In this contribution, we provide an overview of gold compound applications against viruses or parasites during recent years. The special properties of gold have been the subject of intense investigation in recent years, which has led to the development of its chemistry with the synthesis of new compounds and the study of its applicability in various areas such as catalysis, materials, nanotechnology and medicine. Herein, thirteen gold articles with applications in several viruses, such as hepatitis C virus (HCV), influenza A virus (H1N1), vesicular stomatitis virus (VSV), coronavirus (SARS-CoV and SARS-CoV-2), Dengue virus, and several parasites such as Plasmodium sp., Leishmania sp., Tripanossoma sp., Brugia sp., Schistosoma sp., Onchocerca sp., Acanthamoeba sp., and Trichomonas sp. are described. Gold compounds with anti-viral activity include gold nanoparticles with the ligands mercaptoundecanosulfonate, 1-octanethiol and aldoses and gold complexes with phosphine and carbene ligands. All of the gold compounds with anti-parasitic activity reported are gold complexes of the carbene type. Auranofin is a gold drug already used against rheumatoid arthritis, and it has also been tested against virus and parasites.
{"title":"Biological Activity of Gold Compounds against Viruses and Parasitosis: A Systematic Review","authors":"Custódia S. C. Fonseca, M. Aureliano","doi":"10.3390/biochem2020010","DOIUrl":"https://doi.org/10.3390/biochem2020010","url":null,"abstract":"In this contribution, we provide an overview of gold compound applications against viruses or parasites during recent years. The special properties of gold have been the subject of intense investigation in recent years, which has led to the development of its chemistry with the synthesis of new compounds and the study of its applicability in various areas such as catalysis, materials, nanotechnology and medicine. Herein, thirteen gold articles with applications in several viruses, such as hepatitis C virus (HCV), influenza A virus (H1N1), vesicular stomatitis virus (VSV), coronavirus (SARS-CoV and SARS-CoV-2), Dengue virus, and several parasites such as Plasmodium sp., Leishmania sp., Tripanossoma sp., Brugia sp., Schistosoma sp., Onchocerca sp., Acanthamoeba sp., and Trichomonas sp. are described. Gold compounds with anti-viral activity include gold nanoparticles with the ligands mercaptoundecanosulfonate, 1-octanethiol and aldoses and gold complexes with phosphine and carbene ligands. All of the gold compounds with anti-parasitic activity reported are gold complexes of the carbene type. Auranofin is a gold drug already used against rheumatoid arthritis, and it has also been tested against virus and parasites.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85727472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deena Fayyad, Jessica L. Kelts, Tristan H. Nielson, Ibiere Lovelyn Epelle, Nicodemus C. Monear, Miguel T. G. Strawn, Benjamin N. Woerner, Besa Xhabija
Objectives: The emergence of coronavirus disease 2019 (COVID-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global health calamity unprecedented in the modern world. The disease spread worldwide, and to date, there have been over 230 million confirmed cases of COVID-19, including approximately 4.7 million deaths. Mutant variants of the virus have raised concerns about additional pandemic waves and threaten to reverse our progress thus far to limit the spread of the virus. These variants include Alpha, Beta, and Delta (first reported in December 2020 in the United Kingdom, South Africa, and India, respectively) and Gamma (reported in January 2021 in Brazil). In some cases, countries have even reported a rise in daily cases higher than the first wave in March 2020. Given the rapidly evolving nature of COVID-19 and subsequent new findings and updates each day, this review article aims to comprehensively summarize the etiology, pathophysiology, and clinical features of SARS-CoV-2 infection. Methods: A systematic review of the literature was performed in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to gain insight into the transmissibility, pathogenesis, entry factors, and immune response of COVID-19. Specifically, Pubmed and Google Scholar databases were searched to identify any relevant articles. References within the included articles were reviewed. Published articles related to search criteria from the onset of the COVID-19 pandemic to March 2022 were included. Results: Viral transmissibility is predominantly affected by the modes of transmission, various mutations on the nucleocapsid protein and endoRNAse, gender, age, and other factors. The pathophysiological mechanism is generally unknown, although the clinical manifestations such as headache, loss of smell and taste, vomiting, diarrhea, multiorgan failure, and dermatological and cardiovascular complications are well documented. The progression of infection depends on the immunopathological response and the innate/adaptive immunity. Conclusion: Our review has summarized the latest knowledge about SARS-CoV2. However, as the pandemic continues to spread across the continents, there is an urgent need for more research on potentially emerging coronaviruses and the development of a universal coronaviruses vaccine to put the pandemic behind us.
