首页 > 最新文献

Acta Crystallographica Section C Structural Chemistry最新文献

英文 中文
Applicability of Hirshfeld atom refinement for establishing the nature of chemical bonding in quinoic compounds. 赫斯菲尔德原子精化法在奎宁类化合物化学键性质建立中的适用性。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-01 Epub Date: 2025-10-21 DOI: 10.1107/S2053229625008873
Łukasz Cieszyński, Joanna Krzeszczakowska, Anna Makal

Hirshfeld atom refinement (HAR) has so far been explored almost exclusively for the determination of accurate and precise H-atom positions from X-ray diffraction experiments, neglecting other features of the resulting crystal structures and molecular wavefunctions. In contrast, here we compare the applicability of the HAR and transferable aspherical atom model (TAAM) approaches for the structure refinement, as well as for the reconstruction of electron-density distribution in a series of quinoic compounds, known for their pronounced single-double bond alternation. A set of five quinone-like compounds has been crystallized and investigated using single-crystal X-ray diffraction at standard resolution and subjected to various structure refinement approaches, namely, 2,3,5,6-tetrachlorocyclohexa-2,5-diene-1,4-dione (Cl4Q), C6Cl4O2, 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione (F4Q), C6F4O2, 2-[4-(dicyanomethylidene)cyclohexa-2,5-dien-1-ylidene]propanedinitrile (TCNQ), C12H4N4, 2-[4-(dicyanomethylidene)-2,5-difluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile (F2TCNQ), C12H2F2N4, and 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile (F4TCNQ), C12F4N4. The HAR results quantitatively reproduce the alternating electron-density effects in the studied compounds, while the electron densities from the TAAM approach, utilizing pseudoatom parameters averaged over a large number of chemical compounds, do not perform as well in capturing bond alternation. As a consequence of the differences in the electron-density models, the two refinement approaches also yield distinct atomic displacement parameters (ADPs).

迄今为止,Hirshfeld原子精化(HAR)几乎完全用于从x射线衍射实验中确定精确和精确的h原子位置,而忽略了所得晶体结构和分子波函数的其他特征。相比之下,我们比较了HAR和可转移非球面原子模型(TAAM)方法在结构改进和电子密度分布重建方面的适用性,这些方法以其明显的单双键交替而闻名。用单晶x射线衍射在标准分辨率下对五类醌类化合物进行了结晶和研究,并采用了不同的结构精化方法,即2,3,5,6-四氯环己-2,5-二烯-1,4-二酮(Cl4Q), C6Cl4O2, 2,3,5,6-四氟环己-2,5-二烯-1,4-二酮(F4Q), C6F4O2, 2-[4-(二氰亚基)环己-2,5-二烯-1-二烯]丙二腈(TCNQ), C12H4N4,2-[4-(二氰甲基)-2,5-二氟环己-2,5-二烯-1-乙基]丙二腈(F2TCNQ), C12H2F2N4和2-[4-(二氰甲基)-2,3,5,6-四氟环己-2,5-二烯-1-乙基]丙二腈(F4TCNQ), C12F4N4。HAR结果定量地再现了所研究化合物中的交替电子密度效应,而TAAM方法的电子密度,利用假原子参数在大量化合物中平均,在捕获键交替方面表现不佳。由于电子密度模型的不同,这两种改进方法也产生不同的原子位移参数(ADPs)。
{"title":"Applicability of Hirshfeld atom refinement for establishing the nature of chemical bonding in quinoic compounds.","authors":"Łukasz Cieszyński, Joanna Krzeszczakowska, Anna Makal","doi":"10.1107/S2053229625008873","DOIUrl":"10.1107/S2053229625008873","url":null,"abstract":"<p><p>Hirshfeld atom refinement (HAR) has so far been explored almost exclusively for the determination of accurate and precise H-atom positions from X-ray diffraction experiments, neglecting other features of the resulting crystal structures and molecular wavefunctions. In contrast, here we compare the applicability of the HAR and transferable aspherical atom model (TAAM) approaches for the structure refinement, as well as for the reconstruction of electron-density distribution in a series of quinoic compounds, known for their pronounced single-double bond alternation. A set of five quinone-like compounds has been crystallized and investigated using single-crystal X-ray diffraction at standard resolution and subjected to various structure refinement approaches, namely, 2,3,5,6-tetrachlorocyclohexa-2,5-diene-1,4-dione (Cl4Q), C<sub>6</sub>Cl<sub>4</sub>O<sub>2</sub>, 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione (F4Q), C<sub>6</sub>F<sub>4</sub>O<sub>2</sub>, 2-[4-(dicyanomethylidene)cyclohexa-2,5-dien-1-ylidene]propanedinitrile (TCNQ), C<sub>12</sub>H<sub>4</sub>N<sub>4</sub>, 2-[4-(dicyanomethylidene)-2,5-difluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile (F2TCNQ), C<sub>12</sub>H<sub>2</sub>F<sub>2</sub>N<sub>4</sub>, and 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile (F4TCNQ), C<sub>12</sub>F<sub>4</sub>N<sub>4</sub>. The HAR results quantitatively reproduce the alternating electron-density effects in the studied compounds, while the electron densities from the TAAM approach, utilizing pseudoatom parameters averaged over a large number of chemical compounds, do not perform as well in capturing bond alternation. As a consequence of the differences in the electron-density models, the two refinement approaches also yield distinct atomic displacement parameters (ADPs).</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"648-657"},"PeriodicalIF":0.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145336061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallographic and physicochemical characterization of salcaprozoic acid: a structural basis for SNAC-enabled drug delivery systems. salcaprozoic acid的晶体学和物理化学特性:SNAC-enabled给药系统的结构基础。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-01 Epub Date: 2025-10-06 DOI: 10.1107/S2053229625008691
Parag Roy, Paul G Waddell, Rajdeep Dey, Oisín N Kavanagh

