Pub Date : 2017-07-01DOI: 10.1017/S2040470017000887
F. Bourdin, F. J. Morell, D. Combemale, P. Clastre, M. Guérif, A. Chanzy
Inversing the STICS crop model with remote-sensing-derived leaf area index (LAI) and yield data from the previous crop is used to retrieve some soil permanent properties and crop emergence parameters. Spatialized nitrogen (N) fertilization recommendations are provided to farmers, for the second and third N applications, following the screening of eleven N application rates under a range of possible forthcoming climates, with the objective to maximize of the gross margin while respecting some environmental constraints. As a first field validation, we show (1) the improvement brought by the assimilation of LAI and yield into STICS to simulate crop and soil variables and (2) the interest of site specific application to maximize both the gross margin and the agro-environmental criterion.
{"title":"A tool based on remotely sensed LAI, yield maps and a crop model to recommend variable rate nitrogen fertilization for wheat","authors":"F. Bourdin, F. J. Morell, D. Combemale, P. Clastre, M. Guérif, A. Chanzy","doi":"10.1017/S2040470017000887","DOIUrl":"https://doi.org/10.1017/S2040470017000887","url":null,"abstract":"Inversing the STICS crop model with remote-sensing-derived leaf area index (LAI) and yield data from the previous crop is used to retrieve some soil permanent properties and crop emergence parameters. Spatialized nitrogen (N) fertilization recommendations are provided to farmers, for the second and third N applications, following the screening of eleven N application rates under a range of possible forthcoming climates, with the objective to maximize of the gross margin while respecting some environmental constraints. As a first field validation, we show (1) the improvement brought by the assimilation of LAI and yield into STICS to simulate crop and soil variables and (2) the interest of site specific application to maximize both the gross margin and the agro-environmental criterion.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"3 1","pages":"672-677"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91043091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017001224
J. A. Martínez-Casasnovas, E. Daniele, A. Uribeetxebarria, A. Escolà, J. R. Rosell-Polo, L. Sartori, J. Arnó
The present work investigated the application of detailed airborne images and a resistivity soil sensor (Veris 3100) to detect soil and crop spatial variability to assist in orchard management. The research was carried out in a peach orchard (Prunus persica). Soil apparent electrical conductivity (ECa), NDVI from a multispectral image (0.25 m/pixel) and soil properties at 40 sampling points (0-30 cm) were acquired. The ECa was standardized at 25°C. It showed a strong relationship with former landforms, altered by land levelling. A positive correlation of EC25 with EC1:5, water holding capacity at −1500 kPa and soil depth was found. NDVI was correlated only in the textural fractions coarser than clay. Two types of management zones were proposed: a) to improve the water holding capacity of soils and b) to regulate tree vigour and yield.
{"title":"Combined use of remote sensing and soil sensors to detect variability in orchards with previous changes in land use and landforms: consequences for management","authors":"J. A. Martínez-Casasnovas, E. Daniele, A. Uribeetxebarria, A. Escolà, J. R. Rosell-Polo, L. Sartori, J. Arnó","doi":"10.1017/S2040470017001224","DOIUrl":"https://doi.org/10.1017/S2040470017001224","url":null,"abstract":"The present work investigated the application of detailed airborne images and a resistivity soil sensor (Veris 3100) to detect soil and crop spatial variability to assist in orchard management. The research was carried out in a peach orchard (Prunus persica). Soil apparent electrical conductivity (ECa), NDVI from a multispectral image (0.25 m/pixel) and soil properties at 40 sampling points (0-30 cm) were acquired. The ECa was standardized at 25°C. It showed a strong relationship with former landforms, altered by land levelling. A positive correlation of EC25 with EC1:5, water holding capacity at −1500 kPa and soil depth was found. NDVI was correlated only in the textural fractions coarser than clay. Two types of management zones were proposed: a) to improve the water holding capacity of soils and b) to regulate tree vigour and yield.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"21 1","pages":"492-497"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91119101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017000735
S. K. Nielsen, L. Munkholm, M. Aarestrup, M. H. Kristensen, Ole Green
Primary tillage is in many cases crucial for successful crop establishment and weed and pest control. Inversion tillage using a mouldboard plough may be required when a uniform ploughing operation covering the entire field is preferred. The ploughing operation is especially challenging at the interface area between headlands and the main cropping area. Overlapping at the interface causes a mixing of the topsoil, rather than a soil inversion, and poor burial of residues and weeds, especially of concern in organic farming. The aim of the research was to study novel plough section control designs to optimise the interface area. Concept designs with hydraulic control were studied and the preferred was developed and tested in real field operations. The research concluded that the concept was functional and by visual inspection the interface was optimised. In addition, the section control can improve operations in irregularly shaped fields.
