization temperature and N<small><sub>2</sub></small> pressure, N<small><sub>2</sub></small> promoted the growth of PLA spherulites. As the crystallization temperature increases, the maximum N<small><sub>2</sub></small> pressure that could accelerate the spherulite growth rate of PLA was also higher. Furthermore, under experimental pressure, N<small><sub>2</sub></small> would cause more α′ crystals to form in PLA at low crystallization temperatures. At high crystallization temperatures, the N<small><sub>2</sub></small> pressure showed much less impact on the crystalline structure of PLA than that of temperature. In addition, N<small><sub>2</sub></small> inhibited the cold crystallization of PLA, reducing the crystallization temperature range and cold crystallization enthalpy.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 42","pages":" 6082-6090"},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZnS/WO3 composite nanoplates were created by a hydrothermal vulcanization reaction using ZnO as the sacrificial layer. ZnO films were deposited on the surface of WO3 nanoplates with different sputtering times to act as templates for the hydrothermal synthesis of ZnS/WO3 nanoplates with different ZnS contents. Structural analysis revealed the sputtering time of the ZnO sacrificial shell layer affected the surface morphology and crystal defects of the ZnS/WO3 composite materials. The formation of tight heterojunction interfaces and an appropriate number of heterojunctions enhanced the transport of charge carriers, resulting in improved photocatalytic efficiency. Compared to pristine WO3 nanoplates, the ZnS/WO3 (WZS) series composite materials showed superior photoelectrochemical properties. The WZS350 composite sample with 3.1 at% Zn and 3.3 at% S was identified as the best photocatalyst. The experimental results of this study demonstrate that WO3 nanoplates with appropriate ZnS particle modification can effectively regulate their surface photosensitivity, offering a promising approach for the application of photocatalysts.
{"title":"Developing a vulcanization approach to functionalize WO3 nanoplate photocatalysts with sulfide crystals for improved photoelectrochemical properties and environmental cleanup","authors":"Yuan-Chang Liang and Hui-Yun Huang","doi":"10.1039/D4CE00883A","DOIUrl":"https://doi.org/10.1039/D4CE00883A","url":null,"abstract":"<p >ZnS/WO<small><sub>3</sub></small> composite nanoplates were created by a hydrothermal vulcanization reaction using ZnO as the sacrificial layer. ZnO films were deposited on the surface of WO<small><sub>3</sub></small> nanoplates with different sputtering times to act as templates for the hydrothermal synthesis of ZnS/WO<small><sub>3</sub></small> nanoplates with different ZnS contents. Structural analysis revealed the sputtering time of the ZnO sacrificial shell layer affected the surface morphology and crystal defects of the ZnS/WO<small><sub>3</sub></small> composite materials. The formation of tight heterojunction interfaces and an appropriate number of heterojunctions enhanced the transport of charge carriers, resulting in improved photocatalytic efficiency. Compared to pristine WO<small><sub>3</sub></small> nanoplates, the ZnS/WO<small><sub>3</sub></small> (WZS) series composite materials showed superior photoelectrochemical properties. The WZS350 composite sample with 3.1 at% Zn and 3.3 at% S was identified as the best photocatalyst. The experimental results of this study demonstrate that WO<small><sub>3</sub></small> nanoplates with appropriate ZnS particle modification can effectively regulate their surface photosensitivity, offering a promising approach for the application of photocatalysts.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 43","pages":" 6194-6207"},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenz Taucher, Zaher Ramadan, René Hammer, Thomas Obermüller, Peter Auer and Lorenz Romaner
Numerical simulations are frequently utilized to investigate and optimize the complex and hardly in situ examinable Physical Vapor Transport (PVT) method for SiC single crystal growth. Since various process and quality-related aspects, including growth rate and defect formation, are strongly influenced by the thermal field, accurately incorporating temperature-influencing factors is essential for developing a reliable simulation model. Particularly, the physical material properties of the furnace components are critical, yet they are often poorly characterized or even unknown. Furthermore, these properties can be different for each furnace run due to production-related variations, degradation at high process temperatures and exposure to SiC gas species. To address this issue, the present study introduces a framework for efficient investigation and calibration of the material properties of the PVT simulation by leveraging machine learning algorithms to create a surrogate model, able to substitute the computationally expensive simulation. The applied framework includes active learning, sensitivity analysis, material parameter calibration, and uncertainty analysis.