{"title":"COVID-19: A Systematic Review of the Transmissibility, Pathogenesis, Entry Factors, and Signature Immune Response","authors":"Deena Fayyad, Jessica L. Kelts, Tristan H. Nielson, Ibiere Lovelyn Epelle, Nicodemus C. Monear, Miguel T. G. Strawn, Benjamin N. Woerner, Besa Xhabija","doi":"10.3390/biochem2020009","DOIUrl":"https://doi.org/10.3390/biochem2020009","url":null,"abstract":"Objectives: The emergence of coronavirus disease 2019 (COVID-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global health calamity unprecedented in the modern world. The disease spread worldwide, and to date, there have been over 230 million confirmed cases of COVID-19, including approximately 4.7 million deaths. Mutant variants of the virus have raised concerns about additional pandemic waves and threaten to reverse our progress thus far to limit the spread of the virus. These variants include Alpha, Beta, and Delta (first reported in December 2020 in the United Kingdom, South Africa, and India, respectively) and Gamma (reported in January 2021 in Brazil). In some cases, countries have even reported a rise in daily cases higher than the first wave in March 2020. Given the rapidly evolving nature of COVID-19 and subsequent new findings and updates each day, this review article aims to comprehensively summarize the etiology, pathophysiology, and clinical features of SARS-CoV-2 infection. Methods: A systematic review of the literature was performed in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to gain insight into the transmissibility, pathogenesis, entry factors, and immune response of COVID-19. Specifically, Pubmed and Google Scholar databases were searched to identify any relevant articles. References within the included articles were reviewed. Published articles related to search criteria from the onset of the COVID-19 pandemic to March 2022 were included. Results: Viral transmissibility is predominantly affected by the modes of transmission, various mutations on the nucleocapsid protein and endoRNAse, gender, age, and other factors. The pathophysiological mechanism is generally unknown, although the clinical manifestations such as headache, loss of smell and taste, vomiting, diarrhea, multiorgan failure, and dermatological and cardiovascular complications are well documented. The progression of infection depends on the immunopathological response and the innate/adaptive immunity. Conclusion: Our review has summarized the latest knowledge about SARS-CoV2. However, as the pandemic continues to spread across the continents, there is an urgent need for more research on potentially emerging coronaviruses and the development of a universal coronaviruses vaccine to put the pandemic behind us.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74173980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mireia Alemany-Pagès, Rui Tavares, Anabela Marisa Azul, J. Ramalho‐Santos
Simple biochemical concepts can be hard to grasp by non-specialists, even when they are related to practical contexts in industry, day-to-day activities, or well-acknowledged pathological conditions. This is especially important in instances where accurate communication of biochemical aspects for different types of stakeholders may be crucial. Examples include interacting with policymakers to establish guidelines, with patients (and/or caregivers) to identify key concepts in promoting awareness and adherence to therapeutic regimens, or with teachers and students for novel approaches in critical thinking. Focusing on our own work in developing communication tools for different purposes, in this review we will focus on some examples of how biochemical concepts can be effectively translated into illustrations and graphical narratives. For this purpose, engagement with target audiences in developing the materials themselves is key. We also discuss how specific projects can be tailored for different purposes, as well as evidence that comic-book strategies are effective in conveying biochemical and biomedical knowledge.
