Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624007885
Ercin C Duran, Mohamed Ruwaid Rafiuddin, Yazhou Shen, Simon A Hunt, Anamul Haq Mir, Alexander S Eggeman
In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2-3 nm correlation along the c axis and ∼5 nm along the a/b axis.
在这项研究中,我们报告了对单个 DyPO4-nH2O (rhabdophane) 纳米晶体进行连续旋转电子衍射研究的结果。衍射图样可以拟合为三棱晶格(P3121),晶格参数为 a = 7.019 (5) 和 c = 6.417 (5) Å。然而,还有一组弥散背景散射特征与无序上层结构有关,该上层结构是这些晶格参数的两倍,并与结构孔中的水分子排列相吻合。根据弥散背景绘制的对分布函数 (PDF) 图可以估算出水相关性的程度,其中沿 c 轴的相关性为 2-3 nm,沿 a/b 轴的相关性为 5 nm。
{"title":"3D electron diffraction studies of synthetic rhabdophane (DyPO<sub>4</sub>·nH<sub>2</sub>O).","authors":"Ercin C Duran, Mohamed Ruwaid Rafiuddin, Yazhou Shen, Simon A Hunt, Anamul Haq Mir, Alexander S Eggeman","doi":"10.1107/S2053229624007885","DOIUrl":"10.1107/S2053229624007885","url":null,"abstract":"<p><p>In this study, we report the results of continuous rotation electron diffraction studies of single DyPO<sub>4</sub>·nH<sub>2</sub>O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3<sub>1</sub>21) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2-3 nm correlation along the c axis and ∼5 nm along the a/b axis.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"612-619"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624008428
Victoria F M Calisto, Heitor A De Abreu, Renata Diniz
Research concerning coordination polymers has been intense due to their significant variability and structural stability. With this in mind, an ionic neodymium coordination polymer was synthesized, composed of an anionic one-dimensional polymer interconnected to a cationic three-dimensional porous polymer, poly[dodecaaquabis(μ-pyridine-4-carbohydrazide-κ2N:O)bis(μ2-4-sulfobenzoato-κ2O:O')bis(μ3-4-sulfobenzoato-κ3O:O':O'')trineodymium(III)] catena-poly[aquabis(μ-pyridine-4-carbohydrazide-κ2N:O)bis(μ2-4-sulfobenzoato-κ2O:O')neodymium(III)] 4.33-hydrate, {[Nd3(C7H4O5S)4(C6H7N3O)2(H2O)12][Nd(C7H4O5S)2(C6H7N3O)2(H2O)]·4.33H2O}n. The ligands used were 4-sulfobenzoate (PSB) and pyridine-4-carbohydrazide, popularly known as isoniazid (INH), an antibiotic drug. The compound crystallizes in the monoclinic space group C2/c, with Z = 4. Solid-state calculations suggest that the crystal structure is mainly stabilized by hydrogen bonds, i.e. O-H...O and N-H...O interactions among the polymers, and by van der Waals interactions involving the organic side chains. This net is tetragonal, 2-nodal 3,4-connected, and can be described as the dmd (sqc 528) type.
