Pub Date : 2024-05-18DOI: 10.1007/s10043-024-00888-2
Shi Bao, Ye Zhao, Yatu Ji, Nier Wu, Gao Le
With growing demands for higher image quality in the fields of film, video post-production, image restoration, art creation, and computer vision, color transfer between images has become an important research area. Based on previous research on color transfer techniques, this paper proposes a color transfer method for images based on saliency features, aiming at automatic color migration between them. Transferring colors based on the saliency features of the input image can avoid the problem of unnatural color of the output image due to mixing of colors from different regions. First, the local variances of both the original and reference images are calculated, serving as a temporary saliency feature map. This is followed by obtaining a refined saliency feature map after undergoing processes such as minimization filtering, binarization, expansion, and iteration. Subsequently, color is transferred between the saliency and non-saliency regions of the original and reference images. To avoid the generation of pseudo-contours, the image is then refined using base projection. Finally, an output image is obtained by fusing the base-projected image with the outcome from Reinhard’s method, ensuring the output retains its naturalness and consistency. We conducted experiments with different types of images such as natural landscapes, buildings, and art paintings. The experimental results show that the method proposed in this paper not only retains the intricacies of the original image but also offers fuller and more realistic color renditions.
{"title":"Color transfer method based on saliency features for color images","authors":"Shi Bao, Ye Zhao, Yatu Ji, Nier Wu, Gao Le","doi":"10.1007/s10043-024-00888-2","DOIUrl":"https://doi.org/10.1007/s10043-024-00888-2","url":null,"abstract":"<p>With growing demands for higher image quality in the fields of film, video post-production, image restoration, art creation, and computer vision, color transfer between images has become an important research area. Based on previous research on color transfer techniques, this paper proposes a color transfer method for images based on saliency features, aiming at automatic color migration between them. Transferring colors based on the saliency features of the input image can avoid the problem of unnatural color of the output image due to mixing of colors from different regions. First, the local variances of both the original and reference images are calculated, serving as a temporary saliency feature map. This is followed by obtaining a refined saliency feature map after undergoing processes such as minimization filtering, binarization, expansion, and iteration. Subsequently, color is transferred between the saliency and non-saliency regions of the original and reference images. To avoid the generation of pseudo-contours, the image is then refined using base projection. Finally, an output image is obtained by fusing the base-projected image with the outcome from Reinhard’s method, ensuring the output retains its naturalness and consistency. We conducted experiments with different types of images such as natural landscapes, buildings, and art paintings. The experimental results show that the method proposed in this paper not only retains the intricacies of the original image but also offers fuller and more realistic color renditions.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"38 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140954619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We numerically and experimentally developed a cantilever that provided both fast and analog actuation for THz metamaterials (MMs) by properly geometrizing a dimpled tip. Owing to its small size and light mass, the cantilever had a high mechanical resonance at 705 kHz. Cantilever arrays were fabricated with different tip gaps and integrated into a ladder-shaped MM (LS-MM). By changing the tip gap from 0.80 to 0.32 μm, the resonance of the transmittance spectrum changed from 1.235 to 0.795 THz, indicating that the reconfigurable LS-MM was capable of continuously tuning the resonance of the THz wave transmission with the tip gap. Additionally, the dimple served as an anti-stiction structure, providing the cantilever with a fabrication yield of 99.8%. This work shows a practical pathway to high-performance active metamaterials, which holds potential in advanced THz technologies such as 6G communications and fast imaging.
