首页 > 最新文献

Acta Geochimica最新文献

英文 中文
Alkaline igneous rocks, a potential source of rare metals and radioactive minerals: Case study at Amreit area, south Eastern Desert, Egypt 碱性火成岩,稀有金属和放射性矿物的潜在来源:埃及东南沙漠阿姆雷特地区案例研究
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-18 DOI: 10.1007/s11631-024-00713-2
Baaha M. Emad

Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals. New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex. The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites. The youngest rocks cropping out in the study area are the cogenetic alkaline rocks, ranging from alkaline granite to alkaline syenite. These alkaline rocks are composed essentially of K-feldspar, alkali amphiboles (arfvedsonite), and sodic pyroxene, with accessories such as zircon, apatite, and ilmenite. Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite, thorite, zircon, ferro-columbite, xenotime, and allanite minerals. Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis (K2O + Na2O), large ion lithophile elements (LILEs; Ba and Rb), high field strength elements (HFSEs; Y, Zr and Nb), rare earth elements (REEs) and significantly depleted in K, Sr, P, Ti, and Eu, typically of post-collision A-type granites. Typically, the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics. The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks. The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt. The high radioactivity is essentially related to accessory minerals, such as zircon, allanite, and monazite. The alkaline granite is the most U- and Th-rich rock, where radioactivity level reaches up to 14.7 ppm (181.55 Bq/kg) eU, 40.6 ppm (164.84 Bq/kg) eTh, whereas in alkaline syenite radioactivity level is 8.5 ppm (104.96 Bq/kg) eU, 30.2 ppm (122.61 Bq/kg) eTh. These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.

{"title":"Alkaline igneous rocks, a potential source of rare metals and radioactive minerals: Case study at Amreit area, south Eastern Desert, Egypt","authors":"Baaha M. Emad","doi":"10.1007/s11631-024-00713-2","DOIUrl":"10.1007/s11631-024-00713-2","url":null,"abstract":"<div><p>Alkaline igneous rocks represent one of the most economically important resources of radioactive minerals and rare metals. New field observations and petrographic studies are integrated with whole-rock geochemical analyses and Gamma ray spectroscopy data of alkaline rocks associated with the Amreit complex. The fieldwork was achieved by the collection of more than forty samples from alkaline granites and alkaline syenites. The youngest rocks cropping out in the study area are the cogenetic alkaline rocks, ranging from alkaline granite to alkaline syenite. These alkaline rocks are composed essentially of K-feldspar, alkali amphiboles (arfvedsonite), and sodic pyroxene, with accessories such as zircon, apatite, and ilmenite. Mineral characterization of the highly radioactive zones in both alkaline granite and alkaline syenite displays enrichment in monazite, thorite, zircon, ferro-columbite, xenotime, and allanite minerals. Geochemical analyses indicate that the Amreit rocks are alkaline with peralkaline affinity and have high concentrations of total alkalis (K<sub>2</sub>O + Na<sub>2</sub>O), large ion lithophile elements (LILEs; Ba and Rb), high field strength elements (HFSEs; Y, Zr and Nb), rare earth elements (REEs) and significantly depleted in K, Sr, P, Ti, and Eu, typically of post-collision A-type granites. Typically, the Amreit alkaline igneous rocks are classified as within plate granites and display A2 subtype characteristics. The fractionation of K-feldspars played a distinctive role during the magmatic evolution of these alkaline rocks. The geochemical characteristics indicate that the studied alkaline igneous rocks which were originated by fractional crystallization of alkaline magmas were responsible for the enrichment of the REE and rare metals in the residual melt. The high radioactivity is essentially related to accessory minerals, such as zircon, allanite, and monazite. The alkaline granite is the most U- and Th-rich rock, where radioactivity level reaches up to 14.7 ppm (181.55 Bq/kg) eU, 40.6 ppm (164.84 Bq/kg) eTh, whereas in alkaline syenite radioactivity level is 8.5 ppm (104.96 Bq/kg) eU, 30.2 ppm (122.61 Bq/kg) eTh. These observations suppose that these alkaline rocks may be important targets for REEs and radioactive mineral exploration.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"189 - 214"},"PeriodicalIF":1.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141826135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lithology and composition of lunar mantle modified by ilmenite bearing cumulate: A thermodynamic model 含钛铁矿累晶改变的月幔岩性和成分:热力学模型
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-12 DOI: 10.1007/s11631-024-00718-x
Wei Huang, Wei Du

Due to their high density, the ilmenite-bearing cumulates (IBC) (with or without KREEP) formed during the late-stage lunar magma ocean solidification are thought to sink into the underlying lunar mantle and trigger lunar mantle overturn. Geophysical evidence implied that IBC may descend deep inside the Moon and remain as a partially molten layer at the core-mantle boundary (CMB). However, partial melting may have occurred on the mixed mantle cumulates during the sinking of IBC/KREEP and the silicate melt may be positively buoyant, thus preventing the IBC/KREEP layer from sinking to the CMB. Here, we perform thermodynamic simulation on the stability of lunar mantle cumulates at different depths mixed with different amounts of IBC/KREEP from an updated LMO model. The modeling results suggest that the sinking of IBC/KREEP will cause at least 5 wt% partial melting in the shallow (~ 120 km) and a much larger degree of partial melting in the deep lunar mantle (~ 420 km). Due to the density contrast with the surrounding mantle, IBC/KREEP-bearing melts could potentially decouple under certain conditions. The modified lunar mantle by sinking of IBC/KREEP can better explain the formation of different kinds of lunar basaltic magma than the primary lunar mantle formed through differentiation of lunar magma ocean. Sinking of IBC/KREEP back into the lunar mantle may introduce plagioclase, clinopyroxene, garnet, and incompatible radioactive elements into the deep lunar mantle, which will further affect the thermal and chemical evolution of the lunar interior.