{"title":"Machine learning assisted calibration of PVT simulations for SiC crystal growth†","authors":"Lorenz Taucher, Zaher Ramadan, René Hammer, Thomas Obermüller, Peter Auer and Lorenz Romaner","doi":"10.1039/D4CE00866A","DOIUrl":"https://doi.org/10.1039/D4CE00866A","url":null,"abstract":"<p >Numerical simulations are frequently utilized to investigate and optimize the complex and hardly <em>in situ</em> examinable Physical Vapor Transport (PVT) method for SiC single crystal growth. Since various process and quality-related aspects, including growth rate and defect formation, are strongly influenced by the thermal field, accurately incorporating temperature-influencing factors is essential for developing a reliable simulation model. Particularly, the physical material properties of the furnace components are critical, yet they are often poorly characterized or even unknown. Furthermore, these properties can be different for each furnace run due to production-related variations, degradation at high process temperatures and exposure to SiC gas species. To address this issue, the present study introduces a framework for efficient investigation and calibration of the material properties of the PVT simulation by leveraging machine learning algorithms to create a surrogate model, able to substitute the computationally expensive simulation. The applied framework includes active learning, sensitivity analysis, material parameter calibration, and uncertainty analysis.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 44","pages":" 6322-6335"},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.
有序的多孔材料可以提供更多的催化位点和更大的放电产物缓冲空间,从而提高电池性能。本文提出了一种简单的下顶溶液沉淀法,然后通过热解将活性镍-钴-NC 位点分散在 ZIF 衍生的多孔碳纳米笼中。研究发现,这些金属纳米粒子被限制在富含 N 的碳纳米笼中,总金属负载量约为 8.74%。正如预期的那样,这种多孔结构不仅增强了电子传导性,还提供了足够的表面积来促进三相电池反应,并为放电产物的储存创造了更大的空间。实验结果证实,与准固态电池对照组相比,这种有趣的纳米结构可提高电池容量(6682.6 mA h g-1)、库仑效率(∼100%)和循环性能(∼80 次循环)。由于添加了镍来改变多孔结构,丰富了氧气/离子扩散途径和可访问的活性位点,从而加快了氧化还原动力学,降低了过电位(高可逆性)。因此,我们的工作表明,这种多孔双金属纳米笼有望用于制造高效的生物质准固态锂-O2 电池。
{"title":"Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species†","authors":"Tie Liu and Guangwei Zhang","doi":"10.1039/D4CE00756E","DOIUrl":"https://doi.org/10.1039/D4CE00756E","url":null,"abstract":"<p >Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g<small><sup>−1</sup></small>), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O<small><sub>2</sub></small>/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O<small><sub>2</sub></small> batteries.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 44","pages":" 6288-6295"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanxiang Sheng, Meng Wu, Chao Zhi, Yongzhen Wang, Jiaguang Meng and Yaming Liu
High saturation and high stability are two issues that must be addressed in the practical application of structural color based on the self-assembly of colloidal microspheres. Herein, we coated SiO2 microspheres with island-like polypyrrole (PPy), a black substance that can absorb incoherent scattered light, thereby enhancing the saturation of structural colors on both black and white substrates. Besides, the irregular island-like structure prompts the SiO2@PPy microspheres to form a short-range ordered amorphous structure, exhibiting non-iridescent structural colors. Importantly, we propose a melt-curing strategy that can enhance the interaction forces between the two microspheres and between the microspheres and the substrate, thus enabling the structural colors to exhibit good stability. Even after rubbing, folding, and ultrasonic cleaning tests, the color of the cured sample remains virtually unchanged. The SiO2@PPy microspheres prepared and the melt curing strategy in this work can lay foundations for the practical application of structural colors.