{"title":"Plough section control for optimised uniformity in primary tillage","authors":"S. K. Nielsen, L. Munkholm, M. Aarestrup, M. H. Kristensen, Ole Green","doi":"10.1017/S2040470017000735","DOIUrl":"https://doi.org/10.1017/S2040470017000735","url":null,"abstract":"Primary tillage is in many cases crucial for successful crop establishment and weed and pest control. Inversion tillage using a mouldboard plough may be required when a uniform ploughing operation covering the entire field is preferred. The ploughing operation is especially challenging at the interface area between headlands and the main cropping area. Overlapping at the interface causes a mixing of the topsoil, rather than a soil inversion, and poor burial of residues and weeds, especially of concern in organic farming. The aim of the research was to study novel plough section control designs to optimise the interface area. Concept designs with hydraulic control were studied and the preferred was developed and tested in real field operations. The research concluded that the concept was functional and by visual inspection the interface was optimised. In addition, the section control can improve operations in irregularly shaped fields.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"53 1","pages":"444-449"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88382266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017001340
W. Deng, C. Zhao, L. Chen, R. Zhang
This paper reports an investigation of the relationship between spray characteristics and a nozzles’ internal structure to reveal the working mechanism of anti-drift spray nozzles. Three important structural factors were taken into account, the diameter of the inner chamber, the angle of V-shaped slot and the relative kerf depth. Three-dimensional models of the fan nozzles were set up using Solidworks software and the corresponding real nozzles were produced using high-precision 3-D printer. The flow fields inside the nozzles were simulated using the software FLUENT. By comparing the flow fields inside and outside the nozzles under the conditions of the same inner structural parameter, the relationships between spraying flow characteristics and different structural parameters was made clear, and provides a reference for optimal design of anti-drift spray nozzles.
{"title":"Simulation and Experiment of a Designed Anti-Drift Spray Nozzle","authors":"W. Deng, C. Zhao, L. Chen, R. Zhang","doi":"10.1017/S2040470017001340","DOIUrl":"https://doi.org/10.1017/S2040470017001340","url":null,"abstract":"This paper reports an investigation of the relationship between spray characteristics and a nozzles’ internal structure to reveal the working mechanism of anti-drift spray nozzles. Three important structural factors were taken into account, the diameter of the inner chamber, the angle of V-shaped slot and the relative kerf depth. Three-dimensional models of the fan nozzles were set up using Solidworks software and the corresponding real nozzles were produced using high-precision 3-D printer. The flow fields inside the nozzles were simulated using the software FLUENT. By comparing the flow fields inside and outside the nozzles under the conditions of the same inner structural parameter, the relationships between spraying flow characteristics and different structural parameters was made clear, and provides a reference for optimal design of anti-drift spray nozzles.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"46 1","pages":"837-841"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89678310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017000462
V. Adamchuk, R. Lacroix, S. Shinde, N. Tremblay, H. Huang
This paper presents a framework for the implementation of a decision support system that considers spatial, temporal and managerial factors in assessing the potential impact of crop amendments on the cost of a given production scenario. The proposed system includes a database and a numeric simulation model. The database is linked to previously recorded crop responses for a given agricultural input under different conditions while the numeric simulation model determines the probability of different levels of profit for each decision option. This system then determines the optimal uniform rate of application of an amendment to maximize profits, or to define the range of such rates for a case of variable rate application. Uncertainty-based treatment of each model input allows for a balance between the potential results of under-application or over-application.
