Pub Date : 2024-11-15DOI: 10.1021/accountsmr.4c00148
Xiaofeng Huang, Binghui Wu, Nanfeng Zheng
Over the past decade, solution-processed organic–inorganic hybrid perovskite solar cells (PSCs) have emerged as a viable alternative to traditional crystalline silicon photovoltaics, with power conversion efficiency (PCE) increasing notably from 3.8% to over 26%. This remarkable advancement is attributed to the unique band structures and exceptional defect tolerance of the hybrid perovskites. The bandgaps in perovskites derive from their antibonding orbitals at both the valence band maximum and conduction band minimum. Consequently, bond breaking creates states away from the bandgap, resulting in either shallow defects or states within the valence band. Despite defect densities up to 10<sup>6</sup> times higher than single-crystal silicon, polycrystalline perovskite films (<1 μm thick) can still achieve comparable device performance due to their high defect tolerance. Superior photovoltaic performance in perovskite films depends on an efficient wet-chemical process, offering a notable advantage over silicon-based photovoltaic technology. Evidently, solvent characteristics and their potential interaction with perovskites significantly impact crystal growth from precursor inks, subsequent polycrystalline film quality, and the ultimate performance of devices. Understanding solvent properties in relation to film formation processes is essential for informing solvent selection in the emerging perovskite photovoltaics and its future commercialization. In this Account, we present a thorough analysis of solution-processed perovskite films, encompassing the crystallization process and phase transition of perovskite-related solvated complexes, and structure passivation of perovskite phase. We systematically categorize the prevalent solvents utilized in film preparation and outline a solvent roadmap for producing high-quality perovskite films from a chemical perspective, considering their interaction with the perovskite structure. We also address often-overlooked factors in solvent selection in current research. First, middle-polarity dispersion solvents fundamentally govern nucleation and growth kinetics of perovskite solvated films in the solution phase, thereby significantly shaping film morphology. However, control over the solvation interaction between dispersion solvent and perovskite structure for morphology regulation remains insufficient. Second, high-polarity binding solvents interact with the perovskite structure via solvent-involved intermediates, optimizing crystallization kinetics in the solution phase (sol–gel state) and controlling phase-transition kinetics of the intermediate phase. This interaction influences the crystal and structural properties of the resultant perovskite phase though managing the intermediate phase remains challenging. Third, low-polarity modification solvents, combined with functional passivation molecules, are employed to modulate interface energetics of perovskite films by enabling both chemical defect passivation
{"title":"Optimizing Solvent Chemistry for High-Quality Halide Perovskite Films","authors":"Xiaofeng Huang, Binghui Wu, Nanfeng Zheng","doi":"10.1021/accountsmr.4c00148","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00148","url":null,"abstract":"Over the past decade, solution-processed organic–inorganic hybrid perovskite solar cells (PSCs) have emerged as a viable alternative to traditional crystalline silicon photovoltaics, with power conversion efficiency (PCE) increasing notably from 3.8% to over 26%. This remarkable advancement is attributed to the unique band structures and exceptional defect tolerance of the hybrid perovskites. The bandgaps in perovskites derive from their antibonding orbitals at both the valence band maximum and conduction band minimum. Consequently, bond breaking creates states away from the bandgap, resulting in either shallow defects or states within the valence band. Despite defect densities up to 10<sup>6</sup> times higher than single-crystal silicon, polycrystalline perovskite films (<1 μm thick) can still achieve comparable device performance due to their high defect tolerance. Superior photovoltaic performance in perovskite films depends on an efficient wet-chemical process, offering a notable advantage over silicon-based photovoltaic technology. Evidently, solvent characteristics and their potential interaction with perovskites significantly impact crystal growth from precursor inks, subsequent polycrystalline film quality, and the ultimate performance of devices. Understanding solvent properties in relation to film formation processes is essential for informing solvent selection in the emerging perovskite photovoltaics and its future commercialization. In this Account, we present a thorough analysis of solution-processed perovskite films, encompassing the crystallization process and phase transition of perovskite-related solvated complexes, and structure passivation of perovskite phase. We systematically categorize the prevalent solvents utilized in film preparation and outline a solvent roadmap for producing high-quality perovskite films from a chemical perspective, considering their interaction with the perovskite structure. We also address often-overlooked factors in solvent selection in current research. First, middle-polarity dispersion solvents fundamentally govern nucleation and growth kinetics of perovskite solvated films in the solution phase, thereby significantly shaping film morphology. However, control over the solvation interaction between dispersion solvent and perovskite structure for morphology regulation remains insufficient. Second, high-polarity binding solvents interact with the perovskite structure via solvent-involved intermediates, optimizing crystallization kinetics in the solution phase (sol–gel state) and controlling phase-transition kinetics of the intermediate phase. This interaction influences the crystal and structural properties of the resultant perovskite phase though managing the intermediate phase remains challenging. Third, low-polarity modification solvents, combined with functional passivation molecules, are employed to modulate interface energetics of perovskite films by enabling both chemical defect passivation","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/accountsmr.4c0016710.1021/accountsmr.4c00167
Shang-Qi Li, Jia-Ning Yang, Kai-Xue Wang* and Jie-Sheng Chen*,