{"title":"Feasibility test on the analog configuration of electromechanical dimple-tip cantilever for the application of THz metamaterials","authors":"Ying Huang, Taiyu Okatani, Naoki Inomata, Yoshiaki Kanamori","doi":"10.1007/s10043-024-00889-1","DOIUrl":"10.1007/s10043-024-00889-1","url":null,"abstract":"<div><p>We numerically and experimentally developed a cantilever that provided both fast and analog actuation for THz metamaterials (MMs) by properly geometrizing a dimpled tip. Owing to its small size and light mass, the cantilever had a high mechanical resonance at 705 kHz. Cantilever arrays were fabricated with different tip gaps and integrated into a ladder-shaped MM (LS-MM). By changing the tip gap from 0.80 to 0.32 μm, the resonance of the transmittance spectrum changed from 1.235 to 0.795 THz, indicating that the reconfigurable LS-MM was capable of continuously tuning the resonance of the <i>THz</i> wave transmission with the tip gap. Additionally, the dimple served as an anti-stiction structure, providing the cantilever with a fabrication yield of 99.8%. This work shows a practical pathway to high-performance active metamaterials, which holds potential in advanced THz technologies such as 6G communications and fast imaging.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"351 - 358"},"PeriodicalIF":1.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140919852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1007/s10043-024-00881-9
Ryoichi Horisaki
Imaging is a longstanding research topic in optics and photonics and is an important tool for a wide range of scientific and engineering fields. Computational imaging is a powerful framework for designing innovative imaging systems by incorporating signal processing into optics. Conventional approaches involve individually designed optical and signal processing systems, which unnecessarily increased costs. Computational imaging, on the other hand, enhances the imaging performance of optical systems, visualizes invisible targets, and minimizes optical hardware. Digital holography and computer-generated holography are the roots of this field. Recent advances in information science, such as deep learning, and increasing computational power have rapidly driven computational imaging and have resulted in the reinvention these imaging technologies. In this paper, I survey recent research topics in computational imaging, where optical randomness is key. Imaging through scattering media, non-interferometric quantitative phase imaging, and real-time computer-generated holography are representative examples. These recent optical sensing and control technologies will serve as the foundations of next-generation imaging systems in various fields, such as biomedicine, security, and astronomy.
{"title":"Computational imaging with randomness","authors":"Ryoichi Horisaki","doi":"10.1007/s10043-024-00881-9","DOIUrl":"10.1007/s10043-024-00881-9","url":null,"abstract":"<div><p>Imaging is a longstanding research topic in optics and photonics and is an important tool for a wide range of scientific and engineering fields. Computational imaging is a powerful framework for designing innovative imaging systems by incorporating signal processing into optics. Conventional approaches involve individually designed optical and signal processing systems, which unnecessarily increased costs. Computational imaging, on the other hand, enhances the imaging performance of optical systems, visualizes invisible targets, and minimizes optical hardware. Digital holography and computer-generated holography are the roots of this field. Recent advances in information science, such as deep learning, and increasing computational power have rapidly driven computational imaging and have resulted in the reinvention these imaging technologies. In this paper, I survey recent research topics in computational imaging, where optical randomness is key. Imaging through scattering media, non-interferometric quantitative phase imaging, and real-time computer-generated holography are representative examples. These recent optical sensing and control technologies will serve as the foundations of next-generation imaging systems in various fields, such as biomedicine, security, and astronomy.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"282 - 289"},"PeriodicalIF":1.1,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10043-024-00881-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1007/s10043-024-00882-8
Masashi Miyata
Increasing the sensitivity of image sensors is a major challenge for current imaging technology. Researchers are tackling it because highly sensitive sensors enable objects to be recognized even in dark environments, which is critical for today’s smartphones, wearable devices, and automobiles. Unfortunately, conventional image-sensor architectures use light-absorptive color filters on every pixel, which fundamentally limits the detected light power per pixel. Recent advances in optical metasurfaces have led to the creation of pixelated light-transmissive color splitters with the potential to enhance sensor sensitivity. These metasurfaces can be used instead of color filters to distinguish primary colors, and unlike color filters, they can direct almost all of the incident light to the photodetectors, thereby maximizing the detectable light power. This review focuses on such metasurface-based color splitters enabling high-sensitivity color-image sensors. Their underlying principles are introduced with a focus on dispersion engineering. Then, their capabilities as optical elements are assessed on the basis of our recent findings. Finally, it is discussed how they can be used to create high-sensitivity color-image sensors.