Salcaprozate sodium (SNAC) is a clinically approved oral permeation enhancer, notably used in the formulation of oral semaglutide. Despite its pharmaceutical importance, the crystallographic information of SNAC or its free acid form, salcaprozoic acid {systematic name: 8-[(2-hydroxyphenyl)formamido]octanoic acid, C15H21NO4, denoted HNAC}, has not been reported previously. Here, we present the first crystallographic and physicochemical characterization of HNAC using single-crystal X-ray diffraction and complementary analytical techniques. The structure reveals the molecular conformation, hydrogen-bonding network and packing features of HNAC, supported by a complementary solid-state dataset. These findings provide fundamental insights into the structural and physicochemical properties of this physiologically relevant form of SNAC.

Salcaprozate钠(SNAC)是临床批准的口服渗透促进剂,主要用于口服semaglutide制剂。尽管SNAC具有重要的药学意义,但其晶体学信息或其游离酸形式salcaprozoic acid{系统名称:8-[(2-hydroxyphenyl)formamido]octanoic acid, C15H21NO4,简称HNAC}尚未见报道。在这里,我们首次使用单晶x射线衍射和互补分析技术对HNAC进行了晶体学和物理化学表征。该结构揭示了HNAC的分子构象、氢键网络和填充特征,并得到了互补的固态数据集的支持。这些发现为SNAC的结构和物理化学性质提供了基本的见解。
{"title":"Crystallographic and physicochemical characterization of salcaprozoic acid: a structural basis for SNAC-enabled drug delivery systems.","authors":"Parag Roy, Paul G Waddell, Rajdeep Dey, Oisín N Kavanagh","doi":"10.1107/S2053229625008691","DOIUrl":"10.1107/S2053229625008691","url":null,"abstract":"<p><p>Salcaprozate sodium (SNAC) is a clinically approved oral permeation enhancer, notably used in the formulation of oral semaglutide. Despite its pharmaceutical importance, the crystallographic information of SNAC or its free acid form, salcaprozoic acid {systematic name: 8-[(2-hydroxyphenyl)formamido]octanoic acid, C<sub>15</sub>H<sub>21</sub>NO<sub>4</sub>, denoted HNAC}, has not been reported previously. Here, we present the first crystallographic and physicochemical characterization of HNAC using single-crystal X-ray diffraction and complementary analytical techniques. The structure reveals the molecular conformation, hydrogen-bonding network and packing features of HNAC, supported by a complementary solid-state dataset. These findings provide fundamental insights into the structural and physicochemical properties of this physiologically relevant form of SNAC.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"607-613"},"PeriodicalIF":0.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12587319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145231205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystalline assemblies of a functionalized terphenyl ligand. 功能化三苯基配体的结晶组合。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-01 Epub Date: 2025-10-08 DOI: 10.1107/S2053229625008459
Brendan F Abrahams, Christopher J Commons, Timothy A Hudson, Robin Sanchez Arlt

With the aim of producing an extended bridging ligand for the assembly of coordination polymers, a terphenyl ligand incorporating carboxyl and phenol functionalities, namely, 4''-hydroxy-1,1':4',1''-terphenyl-4-carboxylic acid (H2htpa, C19H14O3, 1), was prepared. Within the structure, complementary hydrogen bonding between carboxylic acid groups leads to dimer formation with additional hydrogen bonding between phenolic groups, resulting in the formation of a 2D network. Following the addition of Na2CO3, mono- and dianionic forms of the ligand are generated within a compound of composition Na3(Hhtpa)(htpa)·hydrate or {[Na3(C19H13O3)(H2O)9](C19H12O3)}n (2). The addition of tetraethylammonium hydroxide (NEt4OH) solution to the acid leads to the formation of (Et4N)Hhtpa·2(dioxane) or C8H20N+·C19H13O3-·2C4H8O2 (3) and (Et4N)5(Hhtpa)2(H0.5htpa)2·hydrate or 5C8H20N+·[H(C19H12O3)2]3-·2C19H13O3-·17.522H2O (4), with hydrogen-bonded chains a feature of both. Compound 4 contains both the Hhtpa- anion, and pairs of htpa2- dianions linked by a single proton between phenolate O atoms to generate a trianionic unit, [H(htpa)2]3-. A ladder-shaped anionic coordination polymer of composition (NEt4)4[Zn4(htpa)3Cl6] or {(C8H20N)4[Zn4(C19H12O3)3Cl6]}n (5) was obtained when ZnII was combined with htpa2- in the presence of NEt4+ and chloride. Finally, an anionic coordination polymer with the formulation (Et4N)[Zn(htpa)(OAc)]·1.5(dioxane) or {(C8H20N)[Zn(C3H3O2)(C19H12O3)]·1.5C4H8O2}}n (6) was generated with both OAc- (acetate) and htpa2- serving as bridging ligands between ZnII centres in a 2D network.