<p >Developing high energy density, low-cost, and safe batteries remains a constant challenge that not only drives technological innovation but also holds the potential to transform human lifestyles. Although lithium-ion batteries have been widely adopted, their theoretical energy density is nearing its limit. Consequently, there is an urgent need to explore and investigate other battery systems with higher power capacities to propel technological advancements in this field. In this context, metal–oxygen batteries have attracted considerable interest because of their exceptionally high theoretical energy densities. Among the various metal–oxygen batteries, lithium–oxygen (Li–O<sub>2</sub>) batteries stand out for their highest thermodynamic equilibrium potential (∼2.96 V) and greatest theoretical specific energy (∼3500 Wh kg<sup>–1</sup>), positioning them as a promising avenue for future energy storage advancements. Over the past few decades, global scientists have conducted extensive research into the electrochemical reaction mechanisms, material sciences, and system designs of Li–O<sub>2</sub> batteries (LOBs), achieving numerous significant breakthroughs. Despite these remarkable advancements, research on LOBs is still in its infancy, confronting numerous unresolved critical issues. First, the deposition of Li<sub>2</sub>O<sub>2</sub> on the electrode surface severely hinders further electrochemical reactions, resulting in actual discharge capacities that are far below theoretical values. Second, the kinetics of the oxygen electrode reactions are relatively slow, failing to meet high power demands and inducing severe polarization phenomena, which significantly reduces energy efficiency. Last, byproducts generated during the charge/discharge process lead to the degradation of electrode materials and electrolytes, markedly shortening the cycle life of the battery. The rational design of efficient and durable catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is considered one of the most effective strategies for overcoming the aforementioned obstacles. In this Account, we summarize the major electronic modulation strategies for developing efficient cathode catalysts, including structural design, composite material construction, surface and interface engineering, and heteroatom doping. First, specific methods to enhance catalyst performance through optimizing material morphology and structural design are discussed. Then, the construction of composite materials is presented to highlight the synergistic effects of various components in improving battery performance. Next, surface and interface engineering, which could regulate charge transfer and reaction activity, is outlined. Finally, the function of heteroatom doping in enhancing catalytic activity and stability by modifying the electronic structure of catalysts is summarized. Building on the optimization of the performance and reliability of each component i
{"title":"Optimization Strategies for Cathode Materials in Lithium–Oxygen Batteries","authors":"Shang-Qi Li, Jia-Ning Yang, Kai-Xue Wang* and Jie-Sheng Chen*, ","doi":"10.1021/accountsmr.4c0016710.1021/accountsmr.4c00167","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00167https://doi.org/10.1021/accountsmr.4c00167","url":null,"abstract":"<p >Developing high energy density, low-cost, and safe batteries remains a constant challenge that not only drives technological innovation but also holds the potential to transform human lifestyles. Although lithium-ion batteries have been widely adopted, their theoretical energy density is nearing its limit. Consequently, there is an urgent need to explore and investigate other battery systems with higher power capacities to propel technological advancements in this field. In this context, metal–oxygen batteries have attracted considerable interest because of their exceptionally high theoretical energy densities. Among the various metal–oxygen batteries, lithium–oxygen (Li–O<sub>2</sub>) batteries stand out for their highest thermodynamic equilibrium potential (∼2.96 V) and greatest theoretical specific energy (∼3500 Wh kg<sup>–1</sup>), positioning them as a promising avenue for future energy storage advancements. Over the past few decades, global scientists have conducted extensive research into the electrochemical reaction mechanisms, material sciences, and system designs of Li–O<sub>2</sub> batteries (LOBs), achieving numerous significant breakthroughs. Despite these remarkable advancements, research on LOBs is still in its infancy, confronting numerous unresolved critical issues. First, the deposition of Li<sub>2</sub>O<sub>2</sub> on the electrode surface severely hinders further electrochemical reactions, resulting in actual discharge capacities that are far below theoretical values. Second, the kinetics of the oxygen electrode reactions are relatively slow, failing to meet high power demands and inducing severe polarization phenomena, which significantly reduces energy efficiency. Last, byproducts generated during the charge/discharge process lead to the degradation of electrode materials and electrolytes, markedly shortening the cycle life of the battery. The rational design of efficient and durable catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is considered one of the most effective strategies for overcoming the aforementioned obstacles. In this Account, we summarize the major electronic modulation strategies for developing efficient cathode catalysts, including structural design, composite material construction, surface and interface engineering, and heteroatom doping. First, specific methods to enhance catalyst performance through optimizing material morphology and structural design are discussed. Then, the construction of composite materials is presented to highlight the synergistic effects of various components in improving battery performance. Next, surface and interface engineering, which could regulate charge transfer and reaction activity, is outlined. Finally, the function of heteroatom doping in enhancing catalytic activity and stability by modifying the electronic structure of catalysts is summarized. Building on the optimization of the performance and reliability of each component i","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 12","pages":"1496–1506 1496–1506"},"PeriodicalIF":14.