由于密度较高,人们认为在月球岩浆洋凝固晚期形成的含钛铁矿积块(IBC)(含或不含KREEP)会沉入下层月幔并引发月幔倾覆。地球物理证据表明,中生代岩浆可能沉降到月球深处,并作为部分熔融层留在月核-地幔边界(CMB)。然而,在IBC/KREEP下沉过程中,混合地幔积层可能发生了部分熔融,硅酸盐熔体可能具有正浮力,从而阻止IBC/KREEP层下沉到CMB。在此,我们利用更新的 LMO 模型对不同深度的月幔积层与不同量的 IBC/KREEP 混合后的稳定性进行了热力学模拟。模拟结果表明,IBC/KREEP 的下沉将导致浅层地幔(约 120 千米)至少 5 wt%的部分熔化,而深层地幔(约 420 千米)的部分熔化程度要大得多。由于与周围地幔的密度对比,含 IBC/KREEP 的熔体在某些条件下可能会脱钩。与月球岩浆洋分异形成的原生月幔相比,IBC/KREEP下沉改造的月幔能更好地解释不同种类的月球玄武岩浆的形成。IBC/KREEP沉回月幔可能会将斜长石、挛辉石、石榴石和不相容放射性元素引入月幔深处,从而进一步影响月球内部的热演化和化学演化。
{"title":"The lithology and composition of lunar mantle modified by ilmenite bearing cumulate: A thermodynamic model","authors":"Wei Huang,&nbsp;Wei Du","doi":"10.1007/s11631-024-00718-x","DOIUrl":"10.1007/s11631-024-00718-x","url":null,"abstract":"<div><p>Due to their high density, the ilmenite-bearing cumulates (IBC) (with or without KREEP) formed during the late-stage lunar magma ocean solidification are thought to sink into the underlying lunar mantle and trigger lunar mantle overturn. Geophysical evidence implied that IBC may descend deep inside the Moon and remain as a partially molten layer at the core-mantle boundary (CMB). However, partial melting may have occurred on the mixed mantle cumulates during the sinking of IBC/KREEP and the silicate melt may be positively buoyant, thus preventing the IBC/KREEP layer from sinking to the CMB. Here, we perform thermodynamic simulation on the stability of lunar mantle cumulates at different depths mixed with different amounts of IBC/KREEP from an updated LMO model. The modeling results suggest that the sinking of IBC/KREEP will cause at least 5 wt% partial melting in the shallow (~ 120 km) and a much larger degree of partial melting in the deep lunar mantle (~ 420 km). Due to the density contrast with the surrounding mantle, IBC/KREEP-bearing melts could potentially decouple under certain conditions. The modified lunar mantle by sinking of IBC/KREEP can better explain the formation of different kinds of lunar basaltic magma than the primary lunar mantle formed through differentiation of lunar magma ocean. Sinking of IBC/KREEP back into the lunar mantle may introduce plagioclase, clinopyroxene, garnet, and incompatible radioactive elements into the deep lunar mantle, which will further affect the thermal and chemical evolution of the lunar interior.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 5","pages":"856 - 875"},"PeriodicalIF":1.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochemistry and petrogenesis of magnesian high-K granitoids from Bundelkhand Craton, Central India: New insights into crustal evolution 印度中部邦德尔康德克拉通镁质高K花岗岩的地球化学和岩石成因:地壳演化的新见解
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-10 DOI: 10.1007/s11631-024-00717-y
Shailendra K. Prajapati, Meraj Alam, Parashar Mishra, Hemant Kumar

Background

The Bundelkhand Craton is significant for preserving the multiphase granitoids magmatism from Paleoarchean to Neoarchean periods. It consists of a variety of granite rocks, including TTGs, sanukitoids, and high-K granitoids. This study presents geochemical characteristics of high-silica (68.97 wt.%–73.99 wt.%), low-silica (58.73 wt.%–69.94 wt.%), and high K2O (2.77 wt.%–6.16 wt.%) contents of granitoids.

Objective

The data on Bundelkhand Craton's granitic magmatism and geodynamics is not sufficiently robust. Geochemical data from this study will be used to further understand the origin, source, and petrogenesis of granitoid rocks and their implications for the evolution of geodynamics.

Methodology

Twenty-one samples were collected and analyzed for major, trace, and REE elements. Major elements were measured using X-ray fluorescence spectrometry (XRF), and trace and REE elements were analyzed by ICP-MS. Standard procedures from the Geological Survey of India were followed.

Results

The geochemical analysis presents high-silica (68.97-73.99 wt. %), low-silica (58.73-69.94 wt. %), and high K2O (2.77-6.16 wt. %) contents in granitoids, classified as granite-granodiorite. The rocks are calcic to calcalkalic, magnesian, and range from peraluminous to metaluminous composition. REE patterns showed strong LREE enrichment relative to HREEs, with prominent negative Eu anomalies corresponding to earlier plagioclase fractionation. Multi-element patterns revealed negative anomalies in Nb, Sr, P, and Ti and positive anomalies in Pb.

Conclusion

The geochemical signatures attributed to the post-collisional magma generation and continental crustal contamination. The studied rocks show A-type and A2-type lineage, suggesting they originated from the melting of continental crust during transitional/post-collisional tectonic activity. The formation of hybrid granitoids in the Bundelkhand Craton is connected to the fractionation of hybrid magmas in shallow-seated magma chambers during these tectonic processes.