{"title":"An uncertainty-based comprehensive decision support system for site-specific crop management","authors":"V. Adamchuk, R. Lacroix, S. Shinde, N. Tremblay, H. Huang","doi":"10.1017/S2040470017000462","DOIUrl":"https://doi.org/10.1017/S2040470017000462","url":null,"abstract":"This paper presents a framework for the implementation of a decision support system that considers spatial, temporal and managerial factors in assessing the potential impact of crop amendments on the cost of a given production scenario. The proposed system includes a database and a numeric simulation model. The database is linked to previously recorded crop responses for a given agricultural input under different conditions while the numeric simulation model determines the probability of different levels of profit for each decision option. This system then determines the optimal uniform rate of application of an amendment to maximize profits, or to define the range of such rates for a case of variable rate application. Uncertainty-based treatment of each model input allows for a balance between the potential results of under-application or over-application.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"252 1","pages":"625-629"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78359139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017000012
B. Tisseyre, C. Leroux
A classical approach in precision agriculture consists in validating within field zones defined from high spatial resolution observations by agronomic information (AI). Zones validation generally involves a two-step process. First, AI are obtained on a regular grid or following a target sampling strategy inside the field. Then, a statistical test, most often an ANOVA, is used to determine if the management zones created with the high spatial resolution auxiliary data explain differences in the AI values. Unfortunately, in precision agriculture, many of the works using such an approach omit a necessary condition for the implementation of the aforementioned ANOVA test, i.e. the observations need to be independent from each other. This condition is unfortunately seldom satisfied since AI are often spatially auto-correlated. In order to highlight this problem, simulated datasets with different and known AI spatial autocorrelation were used. Results show that as AI are more and more spatially auto-correlated, ANOVA tests almost always conclude that the management zones obtained with auxiliary data are significant whatever the zoning, i.e. even a completely random one. To overcome this problem, the paper introduces two methods directly inspired from published works in the field of ecology. Two cases were considered: the first one applies when large AI dataset (n>40) is available and the other one applies for small AI dataset (n<40). Both methods are implemented on a real precision viticulture example.
{"title":"How significantly different are your within field zones","authors":"B. Tisseyre, C. Leroux","doi":"10.1017/S2040470017000012","DOIUrl":"https://doi.org/10.1017/S2040470017000012","url":null,"abstract":"A classical approach in precision agriculture consists in validating within field zones defined from high spatial resolution observations by agronomic information (AI). Zones validation generally involves a two-step process. First, AI are obtained on a regular grid or following a target sampling strategy inside the field. Then, a statistical test, most often an ANOVA, is used to determine if the management zones created with the high spatial resolution auxiliary data explain differences in the AI values. Unfortunately, in precision agriculture, many of the works using such an approach omit a necessary condition for the implementation of the aforementioned ANOVA test, i.e. the observations need to be independent from each other. This condition is unfortunately seldom satisfied since AI are often spatially auto-correlated. In order to highlight this problem, simulated datasets with different and known AI spatial autocorrelation were used. Results show that as AI are more and more spatially auto-correlated, ANOVA tests almost always conclude that the management zones obtained with auxiliary data are significant whatever the zoning, i.e. even a completely random one. To overcome this problem, the paper introduces two methods directly inspired from published works in the field of ecology. Two cases were considered: the first one applies when large AI dataset (n>40) is available and the other one applies for small AI dataset (n<40). Both methods are implemented on a real precision viticulture example.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"117 1","pages":"620-624"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77619075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017001364
G. Portz, M. Gnyp, J. Jasper
This study aims to evaluate actual biomass and N-uptake estimates with the Yara N-Sensor in intensively managed grass swards across several trial sites in Europe. The dataset was split by location into an independent calibration data (UK and Finland) and a validation data (Germany) for the first two cuts. Yara N-Sensor readings were better correlated with N-uptake (R²=0.71) than actual biomass (R²=0.53) for the 1ˢᵗ cut. At the 2ⁿᵈ cut, the R² values for both parameters were higher (0.80 and 0.56). A cross-validation with a German grass trial indicated the potential for predicting N-uptake (R²>0.8). It can be concluded that the technology has the potential to guide management decisions and variable rate nitrogen application on European grass swards.
{"title":"Capability of crop canopy sensing to predict crop parameters of cut grass swards aiming at early season variable rate nitrogen top dressings","authors":"G. Portz, M. Gnyp, J. Jasper","doi":"10.1017/S2040470017001364","DOIUrl":"https://doi.org/10.1017/S2040470017001364","url":null,"abstract":"This study aims to evaluate actual biomass and N-uptake estimates with the Yara N-Sensor in intensively managed grass swards across several trial sites in Europe. The dataset was split by location into an independent calibration data (UK and Finland) and a validation data (Germany) for the first two cuts. Yara N-Sensor readings were better correlated with N-uptake (R²=0.71) than actual biomass (R²=0.53) for the 1ˢᵗ cut. At the 2ⁿᵈ cut, the R² values for both parameters were higher (0.80 and 0.56). A cross-validation with a German grass trial indicated the potential for predicting N-uptake (R²>0.8). It can be concluded that the technology has the potential to guide management decisions and variable rate nitrogen application on European grass swards.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"8 1","pages":"792-795"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84391876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017000036
Y. Reckleben, T. Grau, S. Schulz, H. Trumpf
Site-specific management provides the ability to align the production intensity to demand and thus adjust the expenses to the necessary level. So it is possible to increase the proportion of marketable commodity in the normal sort–size of 40 mm to 60 mm. Planting distances adapted to the soil properties seem to achieve this objective. It is possible to further optimize the proportion of marketable commodity especially in the potato regions where irrigation and fertilization already contribute to a consistently high yield. Different planting distances on the soil sites by EM38 were tested in field trials. Planting distances of 31.50 cm in the row on the light (sandy) soil, 24.50 cm on middle and 27.50 cm on the heavy soil sites seems the best for these three years. There is a yield impact in total, as well as in the proportion of marketable commodity. Depending on the planting strategy, increases in income up to €153 per hectare can be obtained.