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing high energy density, low-cost, and safe batteries remains a constant challenge that not only drives technological innovation but also holds the potential to transform human lifestyles. Although lithium-ion batteries have been widely adopted, their theoretical energy density is nearing its limit. Consequently, there is an urgent need to explore and investigate other battery systems with higher power capacities to propel technological advancements in this field. In this context, metal–oxygen batteries have attracted considerable interest because of their exceptionally high theoretical energy densities. Among the various metal–oxygen batteries, lithium–oxygen (Li–O<sub>2</sub>) batteries stand out for their highest thermodynamic equilibrium potential (∼2.96 V) and greatest theoretical specific energy (∼3500 Wh kg<sup>–1</sup>), positioning them as a promising avenue for future energy storage advancements. Over the past few decades, global scientists have conducted extensive research into the electrochemical reaction mechanisms, material sciences, and system designs of Li–O<sub>2</sub> batteries (LOBs), achieving numerous significant breakthroughs. Despite these remarkable advancements, research on LOBs is still in its infancy, confronting numerous unresolved critical issues. First, the deposition of Li<sub>2</sub>O<sub>2</sub> on the electrode surface severely hinders further electrochemical reactions, resulting in actual discharge capacities that are far below theoretical values. Second, the kinetics of the oxygen electrode reactions are relatively slow, failing to meet high power demands and inducing severe polarization phenomena, which significantly reduces energy efficiency. Last, byproducts generated during the charge/discharge process lead to the degradation of electrode materials and electrolytes, markedly shortening the cycle life of the battery. The rational design of efficient and durable catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is considered one of the most effective strategies for overcoming the aforementioned obstacles. In this Account, we summarize the major electronic modulation strategies for developing efficient cathode catalysts, including structural design, composite material construction, surface and interface engineering, and heteroatom doping. First, specific methods to enhance catalyst performance through optimizing material morphology and structural design are discussed. Then, the construction of composite materials is presented to highlight the synergistic effects of various components in improving battery performance. Next, surface and interface engineering, which could regulate charge transfer and reaction activity, is outlined. Finally, the function of heteroatom doping in enhancing catalytic activity and stability by modifying the electronic structure of catalysts is summarized. Building on the optimization of the performance and reliability of each component in LOB
{"title":"Optimization Strategies for Cathode Materials in Lithium–Oxygen Batteries","authors":"Shang-Qi Li, Jia-Ning Yang, Kai-Xue Wang, Jie-Sheng Chen","doi":"10.1021/accountsmr.4c00167","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00167","url":null,"abstract":"Developing high energy density, low-cost, and safe batteries remains a constant challenge that not only drives technological innovation but also holds the potential to transform human lifestyles. Although lithium-ion batteries have been widely adopted, their theoretical energy density is nearing its limit. Consequently, there is an urgent need to explore and investigate other battery systems with higher power capacities to propel technological advancements in this field. In this context, metal–oxygen batteries have attracted considerable interest because of their exceptionally high theoretical energy densities. Among the various metal–oxygen batteries, lithium–oxygen (Li–O<sub>2</sub>) batteries stand out for their highest thermodynamic equilibrium potential (∼2.96 V) and greatest theoretical specific energy (∼3500 Wh kg<sup>–1</sup>), positioning them as a promising avenue for future energy storage advancements. Over the past few decades, global scientists have conducted extensive research into the electrochemical reaction mechanisms, material sciences, and system designs of Li–O<sub>2</sub> batteries (LOBs), achieving numerous significant breakthroughs. Despite these remarkable advancements, research on LOBs is still in its infancy, confronting numerous unresolved critical issues. First, the deposition of Li<sub>2</sub>O<sub>2</sub> on the electrode surface severely hinders further electrochemical reactions, resulting in actual discharge capacities that are far below theoretical values. Second, the kinetics of the oxygen electrode reactions are relatively slow, failing to meet high power demands and inducing severe polarization phenomena, which significantly reduces energy efficiency. Last, byproducts generated during the charge/discharge process lead to the degradation of electrode materials and electrolytes, markedly shortening the cycle life of the battery. The rational design of efficient and durable catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is considered one of the most effective strategies for overcoming the aforementioned obstacles. In this Account, we summarize the major electronic modulation strategies for developing efficient cathode catalysts, including structural design, composite material construction, surface and interface engineering, and heteroatom doping. First, specific methods to enhance catalyst performance through optimizing material morphology and structural design are discussed. Then, the construction of composite materials is presented to highlight the synergistic effects of various components in improving battery performance. Next, surface and interface engineering, which could regulate charge transfer and reaction activity, is outlined. Finally, the function of heteroatom doping in enhancing catalytic activity and stability by modifying the electronic structure of catalysts is summarized. Building on the optimization of the performance and reliability of each component in LOB","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/accountsmr.4c00279
Bing An, Yujie Ma, Xue Han, Martin Schröder, Sihai Yang
Methane (CH4), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH4 has a low energy density of only 36 kJ L–1 under ambient conditions, which is significantly lower than that of gasoline (ca. 34 MJ L–1). The activation and catalytic conversion of CH4 into value-added chemicals [e.g., methanol (CH3OH), which has an energy density of ca. 17 MJ L–1], can effectively lift its energy density. However, this conversion is highly challenging due to the inert nature of CH4, characterized by its strong C–H bonds and high stability. Consequently, the development of efficient materials that can optimize the binding and activation pathway of CH4 with control of product selectivity has attracted considerable recent interest. Metal–organic framework (MOF) materials have emerged as particularly attractive candidates for the development of efficient sorbents and heterogeneous catalysts due to their high porosity, low density, high surface area and structural versatility. These properties enable MOFs to act as effective platforms for the adsorption, binding and catalytic conversion of CH4 into valuable chemicals. Recent reports have highlighted MOFs as promising materials for these applications, leading to new insights into the structure–activity relationships that govern their performance in various systems.