{"title":"Experimental and theoretical structural investigation of an ionic Nd coordination polymer.","authors":"Victoria F M Calisto, Heitor A De Abreu, Renata Diniz","doi":"10.1107/S2053229624008428","DOIUrl":"10.1107/S2053229624008428","url":null,"abstract":"<p><p>Research concerning coordination polymers has been intense due to their significant variability and structural stability. With this in mind, an ionic neodymium coordination polymer was synthesized, composed of an anionic one-dimensional polymer interconnected to a cationic three-dimensional porous <!?tlsb=-0.02pt>polymer, poly[dodecaaquabis(μ-pyridine-4-carbohydrazide-κ<sup>2</sup>N:O)bis(μ<sub>2</sub>-4-sulfobenzoato-κ<sup>2</sup>O:O')bis(μ<sub>3</sub>-4-sulfobenzoato-κ<sup>3</sup>O:O':O'')trineodymium(III)] catena-poly[aquabis(μ-pyridine-4-carbohydrazide-κ<sup>2</sup>N:O)bis(μ<sub>2</sub>-4-sulfobenzoato-κ<sup>2</sup>O:O')neodymium(III)] 4.33-hydrate, {[Nd<sub>3</sub>(C<sub>7</sub>H<sub>4</sub>O<sub>5</sub>S)<sub>4</sub>(C<sub>6</sub>H<sub>7</sub>N<sub>3</sub>O)<sub>2</sub>(H<sub>2</sub>O)<sub>12</sub>][Nd(C<sub>7</sub>H<sub>4</sub>O<sub>5</sub>S)<sub>2</sub>(C<sub>6</sub>H<sub>7</sub>N<sub>3</sub>O)<sub>2</sub>(H<sub>2</sub>O)]·4.33H<sub>2</sub>O}<sub>n</sub>. The ligands used were 4-sulfobenzoate (PSB) and pyridine-4-carbohydrazide, popularly known as isoniazid (INH), an antibiotic drug. The compound crystallizes in the monoclinic space group C2/c, with Z = 4. Solid-state calculations suggest that the crystal structure is mainly stabilized by hydrogen bonds, i.e. O-H...O and N-H...O interactions among the polymers, and by van der Waals interactions involving the organic side chains. This net is tetragonal, 2-nodal 3,4-connected, and can be described as the dmd (sqc 528) type.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"620-626"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-26DOI: 10.1107/S2053229624009331
Alan R Kennedy, Amy Sarjeant, Jonathan White
{"title":"Introducing the Best practice in crystallography series.","authors":"Alan R Kennedy, Amy Sarjeant, Jonathan White","doi":"10.1107/S2053229624009331","DOIUrl":"https://doi.org/10.1107/S2053229624009331","url":null,"abstract":"","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":"80 Pt 10","pages":"584"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report the crystal structures of three matrine derivatives, namely, the salts (1R,2R,9S,17S)-6-oxo-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-13-ium (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (matrine caffeinate) sesquihydrate, C15H25N2O+·C9H7O4-·1.5H2O (Matrine-CA), and the 2-hydroxybenzoate (salicylate) monohydrate, C15H25N2O+·C7H5O3-·H2O (Matrine-SA), as well as the 1.75-hydrate form, (1R,2R,9S,17S)-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-6-one 1.75-hydrate, C15H24N2O·1.75H2O (Matrine-H). Each derivative exhibited a consistent molecular conformation for the matrine core, which is notably distinct from that of the anhydrous form. Notably, both salts crystallized in the orthorhombic space group P212121, with an asymmetric unit featuring one cation and one anion. Within the two salt structures, intermolecular proton transfer between matrine and the acid is observed, culminating in the formation of a matrine cation protonated at the tertiary amine N site. The Matrine-CA crystal packing is manifested as a three-dimensional (3D) network arising from one-dimensional (1D) supramolecular helical chains, stabilized by N-H...O and O-H...O hydrogen bonds. In the case of Matrine-SA, the matrine cation is interconnected via hydrogen bonds with salicylate anions and water molecules, also forming a 1D helical motif. The structure of the hydrate form, Matrine-H, is reported again with the disordered solvent molecules accurately located. To further elucidate the structural attributes, Hirshfeld surface analysis and fingerprint plots are employed, offering a nuanced perspective on the intermolecular contacts and interactions within these crystalline forms.