{"title":"Achieving saturated non-iridescent structural colors via island-like polypyrrole coating on SiO2 microspheres and enhancing their stability through a melt-curing strategy†","authors":"Shanxiang Sheng, Meng Wu, Chao Zhi, Yongzhen Wang, Jiaguang Meng and Yaming Liu","doi":"10.1039/D4CE00610K","DOIUrl":"https://doi.org/10.1039/D4CE00610K","url":null,"abstract":"<p >High saturation and high stability are two issues that must be addressed in the practical application of structural color based on the self-assembly of colloidal microspheres. Herein, we coated SiO<small><sub>2</sub></small> microspheres with island-like polypyrrole (PPy), a black substance that can absorb incoherent scattered light, thereby enhancing the saturation of structural colors on both black and white substrates. Besides, the irregular island-like structure prompts the SiO<small><sub>2</sub></small>@PPy microspheres to form a short-range ordered amorphous structure, exhibiting non-iridescent structural colors. Importantly, we propose a melt-curing strategy that can enhance the interaction forces between the two microspheres and between the microspheres and the substrate, thus enabling the structural colors to exhibit good stability. Even after rubbing, folding, and ultrasonic cleaning tests, the color of the cured sample remains virtually unchanged. The SiO<small><sub>2</sub></small>@PPy microspheres prepared and the melt curing strategy in this work can lay foundations for the practical application of structural colors.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 43","pages":" 6219-6225"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Huang, Yufan Yang, Xiaoyang Yu, Xiaonan Li, Yuan Shen, Runhong Song and Hong Zhang
The synthesis of novel polyoxovanadates (POVs) has received considerable critical attention. Herein, two new POVs, {V12P8} (1) and {V16P8} (2), have been designed and synthesized based on phenylphosphonic acid (PhPO3H2) under solvothermal conditions. The structure of 2 is a 16-nuclearity POV composed of four rare zigzag {V4} secondary building units (SBUs). To the best of our knowledge, 2 is the first POV synthesized with PhPO3H2 including this zigzag SBU, which is also very rare among all POVs. Moreover, 2 is the highest-nuclearity isopolyoxovanadate (IPOV) synthesized using PhPO3H2 as the only organic ligand so far. The photocatalytic properties of 1 and 2 were studied under visible light. Both 1 and 2 demonstrate good performance in photocatalytic oxidation of 1,5-dihydroxynaphthalene (1,5-DHN). Compound 1 also has a photocatalytic effect on MB degradation, with 87% of MB degradation within 8 minutes.