{"title":"Effects of precision potato planting using GPS-based cultivation","authors":"Y. Reckleben, T. Grau, S. Schulz, H. Trumpf","doi":"10.1017/S2040470017000036","DOIUrl":"https://doi.org/10.1017/S2040470017000036","url":null,"abstract":"Site-specific management provides the ability to align the production intensity to demand and thus adjust the expenses to the necessary level. So it is possible to increase the proportion of marketable commodity in the normal sort–size of 40 mm to 60 mm. Planting distances adapted to the soil properties seem to achieve this objective. It is possible to further optimize the proportion of marketable commodity especially in the potato regions where irrigation and fertilization already contribute to a consistently high yield. Different planting distances on the soil sites by EM38 were tested in field trials. Planting distances of 31.50 cm in the row on the light (sandy) soil, 24.50 cm on middle and 27.50 cm on the heavy soil sites seems the best for these three years. There is a yield impact in total, as well as in the proportion of marketable commodity. Depending on the planting strategy, increases in income up to €153 per hectare can be obtained.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"15 1","pages":"450-454"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84811958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017001339
J. Czarnecki, Sathishkumar Samiappan, L. Wasson, J. McCurdy, Daniel B. Reynolds, W. P. Williams, R. Moorhead
{"title":"Applications of Unmanned Aerial Vehicles in Weed Science","authors":"J. Czarnecki, Sathishkumar Samiappan, L. Wasson, J. McCurdy, Daniel B. Reynolds, W. P. Williams, R. Moorhead","doi":"10.1017/S2040470017001339","DOIUrl":"https://doi.org/10.1017/S2040470017001339","url":null,"abstract":"","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"9 1","pages":"807-811"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88701231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-07-01DOI: 10.1017/S2040470017001066
Helen Kendall, P. Naughton, Beth Clark, J. Taylor, Zhenhong Li, C. Zhao, G. Yang, J. Chen, L. Frewer
Precision agriculture (PA) may improve the sustainability of Chinese agriculture. Ten experts were interviewed and 34 farm workers surveyed regarding their understanding, attitudes and perceptions towards PA. PA technologies were considered inaccessible, unsuitable and unnecessary for smaller farms. High cost, lack of perceived benefits, and skills and capability required to adopt PA represented barriers to adoption. Financial incentives/subsidies, the need for tangible benefits and tailored solutions to be demonstrated to farmers, and agronomic and peer support were desired. Future research should further explore PA with Chinese stakeholders and end-users in China, to inform future socio-technological developments.
{"title":"Precision Agriculture in China: Exploring Awareness, Understanding, Attitudes and Perceptions of Agricultural Experts and End-Users in China","authors":"Helen Kendall, P. Naughton, Beth Clark, J. Taylor, Zhenhong Li, C. Zhao, G. Yang, J. Chen, L. Frewer","doi":"10.1017/S2040470017001066","DOIUrl":"https://doi.org/10.1017/S2040470017001066","url":null,"abstract":"Precision agriculture (PA) may improve the sustainability of Chinese agriculture. Ten experts were interviewed and 34 farm workers surveyed regarding their understanding, attitudes and perceptions towards PA. PA technologies were considered inaccessible, unsuitable and unnecessary for smaller farms. High cost, lack of perceived benefits, and skills and capability required to adopt PA represented barriers to adoption. Financial incentives/subsidies, the need for tangible benefits and tailored solutions to be demonstrated to farmers, and agronomic and peer support were desired. Future research should further explore PA with Chinese stakeholders and end-users in China, to inform future socio-technological developments.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"22 1","pages":"703-707"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83474648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}