{"title":"Translating Biochemistry Concepts into Cartoons and Graphic Narratives: Potential and Pitfalls","authors":"Mireia Alemany-Pagès, Rui Tavares, Anabela Marisa Azul, J. Ramalho‐Santos","doi":"10.3390/biochem2010008","DOIUrl":"https://doi.org/10.3390/biochem2010008","url":null,"abstract":"Simple biochemical concepts can be hard to grasp by non-specialists, even when they are related to practical contexts in industry, day-to-day activities, or well-acknowledged pathological conditions. This is especially important in instances where accurate communication of biochemical aspects for different types of stakeholders may be crucial. Examples include interacting with policymakers to establish guidelines, with patients (and/or caregivers) to identify key concepts in promoting awareness and adherence to therapeutic regimens, or with teachers and students for novel approaches in critical thinking. Focusing on our own work in developing communication tools for different purposes, in this review we will focus on some examples of how biochemical concepts can be effectively translated into illustrations and graphical narratives. For this purpose, engagement with target audiences in developing the materials themselves is key. We also discuss how specific projects can be tailored for different purposes, as well as evidence that comic-book strategies are effective in conveying biochemical and biomedical knowledge.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73346871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Bragança, Sónia Figueiredo, Carla Alexandra Rego, Filomena dos Reis Conceição, Saúl Neves de Jesus
Researchers at Universities generate and convey the knowledge acquired through communications in specialized (inter)national journals and congresses. An effort to share the scientific achievements with the general public is extremely important. For this purpose, we have launched the UALGORITMO, a journal freely accessible online, written in lay Portuguese language by Researchers of the University of the Algarve, to summarize recent communications published in peer reviewed journals. After submission, the manuscripts are revised by High Schools Students of the Algarve, under the guidance of a schoolteacher, for further simplification of the language and general improvement of the manuscript and figures. The revised manuscripts by the authors are edited and published, with an acknowledgment and a presentation of the reviewers at the end of each article. To maximize the outreach, the articles include a summarized biography of the authors, and links to their research centers and teaching courses. We believe that the UALGORITMO is a valuable instrument to promote scientific literacy and culture amongst all communities.
{"title":"UALGORITMO, a New Instrument of the University of Algarve for Scientific Outreach","authors":"J. Bragança, Sónia Figueiredo, Carla Alexandra Rego, Filomena dos Reis Conceição, Saúl Neves de Jesus","doi":"10.3390/biochem2010007","DOIUrl":"https://doi.org/10.3390/biochem2010007","url":null,"abstract":"Researchers at Universities generate and convey the knowledge acquired through communications in specialized (inter)national journals and congresses. An effort to share the scientific achievements with the general public is extremely important. For this purpose, we have launched the UALGORITMO, a journal freely accessible online, written in lay Portuguese language by Researchers of the University of the Algarve, to summarize recent communications published in peer reviewed journals. After submission, the manuscripts are revised by High Schools Students of the Algarve, under the guidance of a schoolteacher, for further simplification of the language and general improvement of the manuscript and figures. The revised manuscripts by the authors are edited and published, with an acknowledgment and a presentation of the reviewers at the end of each article. To maximize the outreach, the articles include a summarized biography of the authors, and links to their research centers and teaching courses. We believe that the UALGORITMO is a valuable instrument to promote scientific literacy and culture amongst all communities.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87273179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raffaella Gallo, Erika De Sensi, Francesca Storino, S. Panni
PDZ domains are involved in many cellular processes and are key regulators of the cell physiology. A huge number of studies have investigated the binding specificity of PDZ domains to the carboxyl-terminal sequence of target proteins, while the molecular mechanisms that mediate the recognition of internal binding regions are largely unexplored. In the present study, we describe a ligand motif located in the catalytic domain of the phosphatase Dusp26 which mediates its binding to the PDZ-4 of Scribble. Site-directed mutagenesis identified a conserved tyrosine residue as relevant for the binding. The interaction with the PDZ domain could help the phosphatase to recruit its specific targets.