{"title":"Two polyoxovanadates for visible light driven photocatalytic performance†","authors":"Li Huang, Yufan Yang, Xiaoyang Yu, Xiaonan Li, Yuan Shen, Runhong Song and Hong Zhang","doi":"10.1039/D4CE00494A","DOIUrl":"https://doi.org/10.1039/D4CE00494A","url":null,"abstract":"<p >The synthesis of novel polyoxovanadates (POVs) has received considerable critical attention. Herein, two new POVs, {V<small><sub>12</sub></small>P<small><sub>8</sub></small>} (<strong>1</strong>) and {V<small><sub>16</sub></small>P<small><sub>8</sub></small>} (<strong>2</strong>), have been designed and synthesized based on phenylphosphonic acid (PhPO<small><sub>3</sub></small>H<small><sub>2</sub></small>) under solvothermal conditions. The structure of <strong>2</strong> is a 16-nuclearity POV composed of four rare zigzag {V<small><sub>4</sub></small>} secondary building units (SBUs). To the best of our knowledge, <strong>2</strong> is the first POV synthesized with PhPO<small><sub>3</sub></small>H<small><sub>2</sub></small> including this zigzag SBU, which is also very rare among all POVs. Moreover, <strong>2</strong> is the highest-nuclearity isopolyoxovanadate (IPOV) synthesized using PhPO<small><sub>3</sub></small>H<small><sub>2</sub></small> as the only organic ligand so far. The photocatalytic properties of <strong>1</strong> and <strong>2</strong> were studied under visible light. Both <strong>1</strong> and <strong>2</strong> demonstrate good performance in photocatalytic oxidation of 1,5-dihydroxynaphthalene (1,5-DHN). Compound <strong>1</strong> also has a photocatalytic effect on MB degradation, with 87% of MB degradation within 8 minutes.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 43","pages":" 6226-6234"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqing Pang, Yan Tian, Peng Zheng, Ke Feng, Jie Mao, Yujun Zhu, Kai Huang, Fei Ke and Chunyan Zhang
Carbon nitride is a promising photocatalyst for hydrogen peroxide (H2O2) production under visible light irradiation. However, current carbon nitride-based photocatalysts show limited H2O2 production owing to high impedance and poor charge transfer ability. In this work, we present a series of CuO decorated graphitic phase carbon nitride (g-C3N4) composites, exhibiting suitable bandgaps for the photocatalytic production of H2O2. The experimental results showed that CuO/g-C3N4 composites exhibited excellent photocatalytic H2O2 production performance and good photocatalytic cycle stability. Significantly, the optimized 30%-CuO/g-C3N4 composite exhibits a high H2O2 yield of 2722.47 μmol L−1 with the addition of CH3OH under visible light. Furthermore, the photocatalytic mechanism is well studied by density functional theory calculations. This work demonstrates that CuO/g-C3N4 composites hold great promise for photocatalytic H2O2 production application.
{"title":"Synergy of CuO and g-C3N4 for boosting hydrogen peroxide photosynthesis†","authors":"Yuqing Pang, Yan Tian, Peng Zheng, Ke Feng, Jie Mao, Yujun Zhu, Kai Huang, Fei Ke and Chunyan Zhang","doi":"10.1039/D4CE00834K","DOIUrl":"https://doi.org/10.1039/D4CE00834K","url":null,"abstract":"<p >Carbon nitride is a promising photocatalyst for hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) production under visible light irradiation. However, current carbon nitride-based photocatalysts show limited H<small><sub>2</sub></small>O<small><sub>2</sub></small> production owing to high impedance and poor charge transfer ability. In this work, we present a series of CuO decorated graphitic phase carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>) composites, exhibiting suitable bandgaps for the photocatalytic production of H<small><sub>2</sub></small>O<small><sub>2</sub></small>. The experimental results showed that CuO/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites exhibited excellent photocatalytic H<small><sub>2</sub></small>O<small><sub>2</sub></small> production performance and good photocatalytic cycle stability. Significantly, the optimized 30%-CuO/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composite exhibits a high H<small><sub>2</sub></small>O<small><sub>2</sub></small> yield of 2722.47 μmol L<small><sup>−1</sup></small> with the addition of CH<small><sub>3</sub></small>OH under visible light. Furthermore, the photocatalytic mechanism is well studied by density functional theory calculations. This work demonstrates that CuO/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composites hold great promise for photocatalytic H<small><sub>2</sub></small>O<small><sub>2</sub></small> production application.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 44","pages":" 6282-6287"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Senlin Li, Yanan Gu, Bo Zhao, Haocheng Cai, Zhuo Zhao, Qiaozhen Sun and Bingguang Zhang
In this work, two fluorescent Cd(II)-based metal–organic frameworks (MOFs), named [CdL(dpa)]·2.5H2O (1) and Cd2L2(2,2′-bpy)2 (2) (H2L = 5-[(dimethylamino)thioxomethoxy]-1,3-benzenedicarboxylic acid, dpa = 4,4′-dipyridylamine and 2,2′-bpy = 2,2′-bipyridine), were successfully exploited as fluorescent sensors for the detection of Fe3+ in an aqueous medium. Compound 1 was assembled with Cd2+, L2− and dpa to construct a porous two-dimensional layer. The (dimethylamino)thioxomethoxy groups in the layer protrude into the adjacent layers to form an interdigitated motif. Compound 2 exhibited an infinite ladder-like chain with the (dimethylamino)thioxomethoxy groups hanging on the two sides of the chain. Fluorescence studies revealed that both 1 and 2 can effectively detect Fe3+ in H2O through luminescence quenching (Ksv = 2.96 × 104 M−1 and LOD = 6.40 × 10−5 mM for 1; Ksv = 3.31 × 104 M−1 and LOD = 7.65 × 10−5 mM for 2). The synergistic competitive absorption and coordination interaction mechanism could explain the detection of Fe3+. Furthermore, the enlarged steric hindrance in compound 1 resulted in lower values of Ksv and LOD than those of compound 2, which impeded the coordination of Fe3+ with its N, O and S recognition sites.