{"title":"Dispersion-engineered metasurfaces for high-sensitivity color image sensors","authors":"Masashi Miyata","doi":"10.1007/s10043-024-00882-8","DOIUrl":"10.1007/s10043-024-00882-8","url":null,"abstract":"<div><p>Increasing the sensitivity of image sensors is a major challenge for current imaging technology. Researchers are tackling it because highly sensitive sensors enable objects to be recognized even in dark environments, which is critical for today’s smartphones, wearable devices, and automobiles. Unfortunately, conventional image-sensor architectures use light-absorptive color filters on every pixel, which fundamentally limits the detected light power per pixel. Recent advances in optical metasurfaces have led to the creation of pixelated light-transmissive color splitters with the potential to enhance sensor sensitivity. These metasurfaces can be used instead of color filters to distinguish primary colors, and unlike color filters, they can direct almost all of the incident light to the photodetectors, thereby maximizing the detectable light power. This review focuses on such metasurface-based color splitters enabling high-sensitivity color-image sensors. Their underlying principles are introduced with a focus on dispersion engineering. Then, their capabilities as optical elements are assessed on the basis of our recent findings. Finally, it is discussed how they can be used to create high-sensitivity color-image sensors.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"290 - 298"},"PeriodicalIF":1.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10043-024-00882-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a small-world network-based reservoir computing (SWN-RC) is introduced to a micro-electromechanical system (MEMS) mirror-based laser scanner to achieve high-accuracy and low-delay laser trajectory control. The benefits of SWN-RC are confirmed through a comprehensive simulation, comparing it with reservoir computing (RC) based on regular and random networks. Subsequently, the RC control module is designed and implemented on a cost-optimized field-programmable gate array (FPGA). To balance the resource consumption and the processing delay, we use a half-parallel architecture for the large-scale matrix multiplications. In addition, the weight matrices of the RC are expressed by the 12-bit fixed-point data, which sufficiently suppresses the quantization noise. Furthermore, we simplify the activation function as a piecewise linear function and store the values in the read-only memory (ROM), resulting in a 76.6% reduction in ROM utilization. Finally, the SWN-RC, regular-RC, and random-RC control modules are implemented on the FPGA board and experimentally tested in the MEMS mirror-based laser scanner system. To the authors’ knowledge, it is the first reported RC-based MEMS mirror control system implemented on FPGA. In addition, the PID control is also tested as a baseline experiment. The results indicate that the RC control greatly outperforms the PID control with a 57.18% reduction in delay and over a 58.83% reduction in root mean square error (RMSE). Among the RC controls, the SWN-RC exhibits the best performance than the others. The SWN-RC achieves a further 14.03% and 12.42% reduction in RMSE compared to regular-RC and random-RC, respectively.
{"title":"Reservoir computing for a MEMS mirror-based laser beam control on FPGA","authors":"Yuan Wang, Keisuke Uchida, Munenori Takumi, Katsuhiro Ishii, Ken-ichi Kitayama","doi":"10.1007/s10043-024-00871-x","DOIUrl":"https://doi.org/10.1007/s10043-024-00871-x","url":null,"abstract":"<p>In this paper, a small-world network-based reservoir computing (SWN-RC) is introduced to a micro-electromechanical system (MEMS) mirror-based laser scanner to achieve high-accuracy and low-delay laser trajectory control. The benefits of SWN-RC are confirmed through a comprehensive simulation, comparing it with reservoir computing (RC) based on regular and random networks. Subsequently, the RC control module is designed and implemented on a cost-optimized field-programmable gate array (FPGA). To balance the resource consumption and the processing delay, we use a half-parallel architecture for the large-scale matrix multiplications. In addition, the weight matrices of the RC are expressed by the 12-bit fixed-point data, which sufficiently suppresses the quantization noise. Furthermore, we simplify the activation function as a piecewise linear function and store the values in the read-only memory (ROM), resulting in a 76.6% reduction in ROM utilization. Finally, the SWN-RC, regular-RC, and random-RC control modules are implemented on the FPGA board and experimentally tested in the MEMS mirror-based laser scanner system. To the authors’ knowledge, it is the first reported RC-based MEMS mirror control system implemented on FPGA. In addition, the PID control is also tested as a baseline experiment. The results indicate that the RC control greatly outperforms the PID control with a 57.18% reduction in delay and over a 58.83% reduction in root mean square error (RMSE). Among the RC controls, the SWN-RC exhibits the best performance than the others. The SWN-RC achieves a further 14.03% and 12.42% reduction in RMSE compared to regular-RC and random-RC, respectively.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"23 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-11DOI: 10.1007/s10043-024-00883-7
Zheng Li, Renjie Li, Zhuohong Feng, Zhezhe Wang
UV curing hybrid materials via the photo polymerization have significant significance for the lithography fields due to the high resolution. In this work, the UV-curable SiO2 materials with chelating compound structure are synthesized by photosensitive Sol–Gel approach, which have a wide absorption band at 267 nm. With the UV light irradiation, the chelating compound structure decomposes and the solubility of the film in organic solvent decreases. Based on this premise, the presented material exhibits the ability to fabricating highly ordered SiO2 microarrays on several substrates through UV photolithography. The SiO2 micro arrays can be used to as templates to prepare noble metal micro-structures, which own wide potential application prospects in highly ordered SERS substrates with high activity and reproductivity for trace detection.