为了制备用于配位聚合物组装的扩展桥接配体,制备了一种具有羧基和酚官能团的terphenyl配体,即4′-羟基-1,1′:4′,1′-terphenyl-4-羧酸(H2htpa, c19h14o3,1)。在结构内部,羧基之间的互补氢键形成二聚体,酚基之间的附加氢键形成二维网络。加入Na2CO3后,在组成为Na3(htpa)(htpa)·水合物或{[Na3(C19H13O3)(H2O)9](C19H12O3)}n(2)的化合物中生成单离子和二阴离子形式的配体。将四乙基氢氧化铵(NEt4OH)溶液加入到酸中,形成(Et4N) htpa·2(二恶烷)或C8H20N+·C19H13O3-·2C4H8O2(3)和(Et4N)5(htpa)2(H0.5htpa)2·水合物或5C8H20N+·[H(C19H12O3)2]3-·2C19H13O3-·17.522H2O(4),两者具有氢键链的特征。化合物4既含有htpa-阴离子,又含有一对htpa2-阴离子,由苯酚O原子之间的单个质子连接,生成一个三阴离子单元[H(htpa)2]3-。在NEt4+和氯化物的存在下,将ni与htpa2-结合,得到了组成为(NEt4)4[Zn4(htpa)3Cl6]或{(C8H20N)4[Zn4(C19H12O3)3Cl6]}n(5)的阶梯状阴离子配位聚合物。最后,以OAc-(醋酸盐)和htpa2-为桥接配体,生成了一种阴离子配位聚合物,其分子式为(Et4N)[Zn(htpa)(OAc)]·1.5(二恶烷)或{(C8H20N)[Zn(C3H3O2)(C19H12O3)]·1.5 5c4h8o2}}n(6)。
{"title":"Crystalline assemblies of a functionalized terphenyl ligand.","authors":"Brendan F Abrahams, Christopher J Commons, Timothy A Hudson, Robin Sanchez Arlt","doi":"10.1107/S2053229625008459","DOIUrl":"10.1107/S2053229625008459","url":null,"abstract":"<p><p>With the aim of producing an extended bridging ligand for the assembly of coordination polymers, a terphenyl ligand incorporating carboxyl and phenol functionalities, namely, 4''-hydroxy-1,1':4',1''-terphenyl-4-carboxylic acid (H<sub>2</sub>htpa, C<sub>19</sub>H<sub>14</sub>O<sub>3</sub>, 1), was prepared. Within the structure, complementary hydrogen bonding between carboxylic acid groups leads to dimer formation with additional hydrogen bonding between phenolic groups, resulting in the formation of a 2D network. Following the addition of Na<sub>2</sub>CO<sub>3</sub>, mono- and dianionic forms of the ligand are generated within a compound of composition Na<sub>3</sub>(Hhtpa)(htpa)·hydrate or {[Na<sub>3</sub>(C<sub>19</sub>H<sub>13</sub>O<sub>3</sub>)(H<sub>2</sub>O)<sub>9</sub>](C<sub>19</sub>H<sub>12</sub>O<sub>3</sub>)}<sub>n</sub> (2). The addition of tetraethylammonium hydroxide (NEt<sub>4</sub>OH) solution to the acid leads to the formation of (Et<sub>4</sub>N)Hhtpa·2(dioxane) or C<sub>8</sub>H<sub>20</sub>N<sup>+</sup>·C<sub>19</sub>H<sub>13</sub>O<sub>3</sub><sup>-</sup>·2C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> (3) and (Et<sub>4</sub>N)<sub>5</sub>(Hhtpa)<sub>2</sub>(H<sub>0.5</sub>htpa)<sub>2</sub>·hydrate or 5C<sub>8</sub>H<sub>20</sub>N<sup>+</sup>·[H(C<sub>19</sub>H<sub>12</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3-</sup>·2C<sub>19</sub>H<sub>13</sub>O<sub>3</sub><sup>-</sup>·17.522H<sub>2</sub>O (4), with hydrogen-bonded chains a feature of both. Compound 4 contains both the Hhtpa<sup>-</sup> anion, and pairs of htpa<sup>2-</sup> dianions linked by a single proton between phenolate O atoms to generate a trianionic unit, [H(htpa)<sub>2</sub>]<sup>3-</sup>. A ladder-shaped anionic coordination polymer of composition (NEt<sub>4</sub>)<sub>4</sub>[Zn<sub>4</sub>(htpa)<sub>3</sub>Cl<sub>6</sub>] or {(C<sub>8</sub>H<sub>20</sub>N)<sub>4</sub>[Zn<sub>4</sub>(C<sub>19</sub>H<sub>12</sub>O<sub>3</sub>)<sub>3</sub>Cl<sub>6</sub>]}<sub>n</sub> (5) was obtained when Zn<sup>II</sup> was combined with htpa<sup>2-</sup> in the presence of NEt<sub>4</sub><sup>+</sup> and chloride. Finally, an anionic coordination polymer with the formulation (Et<sub>4</sub>N)[Zn(htpa)(OAc)]·1.5(dioxane) or {(C<sub>8</sub>H<sub>20</sub>N)[Zn(C<sub>3</sub>H<sub>3</sub>O<sub>2</sub>)(C<sub>19</sub>H<sub>12</sub>O<sub>3</sub>)]·1.5C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>}}<sub>n</sub> (6) was generated with both OAc<sup>-</sup> (acetate) and htpa<sup>2-</sup> serving as bridging ligands between Zn<sup>II</sup> centres in a 2D network.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"628-638"},"PeriodicalIF":0.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145249215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of phase relative stability and phase transformation in an S-ibuprofen-nicotinamide cocrystal. s -布洛芬-烟酰胺共晶相相对稳定性及相变的来源。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-01 Epub Date: 2025-10-21 DOI: 10.1107/S2053229625008952
Mathieu Guerain, Hubert Chevreau, Erik Elkaim, Yannick Guinet, Laurent Paccou, Florence Danède, Alain Hedoux, Frederic Affouard