{"title":"An Unconventional Ligand for Scribble PDZ-4 Domain Mediates Its Interaction with Dusp26","authors":"Raffaella Gallo, Erika De Sensi, Francesca Storino, S. Panni","doi":"10.3390/biochem2010006","DOIUrl":"https://doi.org/10.3390/biochem2010006","url":null,"abstract":"PDZ domains are involved in many cellular processes and are key regulators of the cell physiology. A huge number of studies have investigated the binding specificity of PDZ domains to the carboxyl-terminal sequence of target proteins, while the molecular mechanisms that mediate the recognition of internal binding regions are largely unexplored. In the present study, we describe a ligand motif located in the catalytic domain of the phosphatase Dusp26 which mediates its binding to the PDZ-4 of Scribble. Site-directed mutagenesis identified a conserved tyrosine residue as relevant for the binding. The interaction with the PDZ domain could help the phosphatase to recruit its specific targets.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82626574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Pagani, C. Chinello, A. Mahajneh, F. Clerici, Lucrezia Criscuolo, A. Favalli, P. Gruarin, R. Grifantini, A. Bandera, A. Lombardi, R. Ungaro, A. Muscatello, F. Blasi, A. Gori, F. Magni
Since the start of the COVID-19 outbreak, more than four million people have died of this disease. Given its ability to provide a precise response, mass spectrometry-based proteomics could represent a useful tool to study this pathology. To this end, an untargeted nLC-ESI-MS/MS-based method to characterise SARS-CoV-2 proteins, including possible variants, and investigate human saliva and plasma proteome in a single analysis was developed for further application in patients. Four SARS-CoV-2 recombinant proteins, three (S1–S2–RBD) belonging to the spike glycoprotein (S) and one corresponding to the nucleoprotein (N), were prepared and analysed with nLC-UHRTOF by injecting decreasing amounts to establish the limit of detection (LOD) of the method. This was determined as 10 pg for all the components of the S protein and for N (71 amol and 213 amol, respectively). Various viral inactivation strategies plus deglycosylation and digestion approaches were then tested in saliva and plasma spiked with different quantities of SARS-CoV-2 recombinant proteins. The limit of characterisation (LOC) in saliva for the N and S proteins was observed at 100 pg (coverage of 20% and 3%, respectively); instead, in plasma, it was 33 pg for N and 330 pg for the S protein, with a coverage of 4% for both. About 300 and 800 human proteins were identified in plasma and saliva, respectively, including several key effectors and pathways that are known to be altered in COVID-19 patients. In conclusion, this approach allows SARS-CoV-2 proteins and the human proteome to be simultaneously explored, both for plasma and saliva, showing a high relevant potential for retrospective studies aimed at investigating possible virus variants and for patient stratification.
{"title":"Untargeted Mass Spectrometry Approach to Study SARS-CoV-2 Proteins in Human Plasma and Saliva Proteome","authors":"L. Pagani, C. Chinello, A. Mahajneh, F. Clerici, Lucrezia Criscuolo, A. Favalli, P. Gruarin, R. Grifantini, A. Bandera, A. Lombardi, R. Ungaro, A. Muscatello, F. Blasi, A. Gori, F. Magni","doi":"10.3390/biochem2010005","DOIUrl":"https://doi.org/10.3390/biochem2010005","url":null,"abstract":"Since the start of the COVID-19 outbreak, more than four million people have died of this disease. Given its ability to provide a precise response, mass spectrometry-based proteomics could represent a useful tool to study this pathology. To this end, an untargeted nLC-ESI-MS/MS-based method to characterise SARS-CoV-2 proteins, including possible variants, and investigate human saliva and plasma proteome in a single analysis was developed for further application in patients. Four SARS-CoV-2 recombinant proteins, three (S1–S2–RBD) belonging to the spike glycoprotein (S) and one corresponding to the nucleoprotein (N), were prepared and analysed with nLC-UHRTOF by injecting decreasing amounts to establish the limit of detection (LOD) of the method. This was determined as 10 pg for all the components of the S protein and for N (71 amol and 213 amol, respectively). Various viral inactivation strategies plus deglycosylation and digestion approaches were then tested in saliva and plasma spiked with different quantities of SARS-CoV-2 recombinant proteins. The limit of characterisation (LOC) in saliva for the N and S proteins was observed at 100 pg (coverage of 20% and 3%, respectively); instead, in plasma, it was 33 pg for N and 330 pg for the S protein, with a coverage of 4% for both. About 300 and 800 human proteins were identified in plasma and saliva, respectively, including several key effectors and pathways that are known to be altered in COVID-19 patients. In conclusion, this approach allows SARS-CoV-2 proteins and the human proteome to be simultaneously explored, both for plasma and saliva, showing a high relevant potential for retrospective studies aimed at investigating possible virus variants and for patient stratification.