{"title":"Activation and Catalysis of Methane over Metal–Organic Framework Materials","authors":"Bing An, Yujie Ma, Xue Han, Martin Schröder, Sihai Yang","doi":"10.1021/accountsmr.4c00279","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00279","url":null,"abstract":"Methane (CH<sub>4</sub>), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH<sub>4</sub> has a low energy density of only 36 kJ L<sup>–1</sup> under ambient conditions, which is significantly lower than that of gasoline (<i>ca</i>. 34 MJ L<sup>–1</sup>). The activation and catalytic conversion of CH<sub>4</sub> into value-added chemicals [<i>e.g</i>., methanol (CH<sub>3</sub>OH), which has an energy density of <i>ca</i>. 17 MJ L<sup>–1</sup>], can effectively lift its energy density. However, this conversion is highly challenging due to the inert nature of CH<sub>4</sub>, characterized by its strong C–H bonds and high stability. Consequently, the development of efficient materials that can optimize the binding and activation pathway of CH<sub>4</sub> with control of product selectivity has attracted considerable recent interest. Metal–organic framework (MOF) materials have emerged as particularly attractive candidates for the development of efficient sorbents and heterogeneous catalysts due to their high porosity, low density, high surface area and structural versatility. These properties enable MOFs to act as effective platforms for the adsorption, binding and catalytic conversion of CH<sub>4</sub> into valuable chemicals. Recent reports have highlighted MOFs as promising materials for these applications, leading to new insights into the structure–activity relationships that govern their performance in various systems.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"146 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1021/accountsmr.4c0027910.1021/accountsmr.4c00279
Bing An, Yujie Ma, Xue Han, Martin Schröder* and Sihai Yang*,
<p >Methane (CH<sub>4</sub>), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH<sub>4</sub> has a low energy density of only 36 kJ L<sup>–1</sup> under ambient conditions, which is significantly lower than that of gasoline (<i>ca</i>. 34 MJ L<sup>–1</sup>). The activation and catalytic conversion of CH<sub>4</sub> into value-added chemicals [<i>e.g</i>., methanol (CH<sub>3</sub>OH), which has an energy density of <i>ca</i>. 17 MJ L<sup>–1</sup>], can effectively lift its energy density. However, this conversion is highly challenging due to the inert nature of CH<sub>4</sub>, characterized by its strong C–H bonds and high stability. Consequently, the development of efficient materials that can optimize the binding and activation pathway of CH<sub>4</sub> with control of product selectivity has attracted considerable recent interest. Metal–organic framework (MOF) materials have emerged as particularly attractive candidates for the development of efficient sorbents and heterogeneous catalysts due to their high porosity, low density, high surface area and structural versatility. These properties enable MOFs to act as effective platforms for the adsorption, binding and catalytic conversion of CH<sub>4</sub> into valuable chemicals. Recent reports have highlighted MOFs as promising materials for these applications, leading to new insights into the structure–activity relationships that govern their performance in various systems.</p><p >In this Account, we present analysis of state-of-the-art MOF-based sorbents and catalysts, particularly focusing on materials that incorporate well-defined active sites within confined space. The precise control of these active sites and their surrounding microenvironment is crucial as it directly influences the efficiency of CH<sub>4</sub> activation and the selectivity of the resulting chemical products. Our discussion covers key reactions involving CH<sub>4</sub>, including its activation, selective oxidation of CH<sub>4</sub> to CH<sub>3</sub>OH, dry reforming of CH<sub>4</sub>, nonoxidative coupling of CH<sub>4</sub>, and borylation of CH<sub>4</sub>. We analyze the role of active sites and their microenvironment in the binding and activation of CH<sub>4</sub> using a wide range of experimental and computational studies, including neutron diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, infrared and X-ray absorption spectroscopies coupled to density functional theory calculations. In particular, neutron scattering has notable advantages in elucidating host–guest interactions and the mechanisms of the conversion and catalysis of CH<sub>4</sub> and CD<sub>4</sub>. In addition to exploring current advances, the limitations and future direction of research in this area are also discussed. Key challenges include improvements in the stability, scalability, and performance of MOFs under practica
{"title":"Activation and Catalysis of Methane over Metal–Organic Framework Materials","authors":"Bing An, Yujie Ma, Xue Han, Martin Schröder* and Sihai Yang*, ","doi":"10.1021/accountsmr.4c0027910.1021/accountsmr.4c00279","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00279https://doi.org/10.1021/accountsmr.4c00279","url":null,"abstract":"<p >Methane (CH<sub>4</sub>), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH<sub>4</sub> has a low energy density of only 36 kJ L<sup>–1</sup> under ambient conditions, which is significantly lower than that of gasoline (<i>ca</i>. 34 MJ L<sup>–1</sup>). The activation and catalytic conversion of CH<sub>4</sub> into value-added chemicals [<i>e.g</i>., methanol (CH<sub>3</sub>OH), which has an energy density of <i>ca</i>. 17 MJ L<sup>–1</sup>], can effectively lift its energy density. However, this conversion is highly challenging due to the inert nature of CH<sub>4</sub>, characterized by its strong C–H bonds and high stability. Consequently, the development of efficient materials that can optimize the binding and activation pathway of CH<sub>4</sub> with control of product selectivity has attracted considerable recent interest. Metal–organic framework (MOF) materials have emerged as particularly attractive candidates for the development of efficient sorbents and heterogeneous catalysts due to their high porosity, low density, high surface area and structural versatility. These properties enable MOFs to act as effective platforms for the adsorption, binding and catalytic conversion of CH<sub>4</sub> into valuable chemicals. Recent reports have highlighted MOFs as promising materials for these applications, leading to new insights into the structure–activity relationships that govern their performance in various systems.</p><p >In this Account, we present analysis of state-of-the-art MOF-based sorbents and catalysts, particularly focusing on materials that incorporate well-defined active sites within confined space. The precise control of these active sites and their surrounding microenvironment is crucial as it directly influences the efficiency of CH<sub>4</sub> activation and the selectivity of the resulting chemical products. Our discussion covers key reactions involving CH<sub>4</sub>, including its activation, selective oxidation of CH<sub>4</sub> to CH<sub>3</sub>OH, dry reforming of CH<sub>4</sub>, nonoxidative coupling of CH<sub>4</sub>, and borylation of CH<sub>4</sub>. We analyze the role of active sites and their microenvironment in the binding and activation of CH<sub>4</sub> using a wide range of experimental and computational studies, including neutron diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, infrared and X-ray absorption spectroscopies coupled to density functional theory calculations. In particular, neutron scattering has notable advantages in elucidating host–guest interactions and the mechanisms of the conversion and catalysis of CH<sub>4</sub> and CD<sub>4</sub>. In addition to exploring current advances, the limitations and future direction of research in this area are also discussed. Key challenges include improvements in the stability, scalability, and performance of MOFs under practica","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 1","pages":"77–88 77–88"},"PeriodicalIF":14.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/accountsmr.4c00279","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143091834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1021/accountsmr.4c0023010.1021/accountsmr.4c00230