{"title":"Development of SiO2 UV-curable materials and their fine-patterning using sol-gel method","authors":"Zheng Li, Renjie Li, Zhuohong Feng, Zhezhe Wang","doi":"10.1007/s10043-024-00883-7","DOIUrl":"10.1007/s10043-024-00883-7","url":null,"abstract":"<div><p>UV curing hybrid materials via the photo polymerization have significant significance for the lithography fields due to the high resolution. In this work, the UV-curable SiO<sub>2</sub> materials with chelating compound structure are synthesized by photosensitive Sol–Gel approach, which have a wide absorption band at 267 nm. With the UV light irradiation, the chelating compound structure decomposes and the solubility of the film in organic solvent decreases. Based on this premise, the presented material exhibits the ability to fabricating highly ordered SiO<sub>2</sub> microarrays on several substrates through UV photolithography. The SiO<sub>2</sub> micro arrays can be used to as templates to prepare noble metal micro-structures, which own wide potential application prospects in highly ordered SERS substrates with high activity and reproductivity for trace detection.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"345 - 350"},"PeriodicalIF":1.1,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1007/s10043-024-00878-4
Zhao Shen, Xiangye Zeng, Jingyi Wang, Jianfei Liu, Jia Lu, Jie Ma, Yilin Zhang, Baoshuo Fan
This paper focuses on the channel impairments separability of two histogram-based features, asynchronous amplitude histograms (AAH) and asynchronous delay-tap plot (ADTP), commonly used in direct-detection optical performance monitoring (OPM) techniques. This paper presents an in-depth study of the conditions under which these two histogram features are applicable in OPM. These high-dimensional features, AAH and ADTP, are dimensionally reduced using a state-of-the-art data visualization algorithm called Uniform Manifold Approximation and Projection (UMAP) algorithm. After data visualization, it can be found these two histogram-based features have some limitations in distinguishing between different levels of impairments in some specific cases. These features cannot achieve high accuracy in monitoring optical performance in these given situations, no matter how complex the classifier is designed. Extensive simulation experiments were performed to study the classification performance of the two histogram features in the single and multiple impairments cases. The results show that both AAH and ADTP can be used to monitor cumulative dispersion (CD) and optical signal to noise ratio (OSNR) in the case of the single impairment. In addition, the monitoring performance of both features is better for dispersion in the case of multiple impairments coexistence, while both have limitations for OSNR monitoring. However, the anti-dispersion interference ability of ADTP is better than that of AAH. The plausibility of the study results is verified by estimating the channel impairments under different conditions using a deep neural network-based (DNN) identifier. The impairments separation visualization results of UMAP are highly consistent with the estimation results of the DNN-based classifier, achieving the interconnection of usefulness and practicality.