The crystal structure of the metastable form of S-ibuprofen-nicotinamide cocrystals, C13H18O2·C6H6N2O, was solved from powder X-ray diffraction. This form was obtained by melting a molar mixture of S-ibuprofen and nicotinamide at 100 °C, and then cooling. The high-resolution powder X-ray diffraction pattern of this new phase was recorded at room temperature using synchrotron radiation at SOLEIL Synchrotron (France). A hypothetical structure was obtained from the Monte-Carlo simulated annealing method and confirmed by Rietveld refinement. The symmetry is monoclinic (space group P21, No. 4) and the unit cell contains four molecules, two of nicotinamide and two of S-ibuprofen. Density functional theory (DFT) energy minimization simulation was performed in order to locate the H atoms. The determination of the crystallographic structure of this metastable form allowed an explanation of the main mechanisms at the origin of the relative stability of the two forms of the S-ibuprofen-nicotinamide cocrystals. This also made it possible to explain the transition mechanism between the two forms with temperature.

用粉末x射线衍射分析了s -布洛芬-烟酰胺共晶亚稳态C13H18O2·C6H6N2O的晶体结构。这种形式是由s -布洛芬和烟酰胺的摩尔混合物在100℃熔化,然后冷却得到的。在法国SOLEIL同步加速器上用同步辐射在室温下记录了这一新相的高分辨率粉末x射线衍射图。用蒙特卡罗模拟退火法得到了一个假设的结构,并用Rietveld精化法进行了验证。对称为单斜(空间群P21, No. 4),单位细胞包含四个分子,两个烟酰胺分子和两个s -布洛芬分子。利用密度泛函理论(DFT)进行能量最小化模拟,以确定氢原子的位置。这种亚稳态形式的晶体结构的测定,允许在s -布洛芬-烟酰胺的两种形式的共晶的相对稳定性的主要机制起源的解释。这也使得用温度来解释两种形式之间的转变机制成为可能。
{"title":"Origin of phase relative stability and phase transformation in an S-ibuprofen-nicotinamide cocrystal.","authors":"Mathieu Guerain, Hubert Chevreau, Erik Elkaim, Yannick Guinet, Laurent Paccou, Florence Danède, Alain Hedoux, Frederic Affouard","doi":"10.1107/S2053229625008952","DOIUrl":"10.1107/S2053229625008952","url":null,"abstract":"<p><p>The crystal structure of the metastable form of S-ibuprofen-nicotinamide cocrystals, C<sub>13</sub>H<sub>18</sub>O<sub>2</sub>·C<sub>6</sub>H<sub>6</sub>N<sub>2</sub>O, was solved from powder X-ray diffraction. This form was obtained by melting a molar mixture of S-ibuprofen and nicotinamide at 100 °C, and then cooling. The high-resolution powder X-ray diffraction pattern of this new phase was recorded at room temperature using synchrotron radiation at SOLEIL Synchrotron (France). A hypothetical structure was obtained from the Monte-Carlo simulated annealing method and confirmed by Rietveld refinement. The symmetry is monoclinic (space group P2<sub>1</sub>, No. 4) and the unit cell contains four molecules, two of nicotinamide and two of S-ibuprofen. Density functional theory (DFT) energy minimization simulation was performed in order to locate the H atoms. The determination of the crystallographic structure of this metastable form allowed an explanation of the main mechanisms at the origin of the relative stability of the two forms of the S-ibuprofen-nicotinamide cocrystals. This also made it possible to explain the transition mechanism between the two forms with temperature.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"658-665"},"PeriodicalIF":0.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12587321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145336081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving molecular organic crystal structures from powders. 从粉末中求解分子有机晶体结构。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-01 Epub Date: 2025-10-20 DOI: 10.1107/S2053229625009052
Andrew N Fitch
{"title":"Solving molecular organic crystal structures from powders.","authors":"Andrew N Fitch","doi":"10.1107/S2053229625009052","DOIUrl":"10.1107/S2053229625009052","url":null,"abstract":"","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"596-597"},"PeriodicalIF":0.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145327945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protonated decafluorobenzophenone and the decafluorobenzophenone-arsenic pentafluoride adduct. 质子化的十氟苯甲酮和十氟苯甲酮-五氟化砷加合物。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-01 Epub Date: 2025-09-23 DOI: 10.1107/S2053229625007697
Erik Uran, Matic Lozinšek

The reaction of decafluorobenzophenone [perfluorobenzophenone, (C6F5)2CO] with AsF5 in anhydrous HF yields the protonated salt [bis(2,3,4,5,6-pentafluorophenyl)methylidene]oxidanium hexafluoridoarsenate, (C6F5)2COH+[AsF6]-, whereas its reaction with AsF5 in SO2 affords the Lewis acid-base adduct decafluorobenzophenone-arsenic pentafluoride, (C6F5)2CO·AsF5. In both compounds, the decafluorobenzophenone moiety exhibits an elongated C=O bond [1.274 (2) and 1.2526 (15) Å in the salt and adduct, respectively]. The crystal structure of (C6F5)2COH+[AsF6]- features a short O-H...F hydrogen bond between the cation and the anion, and the crystal structure of (C6F5)2CO·AsF5 represents a rare example of a ketone coordinated to the strong Lewis acid AsF5.