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"82 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80841367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sensing is an essential feature of life, where many systems have been developed. Diatomic molecules such as O2, NO and CO exhibit an important role in life, which requires specialized sensors. Among the sensors discovered, heme-based gas sensors compose the largest group with at least eight different families. This large variety of proteins also exhibits many distinct ways of sensing diatomic molecules and promote a response for biological adaptation. Here, we briefly describe a story of two impressive systems of heme-based oxygen sensors, FixL from Rhizobium and DevS(DosS)/DosT from Mycobacterium tuberculosis. Beyond this, we also examined many applications that have emerged. These heme-based gas sensors have been manipulated to function as chemical and biochemical analytical systems to detect small molecules (O2, CO, NO, CN−), fluorophores for imaging and bioanalysis, regulation of processes in synthetic biology and preparation of biocatalysts among others. These exciting features show the robustness of this field and multiple opportunities ahead besides the advances in the fundamental understanding of their molecular functioning.
感知是生命的一个基本特征,已经开发了许多系统。双原子分子如O2、NO和CO在生命中发挥着重要作用,这需要专门的传感器。在发现的传感器中,以血红素为基础的气体传感器组成了最大的群体,至少有八个不同的家族。这种种类繁多的蛋白质也表现出许多不同的感知双原子分子的方式,并促进生物适应的反应。在这里,我们简要地描述了两个令人印象深刻的血红素氧传感器系统的故事,来自根瘤菌的FixL和来自结核分枝杆菌的DevS(DosS)/DosT。除此之外,我们还研究了许多已经出现的应用程序。这些基于血红素的气体传感器已被用作化学和生化分析系统,用于检测小分子(O2, CO, NO, CN−),用于成像和生物分析的荧光团,合成生物学过程的调节和生物催化剂的制备等。这些令人兴奋的特征表明,除了对其分子功能的基本理解取得进展外,该领域的稳健性和未来的多种机会。
{"title":"Heme-Based Gas Sensors in Nature and Their Chemical and Biotechnological Applications","authors":"A. C. S. Gondim, W. G. Guimarães, E. H. Sousa","doi":"10.3390/biochem2010004","DOIUrl":"https://doi.org/10.3390/biochem2010004","url":null,"abstract":"Sensing is an essential feature of life, where many systems have been developed. Diatomic molecules such as O2, NO and CO exhibit an important role in life, which requires specialized sensors. Among the sensors discovered, heme-based gas sensors compose the largest group with at least eight different families. This large variety of proteins also exhibits many distinct ways of sensing diatomic molecules and promote a response for biological adaptation. Here, we briefly describe a story of two impressive systems of heme-based oxygen sensors, FixL from Rhizobium and DevS(DosS)/DosT from Mycobacterium tuberculosis. Beyond this, we also examined many applications that have emerged. These heme-based gas sensors have been manipulated to function as chemical and biochemical analytical systems to detect small molecules (O2, CO, NO, CN−), fluorophores for imaging and bioanalysis, regulation of processes in synthetic biology and preparation of biocatalysts among others. These exciting features show the robustness of this field and multiple opportunities ahead besides the advances in the fundamental understanding of their molecular functioning.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79515928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Doughty, Louise Oppermann, N. Hartmann, S. Dreschers, Christian Gille, T. Orlikowsky
Infection and sepsis remain among the leading causes of neonatal mortality. The susceptibility of newborns to infection can be attributed to their immature immune system. Regarding immune response, monocytes represent a numerically minor population of leukocytes. However, they contribute to a variety of immunological demands, such as continuous replenishment of resident macrophages under non-infectious conditions and migration to inflamed sites where they neutralize pathogens and secrete cytokines. Further functions include the presentation of antigens and T-cell activation. Cytokines coordinate host responses to bacterial and viral infections and orchestrate ongoing physiological signaling between cells of non-immune tissues. A critical event is the skewing of the cytokine repertoire to achieve a resolution of infection. In this regard, monocytes may hold a key position as deciders in addition to their phagocytic activity, securing the extinction of pathogens to prevent broader organ damage by toxins and pro-inflammatory reactions. Neonatal monocytes undergo various regulatory and metabolic changes. Thus, they are thought to be vulnerable in anticipating pro-inflammatory conditions and cause severe progressions which increase the risk of developing sepsis. Furthermore, clinical studies have shown that exposure to inflammation puts neonates at a high risk for adverse pulmonary, immunological and other organ developments, which may result in multiorgan disease. This review discusses significant functions and impairments of neonatal monocytes that are decisive for the outcome of bacterial infections.