Linyuan Wen, Yinglei Wang* and Yingzhe Liu*,
<p >In this Account, we present a comprehensive overview of recent advancements in applying data-driven combinatorial design for developing novel high-energy-density materials. Initially, we outline the progress in energetic materials (EMs) development within the framework of the four scientific paradigms, with particular emphasis on the opportunities afforded by the evolution of computer and data science, which has propelled the theoretical design of EMs into a new era of data-driven development. We then discuss the structural features of typical EMs such as TNT, RDX, HMX, and CL-20, namely, a “scaffolds + functional groups” characteristic, underscoring the efficacy of the combinatorial design approach in constructing novel EMs. It has been discerned that those modifications to the scaffolds are the primary driving force behind the enhancement of EMs’ properties.</p><p >Subsequently, we introduce three distinct data-driven design strategies for EMs, each with a different approach to scaffold construction. These strategies are as follows: (1) the known scaffold strategy to identify fused cyclic scaffolds containing oxazole or oxadiazole structures from other fields via database screening and employ a high-throughput combinatorial approach with functional groups to design oxazole (and oxadiazole)-based fused cyclic EMs; (2) the semiknown scaffold strategy to construct semiknown scaffolds by integrating known scaffolds and realize the design of bridged cyclic EMs through a high-throughput combination of functional groups; (3) the unknown scaffold strategy to build caged structural models for quantitative characterization, high-throughput screening caged scaffolds from the database, construct unknown caged scaffolds by substituting atoms or substructures, and combine functional groups to design zero oxygen balance caged EMs. Employing the proposed strategies, the design capacity for EMs reaches an impressive scale of 10<sup>7</sup> molecules, significantly increasing the probability of obtaining high-performance EMs. Furthermore, the incorporation of property assessment models based on machine learning and density functional theory has achieved a balance between computational accuracy and computational speed. Statistical analysis of the virtual screening has revealed the advantages of bicyclic tri- and tetrasubstituted position scaffolds in the construction of high-energy and easily synthesizable fused cyclic EMs. Additionally, the proposed strategies have been successfully applied to design multifunctional modular energetic materials, resulting in the successful synthesis of three target compounds, validating the effectiveness of data-driven combinatorial design approaches.</p><p >Lastly, we discuss the current state of high-throughput combinatorial design and, in light of the multifaceted criteria required for the design of EMs, explore the feasibility of multiobjective optimization methods such as Pareto optimization. Moreover, we envision the ap
{"title":"Data-Driven Combinatorial Design of Highly Energetic Materials","authors":"Linyuan Wen, Yinglei Wang* and Yingzhe Liu*, ","doi":"10.1021/accountsmr.4c0023010.1021/accountsmr.4c00230","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00230https://doi.org/10.1021/accountsmr.4c00230","url":null,"abstract":"<p >In this Account, we present a comprehensive overview of recent advancements in applying data-driven combinatorial design for developing novel high-energy-density materials. Initially, we outline the progress in energetic materials (EMs) development within the framework of the four scientific paradigms, with particular emphasis on the opportunities afforded by the evolution of computer and data science, which has propelled the theoretical design of EMs into a new era of data-driven development. We then discuss the structural features of typical EMs such as TNT, RDX, HMX, and CL-20, namely, a “scaffolds + functional groups” characteristic, underscoring the efficacy of the combinatorial design approach in constructing novel EMs. It has been discerned that those modifications to the scaffolds are the primary driving force behind the enhancement of EMs’ properties.</p><p >Subsequently, we introduce three distinct data-driven design strategies for EMs, each with a different approach to scaffold construction. These strategies are as follows: (1) the known scaffold strategy to identify fused cyclic scaffolds containing oxazole or oxadiazole structures from other fields via database screening and employ a high-throughput combinatorial approach with functional groups to design oxazole (and oxadiazole)-based fused cyclic EMs; (2) the semiknown scaffold strategy to construct semiknown scaffolds by integrating known scaffolds and realize the design of bridged cyclic EMs through a high-throughput combination of functional groups; (3) the unknown scaffold strategy to build caged structural models for quantitative characterization, high-throughput screening caged scaffolds from the database, construct unknown caged scaffolds by substituting atoms or substructures, and combine functional groups to design zero oxygen balance caged EMs. Employing the proposed strategies, the design capacity for EMs reaches an impressive scale of 10<sup>7</sup> molecules, significantly increasing the probability of obtaining high-performance EMs. Furthermore, the incorporation of property assessment models based on machine learning and density functional theory has achieved a balance between computational accuracy and computational speed. Statistical analysis of the virtual screening has revealed the advantages of bicyclic tri- and tetrasubstituted position scaffolds in the construction of high-energy and easily synthesizable fused cyclic EMs. Additionally, the proposed strategies have been successfully applied to design multifunctional modular energetic materials, resulting in the successful synthesis of three target compounds, validating the effectiveness of data-driven combinatorial design approaches.</p><p >Lastly, we discuss the current state of high-throughput combinatorial design and, in light of the multifaceted criteria required for the design of EMs, explore the feasibility of multiobjective optimization methods such as Pareto optimization. Moreover, we envision the ap","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 1","pages":"64–76 64–76"},"PeriodicalIF":14.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143091872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1021/accountsmr.4c00230
Linyuan Wen, Yinglei Wang, Yingzhe Liu
In this Account, we present a comprehensive overview of recent advancements in applying data-driven combinatorial design for developing novel high-energy-density materials. Initially, we outline the progress in energetic materials (EMs) development within the framework of the four scientific paradigms, with particular emphasis on the opportunities afforded by the evolution of computer and data science, which has propelled the theoretical design of EMs into a new era of data-driven development. We then discuss the structural features of typical EMs such as TNT, RDX, HMX, and CL-20, namely, a “scaffolds + functional groups” characteristic, underscoring the efficacy of the combinatorial design approach in constructing novel EMs. It has been discerned that those modifications to the scaffolds are the primary driving force behind the enhancement of EMs’ properties.