{"title":"Geochemistry and petrogenesis of magnesian high-K granitoids from Bundelkhand Craton, Central India: New insights into crustal evolution","authors":"Shailendra K. Prajapati,&nbsp;Meraj Alam,&nbsp;Parashar Mishra,&nbsp;Hemant Kumar","doi":"10.1007/s11631-024-00717-y","DOIUrl":"10.1007/s11631-024-00717-y","url":null,"abstract":"<div><h3>Background</h3><p>The Bundelkhand Craton is significant for preserving the multiphase granitoids magmatism from Paleoarchean to Neoarchean periods. It consists of a variety of granite rocks, including TTGs, sanukitoids, and high-K granitoids. This study presents geochemical characteristics of high-silica (68.97 wt.%–73.99 wt.%), low-silica (58.73 wt.%–69.94 wt.%), and high K<sub>2</sub>O (2.77 wt.%–6.16 wt.%) contents of granitoids.</p><h3>Objective</h3><p>The data on Bundelkhand Craton's granitic magmatism and geodynamics is not sufficiently robust. Geochemical data from this study will be used to further understand the origin, source, and petrogenesis of granitoid rocks and their implications for the evolution of geodynamics.</p><h3>Methodology</h3><p>Twenty-one samples were collected and analyzed for major, trace, and REE elements. Major elements were measured using X-ray fluorescence spectrometry (XRF), and trace and REE elements were analyzed by ICP-MS. Standard procedures from the Geological Survey of India were followed.</p><h3>Results</h3><p>The geochemical analysis presents high-silica (68.97-73.99 wt. %), low-silica (58.73-69.94 wt. %), and high K2O (2.77-6.16 wt. %) contents in granitoids, classified as granite-granodiorite. The rocks are calcic to calcalkalic, magnesian, and range from peraluminous to metaluminous composition. REE patterns showed strong LREE enrichment relative to HREEs, with prominent negative Eu anomalies corresponding to earlier plagioclase fractionation. Multi-element patterns revealed negative anomalies in Nb, Sr, P, and Ti and positive anomalies in Pb.</p><h3>Conclusion</h3><p>The geochemical signatures attributed to the post-collisional magma generation and continental crustal contamination. The studied rocks show A-type and A2-type lineage, suggesting they originated from the melting of continental crust during transitional/post-collisional tectonic activity. The formation of hybrid granitoids in the Bundelkhand Craton is connected to the fractionation of hybrid magmas in shallow-seated magma chambers during these tectonic processes.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"36 - 58"},"PeriodicalIF":1.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141661514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochemistry and mineral chemistry of granitic rocks from west Wadi El Gemal area, southern Eastern Desert of Egypt: Indicators for highly fractionated syn- to post-collisional Neoproterozoic felsic magmatism 埃及东部沙漠南部 Wadi El Gemal 西部花岗岩的地球化学和矿物化学:高度分馏的同步至碰撞后新元古代长岩岩浆活动的指标
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-05 DOI: 10.1007/s11631-024-00714-1
Hesham Mokhtar, Adel A. Surour, Mokhles K. Azer, Minghua Ren, Amir Said

Leucogranite, pegmatite, and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis. These rocks represent a significant episode of felsic magmatism during the late stage of the Pan-African orogeny in the evolution of the Arabian–Nubian Shield (ANS) during the Late Neoproterozoic. On a petrographic basis, the leucogranite is sometimes garnetiferous and can be distinguished into monzogranite, syenogranite, and alkali feldspar granite. The analyses of muscovite, biotite, garnet, and apatite reveal the magmatic nature of the studied leucogranite. The investigated leucogranite, pegmatite, and aplite are alkali-calcic, calc-alkaline, and peraluminous. The peraluminous nature of these rocks is evidenced by using the chemical analyses of biotite. These studied rocks show a slight enrichment in light rare-earth elements (LREEs) and large-ion lithophile elements (LILE, especially Rb and Th), with an insignificant depletion of heavy rare-earth elements (HREEs). On a geochemical basis, the leucogranite, pegmatite, and aplite in the study area crystallized from multiple-sourced melts that include mafic, metagraywake, and pelitic. They were derived from melts generated at crystallization temperatures around 568–900 °C for leucogranite, 553–781 °C for pegmatite, and 639–779 °C for aplite based on the Zr saturation geothermometers, and at a pressure around 0.39–0.48 GPa, i.e. shallow depth intrusions. The studied felsic rocks have strong negative Eu anomalies, which are very consistent with an upper crust composition, indicating fractionation of feldspar cumulates. Also, they show a moderate La/Sm ratio indicating combined magmatic processes represented by partial melting and fractional crystallization. Integration of whole-rock chemical composition and mineral microanalysis suggests that felsic magmatism in the west Wadi El Gemal area produced voluminous masses of syn- to post-collisional granite, pegmatite, and aplite. An evolutionary three-stage model is presented to understand late magmatism in the ANS in terms of a geodynamic model. Such a model discusses the propagation of felsic magmatism in the ANS during syn-collisional to post-collisional stages.

{"title":"Geochemistry and mineral chemistry of granitic rocks from west Wadi El Gemal area, southern Eastern Desert of Egypt: Indicators for highly fractionated syn- to post-collisional Neoproterozoic felsic magmatism","authors":"Hesham Mokhtar,&nbsp;Adel A. Surour,&nbsp;Mokhles K. Azer,&nbsp;Minghua Ren,&nbsp;Amir Said","doi":"10.1007/s11631-024-00714-1","DOIUrl":"10.1007/s11631-024-00714-1","url":null,"abstract":"<div><p>Leucogranite, pegmatite, and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis. These rocks represent a significant episode of felsic magmatism during the late stage of the Pan-African orogeny in the evolution of the Arabian–Nubian Shield (ANS) during the Late Neoproterozoic. On a petrographic basis, the leucogranite is sometimes garnetiferous and can be distinguished into monzogranite, syenogranite, and alkali feldspar granite. The analyses of muscovite, biotite, garnet, and apatite reveal the magmatic nature of the studied leucogranite. The investigated leucogranite, pegmatite, and aplite are alkali-calcic, calc-alkaline, and peraluminous. The peraluminous nature of these rocks is evidenced by using the chemical analyses of biotite. These studied rocks show a slight enrichment in light rare-earth elements (LREEs) and large-ion lithophile elements (LILE, especially Rb and Th), with an insignificant depletion of heavy rare-earth elements (HREEs). On a geochemical basis, the leucogranite, pegmatite, and aplite in the study area crystallized from multiple-sourced melts that include mafic, metagraywake, and pelitic. They were derived from melts generated at crystallization temperatures around 568–900 °C for leucogranite, 553–781 °C for pegmatite, and 639–779 °C for aplite based on the Zr saturation geothermometers, and at a pressure around 0.39–0.48 GPa, i.e. shallow depth intrusions. The studied felsic rocks have strong negative Eu anomalies, which are very consistent with an upper crust composition, indicating fractionation of feldspar cumulates. Also, they show a moderate La/Sm ratio indicating combined magmatic processes represented by partial melting and fractional crystallization. Integration of whole-rock chemical composition and mineral microanalysis suggests that felsic magmatism in the west Wadi El Gemal area produced voluminous masses of syn- to post-collisional granite, pegmatite, and aplite. An evolutionary three-stage model is presented to understand late magmatism in the ANS in terms of a geodynamic model. Such a model discusses the propagation of felsic magmatism in the ANS during syn-collisional to post-collisional stages.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"163 - 188"},"PeriodicalIF":1.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141673228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fresh insights into the onset of big mantle wedge beneath the North China Craton 对华北克拉通下大地幔楔起始的新认识
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-02 DOI: 10.1007/s11631-024-00716-z
Yingpeng Wang, Xuance Wang, Wen Zhang, Xiaowei Yu, Ligong Wang, Jinhui Wang, Peigang Zhu, Yongbin Wang