{"title":"Crystal structures and properties of derivatives of the alkaloid matrine: salts and hydrate forms.","authors":"Jiyong Liu, Dier Shi, Kaxi Yu, Shuna Liu, Linshen Chen, Xiurong Hu","doi":"10.1107/S2053229624008064","DOIUrl":"10.1107/S2053229624008064","url":null,"abstract":"<p><p>We report the crystal structures of three matrine derivatives, namely, the salts (1R,2R,9S,17S)-6-oxo-7,13-diazatetracyclo[7.7.1.0<sup>2,7</sup>.0<sup>13,17</sup>]heptadecan-13-ium (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (matrine caffeinate) sesquihydrate, C<sub>15</sub>H<sub>25</sub>N<sub>2</sub>O<sup>+</sup>·C<sub>9</sub>H<sub>7</sub>O<sub>4</sub><sup>-</sup>·1.5H<sub>2</sub>O (Matrine-CA), and the 2-hydroxybenzoate (salicylate) monohydrate, C<sub>15</sub>H<sub>25</sub>N<sub>2</sub>O<sup>+</sup>·C<sub>7</sub>H<sub>5</sub>O<sub>3</sub><sup>-</sup>·H<sub>2</sub>O (Matrine-SA), as well as the 1.75-hydrate form, (1R,2R,9S,17S)-7,13-diazatetracyclo[7.7.1.0<sup>2,7</sup>.0<sup>13,17</sup>]heptadecan-6-one 1.75-hydrate, C<sub>15</sub>H<sub>24</sub>N<sub>2</sub>O·1.75H<sub>2</sub>O (Matrine-H). Each derivative exhibited a consistent molecular conformation for the matrine core, which is notably distinct from that of the anhydrous form. Notably, both salts crystallized in the orthorhombic space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, with an asymmetric unit featuring one cation and one anion. Within the two salt structures, intermolecular proton transfer between matrine and the acid is observed, culminating in the formation of a matrine cation protonated at the tertiary amine N site. The Matrine-CA crystal packing is manifested as a three-dimensional (3D) network arising from one-dimensional (1D) supramolecular helical chains, stabilized by N-H...O and O-H...O hydrogen bonds. In the case of Matrine-SA, the matrine cation is interconnected via hydrogen bonds with salicylate anions and water molecules, also forming a 1D helical motif. The structure of the hydrate form, Matrine-H, is reported again with the disordered solvent molecules accurately located. To further elucidate the structural attributes, Hirshfeld surface analysis and fingerprint plots are employed, offering a nuanced perspective on the intermolecular contacts and interactions within these crystalline forms.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"685-692"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624007460
Lauren E Hatcher, Mark R Warren, Paul R Raithby
Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light-matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully.
在过去的三十年里,实时跟踪固态化学过程的技术得到了长足的发展。这些研究对于设计应用于光电子学和传感器的新型功能材料具有重要意义。光与物质之间的相互作用尤为重要,而光晶学已被证明是研究这些相互作用的重要工具。在这项技术中,光激活分子在激发态下的三维结构是通过单晶 X 射线晶体学来确定的。随着高功率激光器、脉冲发光二极管和时间门控 X 射线探测器设计的进步,同步加速器设施的增加,以及最近 XFEL 的开发,现在已经可以利用光晶体学技术确定单晶体中寿命从几分钟到皮秒的分子结构。本综述讨论了成功进行光晶体学研究的程序,并概述了为研究具有特定寿命范围的结构而开发的不同方法。随着激发态寿命的缩短,所需方法的复杂性也会大大增加。讨论以一系列时间尺度的成功光晶体学研究实例为支持,并强调了使用补充分析技术以全面了解固态过程的重要性。
{"title":"Methods in molecular photocrystallography.","authors":"Lauren E Hatcher, Mark R Warren, Paul R Raithby","doi":"10.1107/S2053229624007460","DOIUrl":"10.1107/S2053229624007460","url":null,"abstract":"<p><p>Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light-matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"585-600"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624008015
Alvaro Polo, Alejandro Soriano-Jarabo, Ricardo Rodríguez, Ramón Macías, Pilar García-Orduña, Pablo J Sanz Miguel
The crystal structure of the salt calcium (2R,3R)-tartrate tetrahydrate {systematic name: poly[[diaqua[μ4-(2R,3R)-2,3-dihydroxybutanedioato]calcium(II)] dihydrate]}, {[Ca(C4H8O8)(H2O)2]·2H2O}n, is reported. The absolute configuration of the crystal was established unambiguously using anomalous dispersion effects in the diffraction patterns. High-quality data also allowed the location and free refinement of all the H atoms, and therefore to a careful analysis of the hydrogen-bond interactions.
{"title":"Revisiting a natural wine salt: calcium (2R,3R)-tartrate tetrahydrate.","authors":"Alvaro Polo, Alejandro Soriano-Jarabo, Ricardo Rodríguez, Ramón Macías, Pilar García-Orduña, Pablo J Sanz Miguel","doi":"10.1107/S2053229624008015","DOIUrl":"10.1107/S2053229624008015","url":null,"abstract":"<p><p>The crystal structure of the salt calcium (2R,3R)-tartrate tetrahydrate {systematic name: poly[[diaqua[μ<sub>4</sub>-(2R,3R)-2,3-dihydroxybutanedioato]calcium(II)] dihydrate]}, {[Ca(C<sub>4</sub>H<sub>8</sub>O<sub>8</sub>)(H<sub>2</sub>O)<sub>2</sub>]·2H<sub>2</sub>O}<sub>n</sub>, is reported. The absolute configuration of the crystal was established unambiguously using anomalous dispersion effects in the diffraction patterns. High-quality data also allowed the location and free refinement of all the H atoms, and therefore to a careful analysis of the hydrogen-bond interactions.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"681-684"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624006934
Rachel Zigelstein, Alan J Lough, Timothy P Bender
The crystal structures of 16 boron subphthalocyanines (BsubPcs) with structurally diverse axial groups were analyzed and compared to elucidate the impact of the axial group on the intermolecular π-π interactions, axial-group interactions, axial bond length and BsubPc bowl depth. π-π interactions between the isoindole units of adjacent BsubPc molecules most often involve concave-concave packing, whereas axial-group interactions with adjacent BsubPc molecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hydrogen-bonding interactions, while axial groups containing arene site(s) can participate in π-π interactions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π-π interactions and/or axial-group interactions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics.