十氟苯甲酮[全氟苯甲酮,(C6F5)2CO]与AsF5在无水HF中反应生成质子化盐[二(2,3,4,5,6-五氟苯基)亚甲基]氧化六氟二酸盐,(C6F5)2COH+[AsF6]-,而与AsF5在SO2中反应生成Lewis酸碱加合物十氟苯甲酮-五氟化砷,(C6F5)2CO·AsF5。在这两种化合物中,十氟苯甲酮部分显示出一个细长的C=O键[分别在盐和加合物中为1.274(2)和1.2526 (15)Å]。(C6F5)2COH+[AsF6]-的晶体结构具有短O-H…(C6F5)2CO·AsF5的晶体结构是一种罕见的酮与强刘易斯酸AsF5配位的例子。
{"title":"Protonated decafluorobenzophenone and the decafluorobenzophenone-arsenic pentafluoride adduct.","authors":"Erik Uran, Matic Lozinšek","doi":"10.1107/S2053229625007697","DOIUrl":"10.1107/S2053229625007697","url":null,"abstract":"<p><p>The reaction of decafluorobenzophenone [perfluorobenzophenone, (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>CO] with AsF<sub>5</sub> in anhydrous HF yields the protonated salt [bis(2,3,4,5,6-pentafluorophenyl)methylidene]oxidanium hexafluoridoarsenate, (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>COH<sup>+</sup>[AsF<sub>6</sub>]<sup>-</sup>, whereas its reaction with AsF<sub>5</sub> in SO<sub>2</sub> affords the Lewis acid-base adduct decafluorobenzophenone-arsenic pentafluoride, (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>CO·AsF<sub>5</sub>. In both compounds, the decafluorobenzophenone moiety exhibits an elongated C=O bond [1.274 (2) and 1.2526 (15) Å in the salt and adduct, respectively]. The crystal structure of (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>COH<sup>+</sup>[AsF<sub>6</sub>]<sup>-</sup> features a short O-H...F hydrogen bond between the cation and the anion, and the crystal structure of (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>CO·AsF<sub>5</sub> represents a rare example of a ketone coordinated to the strong Lewis acid AsF<sub>5</sub>.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"577-583"},"PeriodicalIF":0.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structures and thermogravimetric analyses of six CuCN network structures with protonated N-alkylethanolamines as guest cations. 以质子化n -烷基乙醇胺为客体阳离子的六种CuCN网络结构的晶体结构和热重分析。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-01 Epub Date: 2025-09-24 DOI: 10.1107/S2053229625008113
Peter W R Corfield, Abigail Carlson, Gianni J Contrera, Nurul Eisha, Elali Faisal, Daniel J Garcia, Nina R Gencarelli

The structures of six triperiodic CuCN network structures with conjugate acids of four N-alkylethanolamines as guest cations are described, namely, poly[2-hydroxyethan-1-aminium [μ3-cyanido-di-μ2-cyanido-dicuprate(I)]], {(C2H8NO)[Cu2(CN)3]}n, 1, poly[bis(2-hydroxy-N-methylethan-1-aminium) [di-μ3-cyanido-tri-μ2-cyanido-tricuprate(I)] monohydrate], {(C4H12NO)2[Cu3(CN)5]·H2O}n, 2, poly[tetrakis[N-(2-hydroxyethyl)ethan-1-aminium] [chloridotetra-μ3-cyanido-penta-μ2-cyanido-tricuprate(I)]], {(C4H12NO)4[Cu6(CN)9Cl]}n, 3, poly[tetrakis[N-(2-hydroxyethyl)ethan-1-aminium] [penta-μ3-cyanido-hepta-μ2-cyanido-octacuprate(I)]], {(C4H12NO)4[Cu8(CN)12]}n, 4, poly[2-hydroxy-N,N-diisopropylethan-1-aminium [μ3-cyanido-μ2-cyanido-dicuprate(I)] monohydrate], {(C8H20NO)[Cu3(CN)4]·H2O}n, 5, and poly[2-hydroxy-N,N-diisopropylethan-1-aminium [μ3-cyanido-di-μ2-cyanido-dicuprate(I)]], {(C8H20NO)[Cu2(CN)3]}n, 6. In five of the structures (1-5), the CuCN network includes Cu atoms occurring in pairs, linked by cuprophilic interactions. Analysis with the intent of exploring the `template effect' of the cations on the CuCN network structure indicated five separate CuCN topologies. The two different crystal structures involving cations from N-ethylethanolamine have the same basic topology, whereas the two crystal structures involving cations from N,N-diisopropylethanolamine have different topologies, contrary to what might be expected from a template effect. Thermogravimetric analysis of the compounds usually shows loss of HCN(g) and the free base by 200 °C, with a CuCN(s) residue, but decomposition of one of the structures is more complex.