The onset of the big mantle wedge (BMW) structure beneath the North China Craton remains debated. Research on the genesis of Late Mesozoic granites associated with gold deposits in the Jiaodong Peninsula above the BMW could provide fresh insights into this question. The monzogranite from the Zhaoxian-Shaling gold district was intruded during 154–148 Ma. This I-type granite has high-K calc-alkaline and metaluminous characteristics. The monzogranite formed at medium temperatures (718–770 °C) and was generated in a thickened lower crust at depths within the stability field of garnet. The monzogranite's high zircon Ce4+/Ce3+ and EuN/EuN* values and low FeOT/MgO ratios, suggest that it formed in a high oxygen environment. Its variable εHf(t) values with TDM2 of 1.93–2.87 Ga imply that it originated from the melting of ancient crust basement, with contributions from mantle-derived materials. The granite's enrichment in LREEs and LILEs, and depletion in HREEs and HFSEs, along with its trace element tectonic discrimination diagrams and medium Sr/Y, indicate an adakite affinity in an active continental margin setting. The transition from S-type granites to I-type granites and finally to A-type granites observed in the eastern part of North China Craton suggests a shift in the tectonic environment from compression to extension. This change is also reflected in the transition from flat subduction to steep subduction. Therefore, the monzogranite was formed in a tectonic transition setting triggered by a change in the subduction angle of the Paleo-Pacific Ocean slab during the Late Jurassic. This event may have marked the initiation of the BMW above the North China Craton.

{"title":"Fresh insights into the onset of big mantle wedge beneath the North China Craton","authors":"Yingpeng Wang,&nbsp;Xuance Wang,&nbsp;Wen Zhang,&nbsp;Xiaowei Yu,&nbsp;Ligong Wang,&nbsp;Jinhui Wang,&nbsp;Peigang Zhu,&nbsp;Yongbin Wang","doi":"10.1007/s11631-024-00716-z","DOIUrl":"10.1007/s11631-024-00716-z","url":null,"abstract":"<div><p>The onset of the big mantle wedge (BMW) structure beneath the North China Craton remains debated. Research on the genesis of Late Mesozoic granites associated with gold deposits in the Jiaodong Peninsula above the BMW could provide fresh insights into this question. The monzogranite from the Zhaoxian-Shaling gold district was intruded during 154–148 Ma. This I-type granite has high-K calc-alkaline and metaluminous characteristics. The monzogranite formed at medium temperatures (718–770 °C) and was generated in a thickened lower crust at depths within the stability field of garnet. The monzogranite's high zircon Ce<sup>4+</sup>/Ce<sup>3+</sup> and Eu<sub>N</sub>/Eu<sub>N</sub>* values and low FeO<sup>T</sup>/MgO ratios, suggest that it formed in a high oxygen environment. Its variable ε<sub>Hf</sub>(t) values with T<sub>DM2</sub> of 1.93–2.87 Ga imply that it originated from the melting of ancient crust basement, with contributions from mantle-derived materials. The granite's enrichment in LREEs and LILEs, and depletion in HREEs and HFSEs, along with its trace element tectonic discrimination diagrams and medium Sr/Y, indicate an adakite affinity in an active continental margin setting. The transition from S-type granites to I-type granites and finally to A-type granites observed in the eastern part of North China Craton suggests a shift in the tectonic environment from compression to extension. This change is also reflected in the transition from flat subduction to steep subduction. Therefore, the monzogranite was formed in a tectonic transition setting triggered by a change in the subduction angle of the Paleo-Pacific Ocean slab during the Late Jurassic. This event may have marked the initiation of the BMW above the North China Craton.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"145 - 162"},"PeriodicalIF":1.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141687288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineralogical and geochemical characterization of the Wadi Natash volcanic field (WNVF), Egypt: Alkaline magmatism in a Late Cretaceous continental rift system 埃及瓦迪纳塔什火山场(WNVF)的矿物学和地球化学特征:晚白垩世大陆裂谷系统中的碱性岩浆活动
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-27 DOI: 10.1007/s11631-024-00702-5
Adel A. Surour, Ahmed A. Madani, Mohamed A. El-Sharkawi

The Wadi Natash volcanic field (WNVF) in the south of the Eastern Desert of Egypt is a typical example of well-preserved intraplate alkaline magmatism during the Late Cretaceous, i.e., prior to the Oligo-Miocene Red Sea rift. We compiled stratigraphic sections at two sectors; namely East Gabal Nuqra and West Khashm Natash (WKN) where the volcanic flows are intercalated with the Turonian Abu Agag sandstone with occasional paleosols when volcanic activity is intermittent. Peridotite mantle xenoliths are encountered in the first sector whereas flows in the second sector are interrupted by trachyte plugs and ring dykes. On a geochemical basis, the mafic melt originating from the lithospheric mantle beneath the WNVF practiced ~ 5% partial melting of phlogopite-bearing garnet peridotite. Basalts dominate in the two sectors and highly evolved (silicic) rocks are confined to the WKN sector. Rejuvenation of ancient Precambrian fractures following the NW–SE and ENE-WSW trends facilitated the ascend of Late Cretaceous mantle-derived alkaline magma. Structurally, the WNVF developed at the eastern shoulder of the so-called “Kom Ombo-Nuqra-Kharit rift system” that represents a well-defined NW-trending intracontinental rift basin in the southern Eastern Desert. In such a structural setup, the Natash volcanic are confined to half-grabens at the East Gabal Nuqra sector whereas the West Khashm Natash sector is subjected to extensional stresses that propagated eastwards. The WNVF is a typical example of fluvial clastics (Turonian) intercalation with rift-related alkaline volcanic rocks in northeast Africa.