{"title":"The influence of the axial group on the crystal structures of boron subphthalocyanines.","authors":"Rachel Zigelstein, Alan J Lough, Timothy P Bender","doi":"10.1107/S2053229624006934","DOIUrl":"10.1107/S2053229624006934","url":null,"abstract":"<p><p>The crystal structures of 16 boron subphthalocyanines (BsubPcs) with structurally diverse axial groups were analyzed and compared to elucidate the impact of the axial group on the intermolecular π-π interactions, axial-group interactions, axial bond length and BsubPc bowl depth. π-π interactions between the isoindole units of adjacent BsubPc molecules most often involve concave-concave packing, whereas axial-group interactions with adjacent BsubPc molecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hydrogen-bonding interactions, while axial groups containing arene site(s) can participate in π-π interactions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π-π interactions and/or axial-group interactions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"658-680"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624008003
Zheng Zhang, Lei Zhao, Hai Yan Yu, Hong Tao Zhang
Two new two-dimensional (2D) coordination polymers (CPs), namely, poly[diaqua[μ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O''']cadmium(II)], [Cd(C14H6N2O8)(H2O)2]n (1), and poly[[tetraaqua[μ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O'''][μ2-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ2O:O']dizinc(II)] dihydrate], {[Zn(C14H6N2O8(H2O)2]·H2O}n (2), have been synthesized by the microwave-irradiated reaction of Cd(CH3COO)2·2H2O and Zn(CH3COO)2·2H2O, respectively, with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetic acid, H2L}. In the crystal structure of 1, the CdII ion is six-coordinated by four carboxylate O atoms from four symmetry-related L2- dianions and two coordinated water molecules, furnishing an octahedral coordination geometry. The bridging L2- dianion links four symmetry-related CdII cations into a 2D layer-like structure with a 3,4-connected bex topology. In the crystal structure of 2, the ZnII ion is five-coordinated by three carboxylate O atoms from three different L2- dianions and two coordination water molecules, furnishing a trigonal bipyramidal coordination geometry. Two crystallographically independent ligands serve as μ4- and μ2-bridges, respectively, to connect the ZnII ions, thereby forming a 2D layer with a 3,3-connected hcb topology. Crystal structure analysis reveals the presence of n→π* interactions between two carbonyl groups of the pyromellitic diimide moieties in 1 and 2. CP 1 exhibits an enhanced fluorescence emission compared with free H2L. The framework of 2 decomposes from 720 K, indicating its high thermal stability. A comparative analysis of a series of structures based on the BGPD ligand indicates that the metal-ion size has a great influence on the connection modes of the metal ions due to different steric effects, which, in turn, affects the structures of the SBUs (secondary building units) and frameworks.