{"title":"Investigation of impairments separability in direct detection optical performance monitoring based on UMAP technique","authors":"Zhao Shen, Xiangye Zeng, Jingyi Wang, Jianfei Liu, Jia Lu, Jie Ma, Yilin Zhang, Baoshuo Fan","doi":"10.1007/s10043-024-00878-4","DOIUrl":"10.1007/s10043-024-00878-4","url":null,"abstract":"<div><p>This paper focuses on the channel impairments separability of two histogram-based features, asynchronous amplitude histograms (AAH) and asynchronous delay-tap plot (ADTP), commonly used in direct-detection optical performance monitoring (OPM) techniques. This paper presents an in-depth study of the conditions under which these two histogram features are applicable in OPM. These high-dimensional features, AAH and ADTP, are dimensionally reduced using a state-of-the-art data visualization algorithm called Uniform Manifold Approximation and Projection (UMAP) algorithm. After data visualization, it can be found these two histogram-based features have some limitations in distinguishing between different levels of impairments in some specific cases. These features cannot achieve high accuracy in monitoring optical performance in these given situations, no matter how complex the classifier is designed. Extensive simulation experiments were performed to study the classification performance of the two histogram features in the single and multiple impairments cases. The results show that both AAH and ADTP can be used to monitor cumulative dispersion (CD) and optical signal to noise ratio (OSNR) in the case of the single impairment. In addition, the monitoring performance of both features is better for dispersion in the case of multiple impairments coexistence, while both have limitations for OSNR monitoring. However, the anti-dispersion interference ability of ADTP is better than that of AAH. The plausibility of the study results is verified by estimating the channel impairments under different conditions using a deep neural network-based (DNN) identifier. The impairments separation visualization results of UMAP are highly consistent with the estimation results of the DNN-based classifier, achieving the interconnection of usefulness and practicality.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"329 - 344"},"PeriodicalIF":1.1,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1007/s10043-024-00873-9
Xiaochuan Sun, Difei Cao, Mingxiang Hao, Zhigang Li, Yingqi Li
Multi-channel transmission mode is the mainstream in real optical system scenarios, and its precise prediction of the optical channel quality of transmission (QoT) can provide guidance for the connections routing and margins allocation, avoiding network resources waste and unavailable connection establishment. However, current multi-channel QoT predictions devote to single-step modeling. It is difficult to grasp the state changes of the optical channel for a period of time in the future, thereby hardly enabling early warnings for abnormal channel conditions and timely maintenance deployment. To tackle this issue, we propose a novel multi-step multi-channel QoT prediction framework, i.e., the deep echo state attention network (DESAN). Structurally, it consists of stacked reservoirs that are successively connected, supporting multi-level feature extraction of optical QoT signal. Specially, the attention mechanism (AM) is introduced for enhancing each reservoir’s state, which captures long-term QoT data features more effectively, meanwhile reducing the negative impact of redundant neurons as much as possible. Finally, aggregating the AM outputs of all reservoirs’ states is for the DESAN training. On the real-world optical-layer characteristic data from Microsoft optical backbone network, the simulation results show that our proposal can make a good tradeoff between sequential multi-step QoT modeling performance and efficiency. The statistical verification is further adopted to demonstrate our findings.
{"title":"Improving multi-step prediction performance of multi-channel QoT over optical backbone networks: deep echo state attention network","authors":"Xiaochuan Sun, Difei Cao, Mingxiang Hao, Zhigang Li, Yingqi Li","doi":"10.1007/s10043-024-00873-9","DOIUrl":"https://doi.org/10.1007/s10043-024-00873-9","url":null,"abstract":"<p>Multi-channel transmission mode is the mainstream in real optical system scenarios, and its precise prediction of the optical channel quality of transmission (QoT) can provide guidance for the connections routing and margins allocation, avoiding network resources waste and unavailable connection establishment. However, current multi-channel QoT predictions devote to single-step modeling. It is difficult to grasp the state changes of the optical channel for a period of time in the future, thereby hardly enabling early warnings for abnormal channel conditions and timely maintenance deployment. To tackle this issue, we propose a novel multi-step multi-channel QoT prediction framework, i.e., the deep echo state attention network (DESAN). Structurally, it consists of stacked reservoirs that are successively connected, supporting multi-level feature extraction of optical QoT signal. Specially, the attention mechanism (AM) is introduced for enhancing each reservoir’s state, which captures long-term QoT data features more effectively, meanwhile reducing the negative impact of redundant neurons as much as possible. Finally, aggregating the AM outputs of all reservoirs’ states is for the DESAN training. On the real-world optical-layer characteristic data from Microsoft optical backbone network, the simulation results show that our proposal can make a good tradeoff between sequential multi-step QoT modeling performance and efficiency. The statistical verification is further adopted to demonstrate our findings.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"124 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140349008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1007/s10043-024-00880-w
Bing Liu, Wei-Wei Yu
In this paper, we employ the quantum trajectory Monte Carlo model to simulate the momentum distribution of Argon atoms during tunneling ionization. Our analysis illustrates the use of semi-classical models to study the changes in electron trajectories under different laser field intensities. And by studying the different subcycles, the changes of the interference pattern are observed. Our approach successfully observes the interference patterns resembling fishbone and spider stripes. We delve into the subperiodic interference structures present in the photoelectron momentum distributions. Specifically, we investigate the correlation effects of ionization trajectories on the interference fringes within the same period and in adjacent periods. Our analysis demonstrates that the holographic interference fringe results from the superposition of direct ionization trajectories and scattering trajectories. We elucidate the mechanisms underlying the formation of above-threshold ionization (ATI) ring structures and temporal double-slit interference patterns. Additionally, we investigate how wave packets perceive the Coulomb potential and its impact on interference phenomena under varying field intensities. Notably, without the Coulomb potential, the original spider-like holographic interference pattern disappears, replaced by temporal double-slit interference fringes similar to those observed within a comparable time frame.