埃及东部沙漠南部的瓦迪纳塔什火山区(WNVF)是晚白垩世(即中新世红海断裂之前)板块内碱性岩浆活动保存完好的典型例子。我们编制了两个地段的地层剖面图,即东加巴勒努克拉(East Gabal Nuqra)和西卡什姆纳塔什(West Khashm Natash,WKN),在这两个地段,火山流与都元古代阿布阿加格砂岩夹杂在一起,火山活动间歇时偶尔会出现古溶胶。在第一区段发现了橄榄岩地幔异长岩,而第二区段的火山流则被梯田岩塞和环堤打断。从地球化学的角度来看,源自WNVF下方岩石圈地幔的黑云母熔体部分熔化了约5%的含辉绿岩的石榴石橄榄岩。玄武岩在这两个地段占主导地位,而高度演化(硅质)岩石则仅限于西九龙北地段。前寒武纪古老断裂沿着西北-东南和东北-西南走向重新焕发活力,促进了晚白垩世地幔碱性岩浆的上升。从构造上看,WNVF 位于所谓的 "Kom Ombo-Nuqra-Kharit 裂谷系统 "的东肩,该裂谷系统代表了东部沙漠南部一个明确的西北走向大陆内裂谷盆地。在这种结构设置中,纳塔什火山仅限于东加巴尔努克拉地段的半堑壕,而西喀什姆纳塔什地段则受到向东传播的伸展应力作用。WNVF是非洲东北部河流碎屑岩(都龙纪)与裂谷相关碱性火山岩交错的典型例子。
{"title":"Mineralogical and geochemical characterization of the Wadi Natash volcanic field (WNVF), Egypt: Alkaline magmatism in a Late Cretaceous continental rift system","authors":"Adel A. Surour,&nbsp;Ahmed A. Madani,&nbsp;Mohamed A. El-Sharkawi","doi":"10.1007/s11631-024-00702-5","DOIUrl":"10.1007/s11631-024-00702-5","url":null,"abstract":"<div><p>The Wadi Natash volcanic field (WNVF) in the south of the Eastern Desert of Egypt is a typical example of well-preserved intraplate alkaline magmatism during the Late Cretaceous, i.e., prior to the Oligo-Miocene Red Sea rift. We compiled stratigraphic sections at two sectors; namely East Gabal Nuqra and West Khashm Natash (WKN) where the volcanic flows are intercalated with the Turonian Abu Agag sandstone with occasional paleosols when volcanic activity is intermittent. Peridotite mantle xenoliths are encountered in the first sector whereas flows in the second sector are interrupted by trachyte plugs and ring dykes. On a geochemical basis, the mafic melt originating from the lithospheric mantle beneath the WNVF practiced ~ 5% partial melting of phlogopite-bearing garnet peridotite. Basalts dominate in the two sectors and highly evolved (silicic) rocks are confined to the WKN sector. Rejuvenation of ancient Precambrian fractures following the NW–SE and ENE-WSW trends facilitated the ascend of Late Cretaceous mantle-derived alkaline magma. Structurally, the WNVF developed at the eastern shoulder of the so-called “Kom Ombo-Nuqra-Kharit rift system” that represents a well-defined NW-trending intracontinental rift basin in the southern Eastern Desert. In such a structural setup, the Natash volcanic are confined to half-grabens at the East Gabal Nuqra sector whereas the West Khashm Natash sector is subjected to extensional stresses that propagated eastwards. The WNVF is a typical example of fluvial clastics (Turonian) intercalation with rift-related alkaline volcanic rocks in northeast Africa.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 6","pages":"1169 - 1191"},"PeriodicalIF":1.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochemistry of Neoproterozoic metavolcanic rocks from the Tahtai Logomiti area, Tigrai, Northern Ethiopia: Implication for petrogenesis and tectonic settings
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-26 DOI: 10.1007/s11631-024-00712-3
Azeb Gebremicale, Mulugeta Alene, Teklay Gidey

The Tahtai Logomiti area is characterized by metavolcanic and metavolcaniclastic interbedded with clastic and carbonate metasedimentary rocks of Neoproterozoic age. New geological, petrographic, major, and trace elements data were used to evaluate the metamorphism, petrogenesis, and paleo-tectonic setting of the area. The field and petrographic observation indicate that the area has undergone greenschist facies metamorphism. Based on mineralogy and geochemical attributes, these metavolcanic rocks are classified as basalt, basaltic-andesite, andesite, and dacite. The moderate degrees of light rare earth element (LREE) enrichment, flat heavy rare earth element (HREE) pattern, and low Nb/Y ratio, represent shallow mantle sources. In addition to that, the TiO2/Yb vs. Nb/Yb diagram, high (La/Yb)N ratio (> 3.44), indicates shallow melting and depleted magma sources. However, the high ratios of (Th/Ta) > 3.8, (La/Ta) > 38, and low ratios of (Th/La) < 1, (Nb/La) < 1, and high Pb content would indicate crustal contamination of the magma. The discrimination diagram and trace element ratios (Nb/Y, La/Sc, La/Y, and La/Th) indicate that the metavolcanic rocks have a calc-alkaline affinity. In addition, the Zr-Nb-Y and Th-Hf-Ta plots show that the rocks formed under a volcanic-arc setting. The general petrological and geochemical characteristics of the Tahtai Logomiti metavolcanic rocks suggest that the area is associated with subduction-related arc accretion of the Arabian Nubian Shield.