{"title":"Effects of the recognition sites of MOFs on turn-off fluorescence detection of Fe3+†","authors":"Senlin Li, Yanan Gu, Bo Zhao, Haocheng Cai, Zhuo Zhao, Qiaozhen Sun and Bingguang Zhang","doi":"10.1039/D4CE00899E","DOIUrl":"https://doi.org/10.1039/D4CE00899E","url":null,"abstract":"<p >In this work, two fluorescent Cd(<small>II</small>)-based metal–organic frameworks (MOFs), named [CdL(dpa)]·2.5H<small><sub>2</sub></small>O (<strong>1</strong>) and Cd<small><sub>2</sub></small>L<small><sub>2</sub></small>(2,2′-bpy)<small><sub>2</sub></small> (<strong>2</strong>) (H<small><sub>2</sub></small>L = 5-[(dimethylamino)thioxomethoxy]-1,3-benzenedicarboxylic acid, dpa = 4,4′-dipyridylamine and 2,2′-bpy = 2,2′-bipyridine), were successfully exploited as fluorescent sensors for the detection of Fe<small><sup>3+</sup></small> in an aqueous medium. Compound <strong>1</strong> was assembled with Cd<small><sup>2+</sup></small>, L<small><sup>2−</sup></small> and dpa to construct a porous two-dimensional layer. The (dimethylamino)thioxomethoxy groups in the layer protrude into the adjacent layers to form an interdigitated motif. Compound <strong>2</strong> exhibited an infinite ladder-like chain with the (dimethylamino)thioxomethoxy groups hanging on the two sides of the chain. Fluorescence studies revealed that both <strong>1</strong> and <strong>2</strong> can effectively detect Fe<small><sup>3+</sup></small> in H<small><sub>2</sub></small>O through luminescence quenching (<em>K</em><small><sub>sv</sub></small> = 2.96 × 10<small><sup>4</sup></small> M<small><sup>−1</sup></small> and LOD = 6.40 × 10<small><sup>−5</sup></small> mM for <strong>1</strong>; <em>K</em><small><sub>sv</sub></small> = 3.31 × 10<small><sup>4</sup></small> M<small><sup>−1</sup></small> and LOD = 7.65 × 10<small><sup>−5</sup></small> mM for <strong>2</strong>). The synergistic competitive absorption and coordination interaction mechanism could explain the detection of Fe<small><sup>3+</sup></small>. Furthermore, the enlarged steric hindrance in compound <strong>1</strong> resulted in lower values of <em>K</em><small><sub>sv</sub></small> and LOD than those of compound <strong>2</strong>, which impeded the coordination of Fe<small><sup>3+</sup></small> with its N, O and S recognition sites.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 43","pages":" 6126-6133"},"PeriodicalIF":2.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}