描述了以四种n-烷基乙醇胺缀合酸为宾位的六种三周期CuCN网络结构,即聚[2-羟基-1-氨基[μ3-氰-二-μ2-氰-三酸盐(I)]], {(C2H8NO)[Cu2(CN)3]}n, 1,聚[双(2-羟基- n-甲基-1-氨基][二-μ3-氰-三-氰-三酸盐(I)]一水合物],{(C4H12NO)2[Cu3(CN)5]·H2O}n, 2,聚[四[n-(2-羟乙基)乙-1-氨基][氯-四-μ3-氰-五-μ2-氰-三酸盐(I)],{(C4H12NO)4[Cu6(CN)9Cl]}n, 3,聚[四][n-(2-羟乙基)乙比-氨基][五-μ3-氰-七-μ2-氰-八酸盐(I)]], {(C4H12NO)4[Cu8(CN)12]}n, 4,聚[2-羟基- n, n-二异丙基-氨基][μ3-氰-μ2-氰-二酸盐(I)]一水合物],{(C8H20NO)[Cu3(CN)4]·H2O}n, 5,聚[2-羟基- n, n-二异丙基-氨基][μ3-氰-二-μ2-氰-二酸盐(I)]], {(C8H20NO)[Cu2(CN)3]}n, 6。在其中的5个结构(1-5)中,CuCN网络包括铜原子成对出现,通过亲铜相互作用连接。为了探索阳离子对CuCN网络结构的“模板效应”,分析表明有五种不同的CuCN拓扑结构。涉及N-乙基乙醇胺阳离子的两种不同晶体结构具有相同的基本拓扑结构,而涉及N,N-二异丙基乙醇胺阳离子的两种晶体结构具有不同的拓扑结构,这与模板效应的预期相反。化合物的热重分析通常显示200°C时HCN(g)和游离碱的损失,并伴有CuCN(s)残留,但其中一种结构的分解更为复杂。
{"title":"Crystal structures and thermogravimetric analyses of six CuCN network structures with protonated N-alkylethanolamines as guest cations.","authors":"Peter W R Corfield, Abigail Carlson, Gianni J Contrera, Nurul Eisha, Elali Faisal, Daniel J Garcia, Nina R Gencarelli","doi":"10.1107/S2053229625008113","DOIUrl":"10.1107/S2053229625008113","url":null,"abstract":"<p><p>The structures of six triperiodic CuCN network structures with conjugate acids of four N-alkylethanolamines as guest cations are described, namely, poly[2-hydroxyethan-1-aminium [μ<sub>3</sub>-cyanido-di-μ<sub>2</sub>-cyanido-dicuprate(I)]], {(C<sub>2</sub>H<sub>8</sub>NO)[Cu<sub>2</sub>(CN)<sub>3</sub>]}<sub>n</sub>, 1, poly[bis(2-hydroxy-N-methylethan-1-aminium) [di-μ<sub>3</sub>-cyanido-tri-μ<sub>2</sub>-cyanido-tricuprate(I)] monohydrate], {(C<sub>4</sub>H<sub>12</sub>NO)<sub>2</sub>[Cu<sub>3</sub>(CN)<sub>5</sub>]·H<sub>2</sub>O}<sub>n</sub>, 2, poly[tetrakis[N-(2-hydroxyethyl)ethan-1-aminium] [chloridotetra-μ<sub>3</sub>-cyanido-penta-μ<sub>2</sub>-cyanido-tricuprate(I)]], {(C<sub>4</sub>H<sub>12</sub>NO)<sub>4</sub>[Cu<sub>6</sub>(CN)<sub>9</sub>Cl]}<sub>n</sub>, 3, poly[tetrakis[N-(2-hydroxyethyl)ethan-1-aminium] [penta-μ<sub>3</sub>-cyanido-hepta-μ<sub>2</sub>-cyanido-octacuprate(I)]], {(C<sub>4</sub>H<sub>12</sub>NO)<sub>4</sub>[Cu<sub>8</sub>(CN)<sub>12</sub>]}<sub>n</sub>, 4, poly[2-hydroxy-N,N-diisopropylethan-1-aminium [μ<sub>3</sub>-cyanido-μ<sub>2</sub>-cyanido-dicuprate(I)] monohydrate], {(C<sub>8</sub>H<sub>20</sub>NO)[Cu<sub>3</sub>(CN)<sub>4</sub>]·H<sub>2</sub>O}<sub>n</sub>, 5, and poly[2-hydroxy-N,N-diisopropylethan-1-aminium [μ<sub>3</sub>-cyanido-di-μ<sub>2</sub>-cyanido-dicuprate(I)]], {(C<sub>8</sub>H<sub>20</sub>NO)[Cu<sub>2</sub>(CN)<sub>3</sub>]}<sub>n</sub>, 6. In five of the structures (1-5), the CuCN network includes Cu atoms occurring in pairs, linked by cuprophilic interactions. Analysis with the intent of exploring the `template effect' of the cations on the CuCN network structure indicated five separate CuCN topologies. The two different crystal structures involving cations from N-ethylethanolamine have the same basic topology, whereas the two crystal structures involving cations from N,N-diisopropylethanolamine have different topologies, contrary to what might be expected from a template effect. Thermogravimetric analysis of the compounds usually shows loss of HCN(g) and the free base by 200 °C, with a CuCN(s) residue, but decomposition of one of the structures is more complex.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"584-595"},"PeriodicalIF":0.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145136137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compounds related to organic Dirac electron systems (ODES) using linear gold(I) complex anions. 利用线性金(I)络合阴离子的有机狄拉克电子系统(ODES)相关化合物。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-01 Epub Date: 2025-09-20 DOI: 10.1107/S2053229625008204
Shoma Yamamoto, Toshio Naito