{"title":"Geochemistry of Neoproterozoic metavolcanic rocks from the Tahtai Logomiti area, Tigrai, Northern Ethiopia: Implication for petrogenesis and tectonic settings","authors":"Azeb Gebremicale,&nbsp;Mulugeta Alene,&nbsp;Teklay Gidey","doi":"10.1007/s11631-024-00712-3","DOIUrl":"10.1007/s11631-024-00712-3","url":null,"abstract":"<div><p>The Tahtai Logomiti area is characterized by metavolcanic and metavolcaniclastic interbedded with clastic and carbonate metasedimentary rocks of Neoproterozoic age. New geological, petrographic, major, and trace elements data were used to evaluate the metamorphism, petrogenesis, and paleo-tectonic setting of the area. The field and petrographic observation indicate that the area has undergone greenschist facies metamorphism. Based on mineralogy and geochemical attributes, these metavolcanic rocks are classified as basalt, basaltic-andesite, andesite, and dacite. The moderate degrees of light rare earth element (LREE) enrichment, flat heavy rare earth element (HREE) pattern, and low Nb/Y ratio, represent shallow mantle sources. In addition to that, the TiO<sub>2</sub>/Yb vs. Nb/Yb diagram, high (La/Yb)N ratio (&gt; 3.44), indicates shallow melting and depleted magma sources. However, the high ratios of (Th/Ta) &gt; 3.8, (La/Ta) &gt; 38, and low ratios of (Th/La) &lt; 1, (Nb/La) &lt; 1, and high Pb content would indicate crustal contamination of the magma. The discrimination diagram and trace element ratios (Nb/Y, La/Sc, La/Y, and La/Th) indicate that the metavolcanic rocks have a calc-alkaline affinity. In addition, the Zr-Nb-Y and Th-Hf-Ta plots show that the rocks formed under a volcanic-arc setting. The general petrological and geochemical characteristics of the Tahtai Logomiti metavolcanic rocks suggest that the area is associated with subduction-related arc accretion of the Arabian Nubian Shield.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"128 - 144"},"PeriodicalIF":1.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the impact of climate change on dissolved oxygen using a flow field ecosystem model that takes into account the anaerobic and aerobic environment of bottom sediments
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-26 DOI: 10.1007/s11631-024-00711-4
Jinichi Koue

This study examines the potential impacts of climate change on Lake Biwa, Japan’s largest freshwater lake, with a focus on temperature, wind speed, and precipitation variations. Leveraging data from the IPCC Sixth Assessment Report, including CCP scenarios, projecting a significant temperature rise of 3.3–5.7 °C in the case of very high GHG emission power, the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa. Through a one-dimensional model incorporating sediment redox reactions, various scenarios where air temperature and wind speed are changed are simulated. It is revealed that a 5 °C increase in air temperature leads to decreasing 1–2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer, while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen levels. Moreover, doubling wind speed enhances surface layer oxygen but diminishes it in deeper layers due to increased mixing. Seasonal variations in wind effects are noted, with significant surface layer oxygen increases from 0.4 to 0.8 mg/L during summer to autumn, increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertical mixing. This phenomenon impacts the lake’s oxygen cycle year-round. In contrast, precipitation changes show limited impact on oxygen levels, suggesting minor influence compared to other meteorological factors. The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors for accurate predictions of future water conditions. A holistic approach integrating nutrient levels, water temperature, and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources, particularly in addressing precipitation variations.

{"title":"Assessing the impact of climate change on dissolved oxygen using a flow field ecosystem model that takes into account the anaerobic and aerobic environment of bottom sediments","authors":"Jinichi Koue","doi":"10.1007/s11631-024-00711-4","DOIUrl":"10.1007/s11631-024-00711-4","url":null,"abstract":"<div><p>This study examines the potential impacts of climate change on Lake Biwa, Japan’s largest freshwater lake, with a focus on temperature, wind speed, and precipitation variations. Leveraging data from the IPCC Sixth Assessment Report, including CCP scenarios, projecting a significant temperature rise of 3.3–5.7 °C in the case of very high GHG emission power, the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa. Through a one-dimensional model incorporating sediment redox reactions, various scenarios where air temperature and wind speed are changed are simulated. It is revealed that a 5 °C increase in air temperature leads to decreasing 1–2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer, while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen levels. Moreover, doubling wind speed enhances surface layer oxygen but diminishes it in deeper layers due to increased mixing. Seasonal variations in wind effects are noted, with significant surface layer oxygen increases from 0.4 to 0.8 mg/L during summer to autumn, increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertical mixing. This phenomenon impacts the lake’s oxygen cycle year-round. In contrast, precipitation changes show limited impact on oxygen levels, suggesting minor influence compared to other meteorological factors. The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors for accurate predictions of future water conditions. A holistic approach integrating nutrient levels, water temperature, and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources, particularly in addressing precipitation variations.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"11 - 22"},"PeriodicalIF":1.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11631-024-00711-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Petrogenesis of late Cretaceous high Ba–Sr granodiorites, SE Lhasa block, China: implications for the reworking of juvenile crust and continental growth
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-23 DOI: 10.1007/s11631-024-00708-z
Li-Hang Lin, Ren-Zhi Zhu, Shao-Cong Lai, Jiang-Feng Qin, Yu Zhu, Shao-Wei Zhao, Min Liu