在本开户绑定手机领体验金中,我们全面概述了应用数据驱动组合设计开发新型高能量密度材料的最新进展。首先,我们概述了在四种科学范式框架内开发高能材料(EMs)的进展,并特别强调了计算机和数据科学的发展所带来的机遇,这推动 EMs 的理论设计进入了数据驱动开发的新时代。然后,我们讨论了 TNT、RDX、HMX 和 CL-20 等典型 EM 的结构特征,即 "支架 + 功能基团 "特征,强调了组合设计方法在构建新型 EM 方面的功效。人们发现,对支架的这些改性是增强电磁特性的主要驱动力。
{"title":"Data-Driven Combinatorial Design of Highly Energetic Materials","authors":"Linyuan Wen, Yinglei Wang, Yingzhe Liu","doi":"10.1021/accountsmr.4c00230","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00230","url":null,"abstract":"In this Account, we present a comprehensive overview of recent advancements in applying data-driven combinatorial design for developing novel high-energy-density materials. Initially, we outline the progress in energetic materials (EMs) development within the framework of the four scientific paradigms, with particular emphasis on the opportunities afforded by the evolution of computer and data science, which has propelled the theoretical design of EMs into a new era of data-driven development. We then discuss the structural features of typical EMs such as TNT, RDX, HMX, and CL-20, namely, a “scaffolds + functional groups” characteristic, underscoring the efficacy of the combinatorial design approach in constructing novel EMs. It has been discerned that those modifications to the scaffolds are the primary driving force behind the enhancement of EMs’ properties.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1021/accountsmr.4c0007310.1021/accountsmr.4c00073
Yi-Chen Yin, Jin-Da Luo and Hong-Bin Yao*,
{"title":"UCl3-Type Solid Electrolytes: Fast Ionic Conduction and Enhanced Electrode Compatibility","authors":"Yi-Chen Yin, Jin-Da Luo and Hong-Bin Yao*, ","doi":"10.1021/accountsmr.4c0007310.1021/accountsmr.4c00073","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00073https://doi.org/10.1021/accountsmr.4c00073","url":null,"abstract":"","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"6 1","pages":"1–5 1–5"},"PeriodicalIF":14.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143091818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1021/accountsmr.4c00073
Yi-Chen Yin, Jin-Da Luo, Hong-Bin Yao
Figure 1. Origin of the superionic conduction of UCl<sub>3</sub>-type SEs with the non-close-packed framework. (a) Li<sup>+</sup> probability density, represented by green isosurfaces from AIMD simulations in the vacancy-contained LaCl<sub>3</sub> lattice. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (b) Schematic of diffusion channel. Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. (c) Diffusion channel size distribution of Li<sub>3</sub>YCl<sub>6</sub>, Li<sub>3</sub>InCl<sub>6</sub>, LiNbOCl<sub>4</sub>, and UCl<sub>3</sub>-type Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> (LTLC). Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. (d) Schematic illustration of the effects of inherent distortion on energy landscape. Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. Figure 2. Ionic conductivity values at room temperature of crystalline chloride SEs, including conventional close-packed Li<sub><i>x</i></sub>M<sub><i>y</i></sub>Cl<sub><i>n</i></sub> SEs and UCl<sub>3</sub>-type LaCl<sub>3</sub>-based SEs. (1−4,10−14,21) Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. Figure 3. UCl<sub>3</sub>-type SEs with a more stable interface toward lithium metal anode. (a) Depth-dependent La 3d<sub>5/2</sub> X-ray photoelectron spectroscopy (XPS) spectra of the interface of Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> SE after 50 h of cycling. Reproduced with permission from reference (21). Copyright 2023 by Springer Nature Limited. (b) Depth-dependent La 3d<sub>5/2</sub> XPS spectra of the interface of Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> SE after 50 h of cycling. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (c) Voltage profile of a Li/Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub>/Li symmetric cell cycled under a current density of 0.2 mA cm<sup>–2</sup> and areal capacity of 1 mAh cm<sup>–2</sup> at 30 °C. Insets: corresponding magnified voltage profiles indicate steady Li plating/stripping voltages. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (d) La 3d<sub>5/2</sub> (left) and Zr 3d (right) XPS spectra of the Li|Li<sub>0.8</sub>Zr<sub>0.25</sub>La<sub>0.5</sub>Cl<sub>2.7</sub>O<sub>0.3</sub> interface after 500 h cycling, respectively. Reproduced with permission from reference (23). Copyright 2024 Royal Society of Chemistry. (e) Comparison of the critical current density (CCD) of Li metal symmetric cells with different solid electrolytes (Ga-LLZO (Li<sub>6.4</sub>Ga<sub>0.2</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>);