Bis[bis(ethylenedithio)tetraselenafulvalene(0.5+)] dibromidoaurate(I) and its chloride analogue, (C10H8S4Se4)2[AuX2] or BETS2AuX2 (X = Cl and Br), were synthesized to examine their crystal and band structures. The crystal structures are new in that they have both structural features of different types of organic Dirac electron systems (ODES), i.e. α- and α'-type iodine-centred trihalide (IX2-) salts of BETS-related electron-donor molecules. The former often produces zero-gap semiconductors, while the latter is related to nodal-line semimetals, i.e. classes of ODES different from each other. The band structure calculation suggests that BETS2AuX2 are close to zero-gap semiconductors, indicating that the α-type structural feature governs the band structures in these salts. Although the dimensions and geometries of the constituents are close to each other between BETS2IX2 and BETS2AuX2, the strength of the BETS-anion interaction resulted in a difference in the crystal structures between the α- and α'-type molecular arrangements. Our findings show that the crystal and band structures are affected by the electronic states of the constituents sometimes more than one would expect based on their geometrical features.

合成了双[双(乙二硫代)四烯丙烯(0.5+)]二溴酸酯(I)及其氯代类似物(C10H8S4Se4)2[AuX2]或BETS2AuX2 (X = Cl和Br),考察了它们的晶体和能带结构。该晶体结构具有不同类型的有机狄拉克电子系统(ODES)的结构特征,即β -相关电子给体分子的α-型和α'型碘中心三卤化物(IX2-)盐。前者通常生产零间隙半导体,而后者与节线半金属有关,即彼此不同的ODES类别。能带结构计算表明BETS2AuX2接近于零隙半导体,表明α型结构特征支配着这些盐的能带结构。虽然BETS2IX2和BETS2AuX2的组分的尺寸和几何形状非常接近,但由于BETS2IX2和BETS2AuX2之间阴离子相互作用的强度,导致了α-型和α'型分子排列之间的晶体结构差异。我们的研究结果表明,晶体和能带结构受到组分电子状态的影响,有时比基于它们的几何特征所期望的要多。
{"title":"Compounds related to organic Dirac electron systems (ODES) using linear gold(I) complex anions.","authors":"Shoma Yamamoto, Toshio Naito","doi":"10.1107/S2053229625008204","DOIUrl":"10.1107/S2053229625008204","url":null,"abstract":"<p><p>Bis[bis(ethylenedithio)tetraselenafulvalene(0.5+)] dibromidoaurate(I) and its chloride analogue, (C<sub>10</sub>H<sub>8</sub>S<sub>4</sub>Se<sub>4</sub>)<sub>2</sub>[AuX<sub>2</sub>] or BETS<sub>2</sub>AuX<sub>2</sub> (X = Cl and Br), were synthesized to examine their crystal and band structures. The crystal structures are new in that they have both structural features of different types of organic Dirac electron systems (ODES), i.e. α- and α'-type iodine-centred trihalide (IX<sub>2</sub><sup>-</sup>) salts of BETS-related electron-donor molecules. The former often produces zero-gap semiconductors, while the latter is related to nodal-line semimetals, i.e. classes of ODES different from each other. The band structure calculation suggests that BETS<sub>2</sub>AuX<sub>2</sub> are close to zero-gap semiconductors, indicating that the α-type structural feature governs the band structures in these salts. Although the dimensions and geometries of the constituents are close to each other between BETS<sub>2</sub>IX<sub>2</sub> and BETS<sub>2</sub>AuX<sub>2</sub>, the strength of the BETS-anion interaction resulted in a difference in the crystal structures between the α- and α'-type molecular arrangements. Our findings show that the crystal and band structures are affected by the electronic states of the constituents sometimes more than one would expect based on their geometrical features.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"570-576"},"PeriodicalIF":0.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145102578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A good-practice guide to solving and refining molecular organic crystal structures from laboratory powder X-ray diffraction data. 从实验室粉末x射线衍射数据中解决和精炼分子有机晶体结构的良好实践指南。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-01 Epub Date: 2025-09-17 DOI: 10.1107/S2053229625008046
Elena Kabova, Margarita Mersiyanova, Kenneth Shankland, Norman Shankland, Mark Spillman

This article focuses on a specific real-space methodology for solving and refining molecular organic crystal structures, developed by the authors and collaborators. It outlines a practical route from polycrystalline samples to refined crystal structures, emphasizing efficient global optimization by DASH and the robust refinement capabilities of TOPAS. The approach prioritizes laboratory-to-laboratory reproducibility via a standardized workflow that addresses key challenges in molecular organic crystal structure determination.