{"title":"2D coordination polymers of cadmium(II) and zinc(II) derived from N,N'-bis(glycinyl)pyromellitic diimide: microwave-assisted synthesis, structures, spectroscopic properties and influence of metal-ion size.","authors":"Zheng Zhang, Lei Zhao, Hai Yan Yu, Hong Tao Zhang","doi":"10.1107/S2053229624008003","DOIUrl":"10.1107/S2053229624008003","url":null,"abstract":"<p><p>Two new two-dimensional (2D) coordination polymers (CPs), namely, poly[diaqua[μ<sub>4</sub>-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ<sup>4</sup>O:O':O'':O''']cadmium(II)], [Cd(C<sub>14</sub>H<sub>6</sub>N<sub>2</sub>O<sub>8</sub>)(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub> (1), and poly[[tetraaqua[μ<sub>4</sub>-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ<sup>4</sup>O:O':O'':O'''][μ<sub>2</sub>-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ<sup>2</sup>O:O']dizinc(II)] dihydrate], {[Zn(C<sub>14</sub>H<sub>6</sub>N<sub>2</sub>O<sub>8</sub>(H<sub>2</sub>O)<sub>2</sub>]·H<sub>2</sub>O}<sub>n</sub> (2), have been synthesized by the microwave-irradiated reaction of Cd(CH<sub>3</sub>COO)<sub>2</sub>·2H<sub>2</sub>O and Zn(CH<sub>3</sub>COO)<sub>2</sub>·2H<sub>2</sub>O, respectively, with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetic acid, H<sub>2</sub>L}. In the crystal structure of 1, the Cd<sup>II</sup> ion is six-coordinated by four carboxylate O atoms from four symmetry-related L<sup>2-</sup> dianions and two coordinated water molecules, furnishing an octahedral coordination geometry. The bridging L<sup>2-</sup> dianion links four symmetry-related Cd<sup>II</sup> cations into a 2D layer-like structure with a 3,4-connected bex topology. In the crystal structure of 2, the Zn<sup>II</sup> ion is five-coordinated by three carboxylate O atoms from three different L<sup>2-</sup> dianions and two coordination water molecules, furnishing a trigonal bipyramidal coordination geometry. Two crystallographically independent ligands serve as μ<sub>4</sub>- and μ<sub>2</sub>-bridges, respectively, to connect the Zn<sup>II</sup> ions, thereby forming a 2D layer with a 3,3-connected hcb topology. Crystal structure analysis reveals the presence of n→π* interactions between two carbonyl groups of the pyromellitic diimide moieties in 1 and 2. CP 1 exhibits an enhanced fluorescence emission compared with free H<sub>2</sub>L. The framework of 2 decomposes from 720 K, indicating its high thermal stability. A comparative analysis of a series of structures based on the BGPD ligand indicates that the metal-ion size has a great influence on the connection modes of the metal ions due to different steric effects, which, in turn, affects the structures of the SBUs (secondary building units) and frameworks.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"633-647"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624008544
Xin Yu Ding, Hai Yan Yu, Hong Tao Zhang, Xiao Long Wang
A new three-dimensional (3D) coordination polymer, namely, poly[diaqua[μ5-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato]barium(II)], [Ba(C14H6N2O8)(H2O)2]n, (I), has been synthesized by the microwave-irradiated reaction of Ba(NO3)2 with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetatic acid, H2L}. The title compound was structurally characterized by single-crystal X-ray diffraction analysis and powder X-ray diffraction analysis, as well as IR spectroscopy. In the crystal structure of (I), the BaII ion is nine-coordinated by six carboxylate O atoms from five symmetry-related L2- dianions and one imide O atom, as well as two water O atoms. The coordination geometry of the central BaII ion can be described as a spherical capped square antiprism. One carboxylate group of the ligand serves as a μ3-bridge linking the BaII cations into a one-dimensional polynuclear secondary building unit (SBU). Another carboxylate group of the ligand acts as a μ2-bridge connecting the 1D SBUs, thereby forming a two-dimensional (2D) SBU. The resulting 2D SBUs are extended into a 3D framework via the pyromellitic diimide moiety of the ligand as a spacer. The 3D Ba framework can be simplified as a 5-connected hexagonal boron nitride net (bnn) topology. The intermolecular interactions in the 3D framework were further investigated by Hirshfeld surface analysis and the results show that the prominent interactions are H...O (45.1%), Ba...O (11.1%) and C...H (11.1%), as well as H...H (11.1%) contacts. The thermal stability, photoluminescence properties and UV-Vis absorption spectra of (I) were also investigated. The coordination polymer exhibits a fluorescence emission with a quantum yield of 0.071 and high thermal stability.