图 1.具有非紧密堆积框架的 UCl3 型 SE 超离子传导的起源。(a) 在含有空位的 LaCl3 晶格中,用 AIMD 模拟得到的绿色等值面表示的 Li+ 概率密度。经授权转载自参考文献 (21)。作者版权所有 2023 年,Springer Nature Limited 独家授权。(b) 扩散通道示意图。经授权转载自参考文献 (24)。John Wiley and Sons 公司版权所有 2024。(c) Li3YCl6、Li3InCl6、LiNbOCl4 和 UCl3 型 Li0.388Ta0.238La0.475Cl3 (LTLC) 的扩散通道尺寸分布。经授权转载自参考文献 (24)。John Wiley and Sons 公司版权所有,2024 年。(d) 内在畸变对能量分布的影响示意图。经授权转载自参考文献 (24)。约翰-威利父子公司版权所有 2024 年。图 2.晶体氯化物 SE(包括传统的紧密堆积 LixMyCln SE 和基于 UCl3 型 LaCl3 的 SE)在室温下的离子电导率值。(1-4,10-14,21) 经授权转载自参考文献 (21)。作者版权所有 2023 年,Springer Nature Limited 独家授权。图 3.对锂金属阳极具有更稳定界面的 UCl3 型 SE。(a) 循环 50 小时后,Li0.388Ta0.238La0.475Cl3 SE 接口的深度依赖性 La 3d5/2 X 射线光电子能谱 (XPS) 光谱。经授权转载自参考文献 (21)。施普林格自然有限公司版权所有 2023 年。(b) 循环 50 小时后,Li0.388Ta0.238La0.475Cl3 SE 接口的深度依赖性 La 3d5/2 XPS 光谱。经授权转载自参考文献 (21)。作者版权所有 2023 年,Springer Nature Limited 独家授权。(c) 锂/锂 0.388Ta0.238La0.475Cl3/Li 对称电池在 0.2 mA cm-2 电流密度和 1 mAh cm-2 单位容量条件下于 30 °C 循环的电压曲线。插图:相应的放大电压曲线表示稳定的锂电镀/剥离电压。经授权转载自参考文献 (21)。作者版权所有 2023 年,Springer Nature Limited 独家授权。(d) 在循环 500 小时后,Li|Li0.8Zr0.25La0.5Cl2.7O0.3 接口的 La 3d5/2(左)和 Zr 3d(右)XPS 光谱。经参考文献 (23) 授权转载。版权归英国皇家化学学会所有,2024 年。(e) 采用不同固体电解质的锂金属对称电池临界电流密度 (CCD) 的比较:Ga-LLZO(Li6.4Ga0.2La3Zr2O12);LAGP(Li1.5Al0.5Ge1.5(PO4)3);Ta-LLZO(Li6.5La3Zr1.5Ta0.5O12);PEO:Mg(ClO)(PEO:Mg(ClO4)2);LiBFSIE-LLZO(LiBFSIE-Li7La3Zr2O12);PEO:LLZTO;O-LiPSBr(O-掺杂Li6PS4.7O0.3Br);LiPS-0.5LiI(Li3PS4-0.5LiI);棒状LiPSCl(Li6PS5Cl))。经授权转载自参考文献 (23)。版权 2024 年英国皇家化学学会。密度。UCl3 型 SE 的中心元素(镧系金属 La、Ce、Sm 等)和常用掺杂元素(Ta、Zr 等)都很重,通常导致 UCl3 型 SE 的密度超过 2.5 g cm-3,远高于硫化物的密度(通常低于 2 g cm-3)。为了确保整个固态电池中阴极和 SE 层的非活性材料重量比低,以获得更高的能量密度,(31) 低原子数的掺杂元素(如 Ca、Mg 和 Al 等)是首选。优化阳极稳定机制。虽然与传统的 LixMyCln 相比,基于 LaCl3 的 SE 显示出与锂金属负极更好的界面兼容性,但其稳定机制仍未完全确定。同时,1 mAh cm-2 左右的容量不足以满足实际应用的需求(通常超过 3 mAh cm-2)。我们需要更深入地了解界面演化,并辅以人工界面层来增强阳极界面的稳定性。大气耐受性。与传统的 LixMyCln 相似,由于容易与水反应或结合(32),UCl3 型 SE 的大气耐受性需要提高,以抑制合成、储存、成膜过程和 ASSLB 制造过程中的性能损失。Y.C.Y、J.D.L 和 H.B.Y讨论了该课题并提出了大纲。Y.C.Y 组织并撰写草稿。H.B.Y 修改了手稿。尹以琛现为中国科学技术大学博士后研究员。2017 年获中国矿业大学学士学位,2022 年获中国科学技术大学博士学位。他的研究方向是具有高离子电导率和良好电极界面稳定性的新型卤化物固体电解质。罗金达现为中国科学技术大学硕士研究生。他于 2021 年获得湘潭大学学士学位。他的研究重点是固体电解质晶格内离子传输的计算建模与模拟。姚宏斌于 2006 年获得中国科学技术大学学士学位。 之后,他在合肥物理科学国家实验室攻读微尺度博士学位,师从俞书宏教授。2011 年获得博士学位后,他进入斯坦福大学崔毅教授课题组做博士后。2015 年,他结束博士后工作,加入中国科学技术大学任教授。他的研究小组主要研究功能性金属卤化物晶体材料及相关器件应用。感谢国家自然科学基金(批准号:22475235、22325505、52073271、22305236)、中国科学技术大学双一流建设研究基金(YD2060002034)、中科院合肥科学中心协同创新计划(批准号:2022HSC-CIP018)和中国博士后科学基金(批准号:2023M733375和2023T160619)的资助。本文引用了其他 32 篇文章。本文尚未被其他出版物引用。
{"title":"UCl3-Type Solid Electrolytes: Fast Ionic Conduction and Enhanced Electrode Compatibility","authors":"Yi-Chen Yin, Jin-Da Luo, Hong-Bin Yao","doi":"10.1021/accountsmr.4c00073","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00073","url":null,"abstract":"Figure 1. Origin of the superionic conduction of UCl<sub>3</sub>-type SEs with the non-close-packed framework. (a) Li<sup>+</sup> probability density, represented by green isosurfaces from AIMD simulations in the vacancy-contained LaCl<sub>3</sub> lattice. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (b) Schematic of diffusion channel. Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. (c) Diffusion channel size distribution of Li<sub>3</sub>YCl<sub>6</sub>, Li<sub>3</sub>InCl<sub>6</sub>, LiNbOCl<sub>4</sub>, and UCl<sub>3</sub>-type Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> (LTLC). Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. (d) Schematic illustration of the effects of inherent distortion on energy landscape. Reproduced with permission from reference (24). Copyright 2024 John Wiley and Sons. Figure 2. Ionic conductivity values at room temperature of crystalline chloride SEs, including conventional close-packed Li<sub><i>x</i></sub>M<sub><i>y</i></sub>Cl<sub><i>n</i></sub> SEs and UCl<sub>3</sub>-type LaCl<sub>3</sub>-based SEs. (1−4,10−14,21) Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. Figure 3. UCl<sub>3</sub>-type SEs with a more stable interface toward lithium metal anode. (a) Depth-dependent La 3d<sub>5/2</sub> X-ray photoelectron spectroscopy (XPS) spectra of the interface of Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> SE after 50 h of cycling. Reproduced with permission from reference (21). Copyright 2023 by Springer Nature Limited. (b) Depth-dependent La 3d<sub>5/2</sub> XPS spectra of the interface of Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub> SE after 50 h of cycling. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (c) Voltage profile of a Li/Li<sub>0.388</sub>Ta<sub>0.238</sub>La<sub>0.475</sub>Cl<sub>3</sub>/Li symmetric cell cycled under a current density of 0.2 mA cm<sup>–2</sup> and areal capacity of 1 mAh cm<sup>–2</sup> at 30 °C. Insets: corresponding magnified voltage profiles indicate steady Li plating/stripping voltages. Reproduced with permission from reference (21). Copyright 2023 the author(s), under exclusive license to Springer Nature Limited. (d) La 3d<sub>5/2</sub> (left) and Zr 3d (right) XPS spectra of the Li|Li<sub>0.8</sub>Zr<sub>0.25</sub>La<sub>0.5</sub>Cl<sub>2.7</sub>O<sub>0.3</sub> interface after 500 h cycling, respectively. Reproduced with permission from reference (23). Copyright 2024 Royal Society of Chemistry. (e) Comparison of the critical current density (CCD) of Li metal symmetric cells with different solid electrolytes (Ga-LLZO (Li<sub>6.4</sub>Ga<sub>0.2</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>); ","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1021/accountsmr.4c00237