The high Ba–Sr rocks can provide significant clues about the evolution of the continent lithosphere, but their petrogenesis remains controversial. Identifying the Late Cretaceous high Ba–Sr granodiorites in the SE Lhasa Block could potentially provide valuable insights into the continent evolution of the Qinghai-Tibet Plateau. Zircon U–Pb ages suggest that the granodiorites were emplaced at 87.32 ± 0.43 Ma. Geochemically, the high Ba–Sr granodiorites are characterized by elevated K2O + Na2O contents (8.18–8.73 wt%) and K2O/Na2O ratios (0.99–1.25, mostly > 1), and belong to high-K calc-alkaline to shoshonitic series. The Yonglaga granodiorites show notably high Sr (653–783 ppm) and Ba (1346–1531 ppm) contents, plus high Sr/Y (30.92–38.18) and (La/Yb)N (27.7–34.7) ratios, but low Y (20.0–22.8 ppm) and Yb (1.92–2.19 ppm) contents with absence of negative Eu anomalies (δEu = 0.83–0.88), all similar to typical high Ba–Sr granitoids. The variable zircon εHf(t) values of − 4.58 to + 12.97, elevated initial 87Sr/86Sr isotopic ratios of 0.707254 to 0.707322 and low εNd(t) values of − 2.8 to − 3.6 with decoupling from the Hf system suggest that a metasomatized mantle source included significant recycled ancient materials. The occurrence of such high Ba–Sr intrusions indicates previous contributions of metasomatized mantle-derived juvenile material to the continents, which imply the growth of continental crust during the Late Cretaceous in the SE Lhasa. Together with regional data, we infer that the underplated mafic magma provides a significant amount of heat, which leads to partial melting of the juvenile crust. The melting of the metasomatized mantle could produce a juvenile mafic lower crust, from which the high Ba–Sr granitoids were derived from reworking of previous mafic crust during the Late Cretaceous (ca. 100–80 Ma) in the SE Lhasa.