一种新的三维配位聚合物,即聚[二夸脱[μ5-2,2'-(1,3,5,7-四氧代-1,2,3,5,6,7-六氢吡咯并[3,4-f]异吲哚-2,6-二基)二乙酰氧基]钡(II)],[Ba(C14H6N2O8)(H2O)2]n,(I)、是通过 Ba(NO3)2 与 N,N'-双(甘氨酰)吡咯烷二亚胺 {BGPD,即 2,2'-(1,3,5,7-四氧代-1,2,3,5,6,7-六氢吡咯并[3,4-f]异吲哚-2,6-二基)二乙酸 H2L} 的微波辐照反应合成的。通过单晶 X 射线衍射分析和粉末 X 射线衍射分析以及红外光谱分析,对标题化合物进行了结构表征。在(I)的晶体结构中,BaII 离子由五个对称相关的 L2- 二离子的六个羧基 O 原子和一个酰亚胺 O 原子以及两个水 O 原子构成九配位。中心 BaII 离子的配位几何形状可以描述为一个球形带帽方形反棱柱。配体的一个羧酸基团作为一个 μ3 桥,将 BaII 阳离子连接成一个一维多核二级构建单元(SBU)。配体的另一个羧酸基团作为连接一维 SBU 的 μ2 桥,从而形成二维(2D)SBU。由此产生的二维 SBU 通过配体的吡咯烷二亚胺分子作为间隔物扩展成三维框架。三维 Ba 框架可简化为 5 个连接的六边形氮化硼网(bnn)拓扑结构。通过 Hirshfeld 表面分析进一步研究了三维框架中的分子间相互作用,结果表明突出的相互作用是 H...O (45.1%)、Ba...O (11.1%)和 C...H (11.1%)以及 H...H (11.1%)接触。此外,还研究了 (I) 的热稳定性、光致发光特性和紫外可见吸收光谱。该配位聚合物可发出量子产率为 0.071 的荧光,并具有很高的热稳定性。
{"title":"A new three-dimensional barium(II) coordination polymer constructed from N,N'-bis(glycinyl)pyromellitic diimide: microwave-assisted synthesis, structure, Hirshfeld surface analysis and properties.","authors":"Xin Yu Ding, Hai Yan Yu, Hong Tao Zhang, Xiao Long Wang","doi":"10.1107/S2053229624008544","DOIUrl":"10.1107/S2053229624008544","url":null,"abstract":"<p><p>A new three-dimensional (3D) coordination polymer, namely, poly[diaqua[μ<sub>5</sub>-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato]barium(II)], [Ba(C<sub>14</sub>H<sub>6</sub>N<sub>2</sub>O<sub>8</sub>)(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub>, (I), has been synthesized by the microwave-irradiated reaction of Ba(NO<sub>3</sub>)<sub>2</sub> with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetatic acid, H<sub>2</sub>L}. The title compound was structurally characterized by single-crystal X-ray diffraction analysis and powder X-ray diffraction analysis, as well as IR spectroscopy. In the crystal structure of (I), the Ba<sup>II</sup> ion is nine-coordinated by six carboxylate O atoms from five symmetry-related L<sup>2-</sup> dianions and one imide O atom, as well as two water O atoms. The coordination geometry of the central Ba<sup>II</sup> ion can be described as a spherical capped square antiprism. One carboxylate group of the ligand serves as a μ<sub>3</sub>-bridge linking the Ba<sup>II</sup> cations into a one-dimensional polynuclear secondary building unit (SBU). Another carboxylate group of the ligand acts as a μ<sub>2</sub>-bridge connecting the 1D SBUs, thereby forming a two-dimensional (2D) SBU. The resulting 2D SBUs are extended into a 3D framework via the pyromellitic diimide moiety of the ligand as a spacer. The 3D Ba framework can be simplified as a 5-connected hexagonal boron nitride net (bnn) topology. The intermolecular interactions in the 3D framework were further investigated by Hirshfeld surface analysis and the results show that the prominent interactions are H...O (45.1%), Ba...O (11.1%) and C...H (11.1%), as well as H...H (11.1%) contacts. The thermal stability, photoluminescence properties and UV-Vis absorption spectra of (I) were also investigated. The coordination polymer exhibits a fluorescence emission with a quantum yield of 0.071 and high thermal stability.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"648-657"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-04DOI: 10.1107/S2053229624008283
Guillaume Schweicher, Susobhan Das, Roland Resel, Yves Geerts
Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field.
{"title":"On the importance of crystal structures for organic thin film transistors.","authors":"Guillaume Schweicher, Susobhan Das, Roland Resel, Yves Geerts","doi":"10.1107/S2053229624008283","DOIUrl":"10.1107/S2053229624008283","url":null,"abstract":"<p><p>Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"601-611"},"PeriodicalIF":0.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}