Sanjay Sandhu, Nam-Gyu Park
Organic–inorganic lead halide perovskite solar cells (PSCs) have attracted significant interest from the photovoltaic (PV) community due to suitable optoelectronic properties, low manufacturing cost, and tremendous PV performance with a certified power conversion efficiency (PCE) of up to 26.5%. However, long-term operational stability should be guaranteed for future commercialization. Over the past decade, intensive research has focused on improving the PV performance and device stability through the development of novel charge transport materials, additive engineering, compositional engineering, interfacial modifications, and the synthesis of perovskite single crystals. In this Account, we provide a comprehensive overview of recent progress and research directions in the fabrication of highly efficient and stable PSCs, including key outcomes from our group. We begin by highlighting the critical challenges and their causes that are detrimental to the development of stable PSCs. We then discuss the fundamentals of halide perovskites including their optical and structural properties. This is followed by a description of the fabrication methods for perovskite crystals, films, and various device architectures. Next, we introduced target-oriented key strategies such as developing high-quality single crystals for redissolution as a perovskite precursor to fabricate phase-stable and reproducible PSCs, along with reduced material costs, employing multifunctional additives to get uniform, robust, and stable perovskite films, and interfacial engineering techniques for effective surface and buried interface defect passivation to improve charge transport and long-term stability. Finally, we conclude with a critical assessment and perspective on the future development of PSCs. This Account will provide valuable insights into the current state-of-the-art PSCs and promising strategies tailored to specific roles that can be combined to manipulate the perovskite structure for novel outcomes and further advancements.
{"title":"Methodologies to Improve the Stability of High-Efficiency Perovskite Solar Cells","authors":"Sanjay Sandhu, Nam-Gyu Park","doi":"10.1021/accountsmr.4c00237","DOIUrl":"https://doi.org/10.1021/accountsmr.4c00237","url":null,"abstract":"Organic–inorganic lead halide perovskite solar cells (PSCs) have attracted significant interest from the photovoltaic (PV) community due to suitable optoelectronic properties, low manufacturing cost, and tremendous PV performance with a certified power conversion efficiency (PCE) of up to 26.5%. However, long-term operational stability should be guaranteed for future commercialization. Over the past decade, intensive research has focused on improving the PV performance and device stability through the development of novel charge transport materials, additive engineering, compositional engineering, interfacial modifications, and the synthesis of perovskite single crystals. In this Account, we provide a comprehensive overview of recent progress and research directions in the fabrication of highly efficient and stable PSCs, including key outcomes from our group. We begin by highlighting the critical challenges and their causes that are detrimental to the development of stable PSCs. We then discuss the fundamentals of halide perovskites including their optical and structural properties. This is followed by a description of the fabrication methods for perovskite crystals, films, and various device architectures. Next, we introduced target-oriented key strategies such as developing high-quality single crystals for redissolution as a perovskite precursor to fabricate phase-stable and reproducible PSCs, along with reduced material costs, employing multifunctional additives to get uniform, robust, and stable perovskite films, and interfacial engineering techniques for effective surface and buried interface defect passivation to improve charge transport and long-term stability. Finally, we conclude with a critical assessment and perspective on the future development of PSCs. This Account will provide valuable insights into the current state-of-the-art PSCs and promising strategies tailored to specific roles that can be combined to manipulate the perovskite structure for novel outcomes and further advancements.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}