本文重点介绍了由作者和合作者开发的用于求解和精炼分子有机晶体结构的具体实空间方法。它概述了从多晶样品到精细晶体结构的实用路线,强调了DASH的高效全局优化和TOPAS的强大细化能力。该方法通过标准化工作流程优先考虑实验室到实验室的可重复性,解决了分子有机晶体结构确定中的关键挑战。
{"title":"A good-practice guide to solving and refining molecular organic crystal structures from laboratory powder X-ray diffraction data.","authors":"Elena Kabova, Margarita Mersiyanova, Kenneth Shankland, Norman Shankland, Mark Spillman","doi":"10.1107/S2053229625008046","DOIUrl":"10.1107/S2053229625008046","url":null,"abstract":"<p><p>This article focuses on a specific real-space methodology for solving and refining molecular organic crystal structures, developed by the authors and collaborators. It outlines a practical route from polycrystalline samples to refined crystal structures, emphasizing efficient global optimization by DASH and the robust refinement capabilities of TOPAS. The approach prioritizes laboratory-to-laboratory reproducibility via a standardized workflow that addresses key challenges in molecular organic crystal structure determination.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":" ","pages":"559-569"},"PeriodicalIF":0.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145074163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescence modulation via solvent-triggered single-crystal-to-single-crystal transformation in a non-porous molecular crystal. 在无孔分子晶体中通过溶剂触发单晶到单晶转变的发光调制。
IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-01 Epub Date: 2025-08-22 DOI: 10.1107/S2053229625007193
Shu Ting Yuan, Jing Yang Ma, Yu Ze Liu, Ya Qian Zhou, Juan Yao Cai, Yue Liu, Xia Er Li, Jia Qing Wu, Xiao Ping Zhou, Li De Yu

Stimuli-responsive crystalline materials have demonstrated significant potential for developing multifunctional systems. Achieving precise structural modulation in non-porous crystalline phases remains a critical challenge, particularly in correlating molecular-level conformational changes with macroscopic properties. Here, we report a solvatomorphic crystalline system, (1-azabicyclo[2.2.2]octane-κN){4,4',6,6'-tetra-tert-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato-κ4O,N,N',O'}zinc(II) acetonitrile monosolvate, [Zn(C36H46N2O2)(C7H13N)]·CH3CN or [Zn(saloph)](quinuclidine)](acetonitrile) (1·solvent), which exhibits a reversible single-crystal-to-single-crystal transformation during acetonitrile adsorption/desorption. Structure analysis reveals that solvation dynamics induce a pronounced variation in the dihedral angle of the [Zn(saloph)] coordination centre, accompanied by a luminescence red shift of approximately 10 nm. This work establishes a strategy for modulating optoelectronic properties in non-porous crystalline materials through solvent-mediated structural reorganization, advancing the development of stimuli-responsive functional materials.

刺激响应晶体材料在开发多功能系统方面已经显示出巨大的潜力。在非多孔晶相中实现精确的结构调制仍然是一个关键的挑战,特别是在将分子水平的构象变化与宏观性质相关联方面。本文报道了一种溶剂化结晶体系(1-氮杂环[2.2.2]辛烷-κN){4,4',6,6'-四叔丁基-2,2'-[1,2-苯基双(硝基甲酰基)]二酚-κ 40o,N,N‘,O’}锌(II)乙腈单溶剂,[Zn(C36H46N2O2)(C7H13N)]·CH3CN或[Zn(saloph)](喹嘌呤)](乙腈)(1·溶剂),在乙腈吸附/脱附过程中表现出可逆的单晶到单晶转变。结构分析表明,溶剂化动力学导致[Zn(saloph)]配位中心的二面角发生明显变化,并伴有约10 nm的发光红移。本工作建立了一种通过溶剂介导的结构重组来调节非多孔晶体材料光电特性的策略,促进了刺激响应功能材料的发展。
{"title":"Luminescence modulation via solvent-triggered single-crystal-to-single-crystal transformation in a non-porous molecular crystal.","authors":"Shu Ting Yuan, Jing Yang Ma, Yu Ze Liu, Ya Qian Zhou, Juan Yao Cai, Yue Liu, Xia Er Li, Jia Qing Wu, Xiao Ping Zhou, Li De Yu","doi":"10.1107/S2053229625007193","DOIUrl":"10.1107/S2053229625007193","url":null,"abstract":"<p><p>Stimuli-responsive crystalline materials have demonstrated significant potential for developing multifunctional systems. Achieving precise structural modulation in non-porous crystalline phases remains a critical challenge, particularly in correlating molecular-level conformational changes with macroscopic properties. Here, we report a solvatomorphic crystalline system, (1-azabicyclo[2.2.2]octane-κN){4,4',6,6'-tetra-tert-butyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato-κ<sup>4</sup>O,N,N',O'}zinc(II) acetonitrile monosolvate, [Zn(C<sub>36</sub>H<sub>46</sub>N<sub>2</sub>O<sub>2</sub>)(C<sub>7</sub>H<sub>13</sub>N)]·CH<sub>3</sub>CN or [Zn(saloph)](quinuclidine)](acetonitrile) (1·solvent), which exhibits a reversible single-crystal-to-single-crystal transformation during acetonitrile adsorption/desorption. Structure analysis reveals that solvation dynamics induce a pronounced variation in the dihedral angle of the [Zn(saloph)] coordination centre, accompanied by a luminescence red shift of approximately 10 nm. This work establishes a strategy for modulating optoelectronic properties in non-porous crystalline materials through solvent-mediated structural reorganization, advancing the development of stimuli-responsive functional materials.</p>","PeriodicalId":7115,"journal":{"name":"Acta Crystallographica Section C Structural Chemistry","volume":"81 Pt 9","pages":"523-529"},"PeriodicalIF":0.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Crystallographica Section C Structural Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1