{"title":"Investigation of interference structure with different field intensication in linearly polarized laser field","authors":"Bing Liu, Wei-Wei Yu","doi":"10.1007/s10043-024-00880-w","DOIUrl":"10.1007/s10043-024-00880-w","url":null,"abstract":"<div><p>In this paper, we employ the quantum trajectory Monte Carlo model to simulate the momentum distribution of Argon atoms during tunneling ionization. Our analysis illustrates the use of semi-classical models to study the changes in electron trajectories under different laser field intensities. And by studying the different subcycles, the changes of the interference pattern are observed. Our approach successfully observes the interference patterns resembling fishbone and spider stripes. We delve into the subperiodic interference structures present in the photoelectron momentum distributions. Specifically, we investigate the correlation effects of ionization trajectories on the interference fringes within the same period and in adjacent periods. Our analysis demonstrates that the holographic interference fringe results from the superposition of direct ionization trajectories and scattering trajectories. We elucidate the mechanisms underlying the formation of above-threshold ionization (ATI) ring structures and temporal double-slit interference patterns. Additionally, we investigate how wave packets perceive the Coulomb potential and its impact on interference phenomena under varying field intensities. Notably, without the Coulomb potential, the original spider-like holographic interference pattern disappears, replaced by temporal double-slit interference fringes similar to those observed within a comparable time frame.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"321 - 328"},"PeriodicalIF":1.1,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140349022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1007/s10043-024-00884-6
Zhenyu Li, Tao Wu, Zhenyang Shi, Enming Xu, Zuxing Zhang
A filter-free microwave photonic single-sideband mixer based on dual-polarization dual-drive Mach–Zehnder modulator (DPol-DDMZM) is proposed and verified experimentally. By adjusting the bias voltages of two DDMZMs, each DDMZM generates a single-sideband (SSB) signal with upper or lower sideband. The optical carrier is cancelled by adjusting the polarization controller before a polarizer. The single-sideband frequency upconversion and downconversion are independently achieved with the mixing spurs suppressed. The proposed frequency converter has a large operating bandwidth since no filter is used, and there is no dispersion-induced power fading due to the SSB modulation when transmitting in a long fiber with a dispersion. Experimental results show that all the mixing spurs are well suppressed over a wideband frequency range, and the maximum sideband suppression ratio of desired signal is up to 36 dB.
{"title":"Filter-free microwave photonic single-sideband mixer with mixing spurs suppressed based on dual-polarization dual-drive Mach–Zehnder modulator","authors":"Zhenyu Li, Tao Wu, Zhenyang Shi, Enming Xu, Zuxing Zhang","doi":"10.1007/s10043-024-00884-6","DOIUrl":"10.1007/s10043-024-00884-6","url":null,"abstract":"<div><p>A filter-free microwave photonic single-sideband mixer based on dual-polarization dual-drive Mach–Zehnder modulator (DPol-DDMZM) is proposed and verified experimentally. By adjusting the bias voltages of two DDMZMs, each DDMZM generates a single-sideband (SSB) signal with upper or lower sideband. The optical carrier is cancelled by adjusting the polarization controller before a polarizer. The single-sideband frequency upconversion and downconversion are independently achieved with the mixing spurs suppressed. The proposed frequency converter has a large operating bandwidth since no filter is used, and there is no dispersion-induced power fading due to the SSB modulation when transmitting in a long fiber with a dispersion. Experimental results show that all the mixing spurs are well suppressed over a wideband frequency range, and the maximum sideband suppression ratio of desired signal is up to 36 dB.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"315 - 320"},"PeriodicalIF":1.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}