{"title":"Monocytes in Neonatal Bacterial Sepsis: Think Tank or Workhorse?","authors":"C. Doughty, Louise Oppermann, N. Hartmann, S. Dreschers, Christian Gille, T. Orlikowsky","doi":"10.3390/biochem2010003","DOIUrl":"https://doi.org/10.3390/biochem2010003","url":null,"abstract":"Infection and sepsis remain among the leading causes of neonatal mortality. The susceptibility of newborns to infection can be attributed to their immature immune system. Regarding immune response, monocytes represent a numerically minor population of leukocytes. However, they contribute to a variety of immunological demands, such as continuous replenishment of resident macrophages under non-infectious conditions and migration to inflamed sites where they neutralize pathogens and secrete cytokines. Further functions include the presentation of antigens and T-cell activation. Cytokines coordinate host responses to bacterial and viral infections and orchestrate ongoing physiological signaling between cells of non-immune tissues. A critical event is the skewing of the cytokine repertoire to achieve a resolution of infection. In this regard, monocytes may hold a key position as deciders in addition to their phagocytic activity, securing the extinction of pathogens to prevent broader organ damage by toxins and pro-inflammatory reactions. Neonatal monocytes undergo various regulatory and metabolic changes. Thus, they are thought to be vulnerable in anticipating pro-inflammatory conditions and cause severe progressions which increase the risk of developing sepsis. Furthermore, clinical studies have shown that exposure to inflammation puts neonates at a high risk for adverse pulmonary, immunological and other organ developments, which may result in multiorgan disease. This review discusses significant functions and impairments of neonatal monocytes that are decisive for the outcome of bacterial infections.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89325074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polyoxometalates (POMs) are clusters of units of oxoanions of transition metals, such as Mo, W, V and Nb, that can be formed upon acidification of neutral solutions. Once formed, some POMs have shown to persist in solution, even in the neutral and basic pH range. These inorganic clusters, amenable of a variety of structures, have been studied in environmental, chemical, and industrial fields, having applications in catalysis and macromolecular crystallography, as well as applications in biomedicine, such as cancer, bacterial and viral infections, among others. Herein, we connect recent POMs environmental applications in the decomposition of emergent pollutants with POMs’ biomedical activities and effects against cancer, bacteria, and viruses. With recent insights in POMs being pure, organic/inorganic hybrid materials, POM-based ionic liquid crystals and POM-ILs, and their applications in emergent pollutants degradation, including microplastics, are referred. It is perceived that the majority of the POMs studies against cancer, bacteria, and viruses were performed in the last ten years. POMs’ biological effects include apoptosis, cell cycle arrest, interference with the ions transport system, inhibition of mRNA synthesis, cell morphology changes, formation of reaction oxygen species, inhibition of virus binding to the host cell, and interaction with virus protein cages, among others. We additionally refer to POMs’ interactions with various proteins, including P-type ATPases, aquoporins, cinases, phosphatases, among others. Finally, POMs’ stability and speciation at physiological conditions are addressed.