{"title":"Petrogenesis of late Cretaceous high Ba–Sr granodiorites, SE Lhasa block, China: implications for the reworking of juvenile crust and continental growth","authors":"Li-Hang Lin,&nbsp;Ren-Zhi Zhu,&nbsp;Shao-Cong Lai,&nbsp;Jiang-Feng Qin,&nbsp;Yu Zhu,&nbsp;Shao-Wei Zhao,&nbsp;Min Liu","doi":"10.1007/s11631-024-00708-z","DOIUrl":"10.1007/s11631-024-00708-z","url":null,"abstract":"<div><p>The high Ba–Sr rocks can provide significant clues about the evolution of the continent lithosphere, but their petrogenesis remains controversial. Identifying the Late Cretaceous high Ba–Sr granodiorites in the SE Lhasa Block could potentially provide valuable insights into the continent evolution of the Qinghai-Tibet Plateau. Zircon U–Pb ages suggest that the granodiorites were emplaced at 87.32 ± 0.43 Ma. Geochemically, the high Ba–Sr granodiorites are characterized by elevated K<sub>2</sub>O + Na<sub>2</sub>O contents (8.18–8.73 wt%) and K<sub>2</sub>O/Na<sub>2</sub>O ratios (0.99–1.25, mostly &gt; 1), and belong to high-K calc-alkaline to shoshonitic series. The Yonglaga granodiorites show notably high Sr (653–783 ppm) and Ba (1346–1531 ppm) contents, plus high Sr/Y (30.92–38.18) and (La/Yb)<sub>N</sub> (27.7–34.7) ratios, but low Y (20.0–22.8 ppm) and Yb (1.92–2.19 ppm) contents with absence of negative Eu anomalies (δEu = 0.83–0.88), all similar to typical high Ba–Sr granitoids. The variable zircon <i>ε</i>Hf(<i>t</i>) values of − 4.58 to + 12.97, elevated initial <sup>87</sup>Sr/<sup>86</sup>Sr isotopic ratios of 0.707254 to 0.707322 and low <i>ε</i>Nd(<i>t</i>) values of − 2.8 to − 3.6 with decoupling from the Hf system suggest that a metasomatized mantle source included significant recycled ancient materials. The occurrence of such high Ba–Sr intrusions indicates previous contributions of metasomatized mantle-derived juvenile material to the continents, which imply the growth of continental crust during the Late Cretaceous in the SE Lhasa. Together with regional data, we infer that the underplated mafic magma provides a significant amount of heat, which leads to partial melting of the juvenile crust. The melting of the metasomatized mantle could produce a juvenile mafic lower crust, from which the high Ba–Sr granitoids were derived from reworking of previous mafic crust during the Late Cretaceous (ca. 100–80 Ma) in the SE Lhasa.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"44 1","pages":"86 - 111"},"PeriodicalIF":1.4,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Nb–Ta mineralization processes: Insight from quartz textural and chemical characteristics in the Songshugang deposit, Jiangxi Province, South China 揭示铌钽矿化过程:从中国南方江西省松树岗矿床的石英纹理和化学特征中获得启示
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-22 DOI: 10.1007/s11631-024-00705-2
Hengsong Zhang, Shaohao Zou, Xilian Chen, Deru Xu, Zhilin Wang, Yongwen Zhang, Hua Wang
<div><p>The Songshugang deposit is a large Ta–Nb deposit in South China, with Ta–Nb mineralization associated genetically with the granite and pegmatite. A diversity of quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite at Songshugang was studied by CL and LA–ICP–MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits. Cathodoluminescence image illuminates a canvas of complexity, the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, exhibits numerous dark CL streaks, patches, and a series of healed fractures. These textures suggest that the rocks were fractured because of deep crustal pressure, and underwent later hydrothermal metasomatism and quartz filling. The quartz from quartz–fluorite pegmatite present limited patches or fractures but distinct growth bands, indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less affected by mechanical fragmentation. The LA–ICP–MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, to quartz–fluorite pegmatite, indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li. However, our data deviate from the theoretical Li:Al mass ratio of ~ 1:3.89 in quartz, indicating that there may be competition between H<sup>+</sup> and Li in a water-rich magmatic environment. The quartz from topaz–albite granite is enriched in K and Na elements, and the quartz from quartz–fluorite pegmatite is enriched in fluorite with a low Ca content in quartz, further elucidating that these rocks were subjected to hydrothermal metasomatism. From topaz–albitite granite to quartz–fluorite pegmatite, Al, Li and Ge content and Al/Ti, Ge/Ti, Sb/Ti ratios in quartz gradually increased, but Ti content gradually decreased, reflecting the high evolution of magma, which can enrich rare metal elements. Based on the characteristics of quartz CL textures and trace elements in topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, combined with the albitization and K-feldspathization of rocks, it is suggested that the Nb–Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism. By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world, the Songshugang pegmatite share similarities with the LCT-type pegmatite. Combined with previous studies, the Ge/Ti > 0.1 and Ti < 10 ppm, as well as Al, Li, Ge, Sb, K, Na contents and Al/Ti, Sb/Ti ratios in quartz have the potential to be a powerful exploration marker fo
松树岗矿床是中国南方的一个大型钽-铌矿床,其钽-铌矿化与花岗岩和伟晶岩有遗传关联。我们通过 CL 和 LA-ICP-MS 对松树岗黄玉-橄榄石花岗岩、石英-云母伟晶岩、石英-长石伟晶岩和石英-萤石伟晶岩中的多种石英进行了研究,以确定铌和钽的富集机制,并为稀有金属矿床寻找石英的地球化学指标。阴极荧光图像照亮了一幅复杂的画卷,来自黄玉-绿帘石花岗岩、石英-云母伟晶岩、石英-长石伟晶岩和石英-萤石伟晶岩的石英呈现出大量深色 CL 条纹、斑块和一系列愈合裂隙。这些纹理表明,这些岩石是在地壳深部压力作用下断裂的,后来经历了热液变质作用和石英充填作用。石英-萤石伟晶岩中的石英呈现有限的斑块或断裂,但有明显的生长带,表明在这一阶段石英形成过程中熔融流体成分变化很大,受机械破碎的影响较小。石英的 LA-ICP-MS 分析表明,从黄玉-橄榄石花岗岩、石英-云母伟晶岩、石英-长石伟晶岩到石英-萤石伟晶岩,石英中的 Al 与 Li 呈正相关,表明 Al 主要是通过电荷补偿置换机制与 Li 一起进入石英晶格的。然而,我们的数据偏离了石英中 Li:Al 的理论质量比 ~ 1:3.89,表明在富水岩浆环境中 H+ 和 Li 之间可能存在竞争。黄玉-橄榄石花岗岩中的石英富含K和Na元素,石英-萤石伟晶岩中的石英富含萤石,而石英中的Ca含量较低,这进一步阐明了这些岩石经历了热液变质作用。从黄玉-阿尔卑斯花岗岩到石英-萤石伟晶岩,石英中Al、Li、Ge含量及Al/Ti、Ge/Ti、Sb/Ti比值逐渐增大,但Ti含量逐渐减小,反映了岩浆的高演化,可富集稀有金属元素。根据黄玉-黑云母花岗岩、石英-云母伟晶岩、石英-长石伟晶岩、石英-萤石伟晶岩中石英CL纹理和微量元素的特征,结合岩石的白化和K长石化,认为松树岗铌钽矿化可能受到岩浆结晶分异和流体变质作用的共同影响。通过将松树岗岩浆岩中的石英与世界公认的花岗岩型和伟晶岩型稀有金属矿床中的石英进行对比,发现松树岗伟晶岩与LCT型伟晶岩有相似之处。结合以往的研究,石英中的Ge/Ti > 0.1和Ti < 10 ppm以及Al、Li、Ge、Sb、K、Na含量和Al/Ti、Sb/Ti比值有可能成为在其他地方识别花岗岩型伟晶岩铌钽矿床的有力勘探标志。
{"title":"Unveiling Nb–Ta mineralization processes: Insight from quartz textural and chemical characteristics in the Songshugang deposit, Jiangxi Province, South China","authors":"Hengsong Zhang,&nbsp;Shaohao Zou,&nbsp;Xilian Chen,&nbsp;Deru Xu,&nbsp;Zhilin Wang,&nbsp;Yongwen Zhang,&nbsp;Hua Wang","doi":"10.1007/s11631-024-00705-2","DOIUrl":"10.1007/s11631-024-00705-2","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The Songshugang deposit is a large Ta–Nb deposit in South China, with Ta–Nb mineralization associated genetically with the granite and pegmatite. A diversity of quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite at Songshugang was studied by CL and LA–ICP–MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits. Cathodoluminescence image illuminates a canvas of complexity, the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, exhibits numerous dark CL streaks, patches, and a series of healed fractures. These textures suggest that the rocks were fractured because of deep crustal pressure, and underwent later hydrothermal metasomatism and quartz filling. The quartz from quartz–fluorite pegmatite present limited patches or fractures but distinct growth bands, indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less affected by mechanical fragmentation. The LA–ICP–MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, to quartz–fluorite pegmatite, indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li. However, our data deviate from the theoretical Li:Al mass ratio of ~ 1:3.89 in quartz, indicating that there may be competition between H&lt;sup&gt;+&lt;/sup&gt; and Li in a water-rich magmatic environment. The quartz from topaz–albite granite is enriched in K and Na elements, and the quartz from quartz–fluorite pegmatite is enriched in fluorite with a low Ca content in quartz, further elucidating that these rocks were subjected to hydrothermal metasomatism. From topaz–albitite granite to quartz–fluorite pegmatite, Al, Li and Ge content and Al/Ti, Ge/Ti, Sb/Ti ratios in quartz gradually increased, but Ti content gradually decreased, reflecting the high evolution of magma, which can enrich rare metal elements. Based on the characteristics of quartz CL textures and trace elements in topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, combined with the albitization and K-feldspathization of rocks, it is suggested that the Nb–Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism. By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world, the Songshugang pegmatite share similarities with the LCT-type pegmatite. Combined with previous studies, the Ge/Ti &gt; 0.1 and Ti &lt; 10 ppm, as well as Al, Li, Ge, Sb, K, Na contents and Al/Ti, Sb/Ti ratios in quartz have the potential to be a powerful exploration marker fo","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 4","pages":"737 - 753"},"PeriodicalIF":1.4,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Geochimica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1