{"title":"The Future Is Bright for Polyoxometalates","authors":"M. Aureliano","doi":"10.3390/biochem2010002","DOIUrl":"https://doi.org/10.3390/biochem2010002","url":null,"abstract":"Polyoxometalates (POMs) are clusters of units of oxoanions of transition metals, such as Mo, W, V and Nb, that can be formed upon acidification of neutral solutions. Once formed, some POMs have shown to persist in solution, even in the neutral and basic pH range. These inorganic clusters, amenable of a variety of structures, have been studied in environmental, chemical, and industrial fields, having applications in catalysis and macromolecular crystallography, as well as applications in biomedicine, such as cancer, bacterial and viral infections, among others. Herein, we connect recent POMs environmental applications in the decomposition of emergent pollutants with POMs’ biomedical activities and effects against cancer, bacteria, and viruses. With recent insights in POMs being pure, organic/inorganic hybrid materials, POM-based ionic liquid crystals and POM-ILs, and their applications in emergent pollutants degradation, including microplastics, are referred. It is perceived that the majority of the POMs studies against cancer, bacteria, and viruses were performed in the last ten years. POMs’ biological effects include apoptosis, cell cycle arrest, interference with the ions transport system, inhibition of mRNA synthesis, cell morphology changes, formation of reaction oxygen species, inhibition of virus binding to the host cell, and interaction with virus protein cages, among others. We additionally refer to POMs’ interactions with various proteins, including P-type ATPases, aquoporins, cinases, phosphatases, among others. Finally, POMs’ stability and speciation at physiological conditions are addressed.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"308 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77636558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bipolar Disorder (BD), a chronic mental illness, does not have an ideal treatment, and patients with BD have a higher chance of being diagnosed with alcohol abuse, liver disease, and diabetes. The goal of treatment is to prevent a relapse in BD episodes and find a new treatment. The research here looks at the genetics of BD and ignores environmental factors, as they are subjective. Therapy treats known environmental triggers and stressors and explores methods to reduce them. However, therapy alone cannot fully alleviate the symptoms of BD. My research employs text-mining as a primary strategy to obtain relevant genes and drugs pertaining to BD. The main gene involved is the Brain-Derived Neurotrophic Factor (BDNF). Popular drugs currently used for treatment of BD are Lithium and Carbamazepine. Using CMapPy to look at gene expression data, one sees a relationship between the two drug therapies and BDNF. Lithium fails to treat mania and Carbamazepine fails to treat depression, relatively speaking. When comparing gene expression data of Lithium and Carbamazepine with Ketamine, a newer therapy for BD, Ketamine, raises the BDNF level, keeps it elevated, and effectively controls BD episodes. Ketamine does not have the shortcomings that Lithium and Carbamazepine have. Next steps would include conducting a clinical trial with the hopeful application of Ketamine as a new treatment for BD.
{"title":"Drug Repositioning Ketamine as a New Treatment for Bipolar Disorder Using Text Mining","authors":"Shivani Manikandan, S. Misra, S. McCalla","doi":"10.3390/biochem2010001","DOIUrl":"https://doi.org/10.3390/biochem2010001","url":null,"abstract":"Bipolar Disorder (BD), a chronic mental illness, does not have an ideal treatment, and patients with BD have a higher chance of being diagnosed with alcohol abuse, liver disease, and diabetes. The goal of treatment is to prevent a relapse in BD episodes and find a new treatment. The research here looks at the genetics of BD and ignores environmental factors, as they are subjective. Therapy treats known environmental triggers and stressors and explores methods to reduce them. However, therapy alone cannot fully alleviate the symptoms of BD. My research employs text-mining as a primary strategy to obtain relevant genes and drugs pertaining to BD. The main gene involved is the Brain-Derived Neurotrophic Factor (BDNF). Popular drugs currently used for treatment of BD are Lithium and Carbamazepine. Using CMapPy to look at gene expression data, one sees a relationship between the two drug therapies and BDNF. Lithium fails to treat mania and Carbamazepine fails to treat depression, relatively speaking. When comparing gene expression data of Lithium and Carbamazepine with Ketamine, a newer therapy for BD, Ketamine, raises the BDNF level, keeps it elevated, and effectively controls BD episodes. Ketamine does not have the shortcomings that Lithium and Carbamazepine have. Next steps would include conducting a clinical trial with the hopeful application of Ketamine as a new treatment for BD.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86099215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}