首页 > 最新文献

Bulletin of Japan Society of Coordination Chemistry最新文献

英文 中文
The Diversity of the Metal-Ligand Interplay in Coordination Chemistry† 配位化学中金属-配体相互作用的多样性
Pub Date : 2014-05-31 DOI: 10.4019/BJSCC.63.19
P. Braunstein
On the occasion of the 63th Conference of the Japan Society of Coordination Chemistry, held in Okinawa from November 2-4, 2013, it appears appropriate to recall that this year marks the 100th anniversary of the award of the Nobel Prize to Alfred Werner (1866-1919) "in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier investigations and opened up new fields of research especially in inorganic chemistry". His pioneering achievements laid the foundation of Coordination Chemistry. Elucidating the nature of the metal-ligand interactions and recognizing their central role in determining the structures and properties of coordination complexes soon became subjects of major endeavour. The complexity of some of the ligands used today contrasts with those found in Wernerʼs chemistry (halides, water, ammonia, ethylenediamine,...) and they often require multistep organic synthesis. Interestingly, in the days of this chemistry giant, the notion that metal-metal bonding could occur within molecules, and not only within bulk metals, was non-existent. Later on, it was recognized that such bonding could exist and be responsible for holding together dior trinuclear complexes, as in [Mn2(CO)10] 2 or [Ru3(CO)12]. 3 The new and fast growing field of cluster chemistry became coined a “post-Wernerian chemistry”. Already in 1999, a 3 volumes book was not sufficient to cover all the aspects of the synthetic, structural and theoretical chemistry of metal clusters and their diverse applications in numerous fields of modern science. In this Account, we shall examine selected examples of complexes in which the ligands play an essential role in determining the overall molecular properties. We will limit ourselves to those relevant to catalytic applications in ethylene oligomerization. Some polynuclear complexes and metal clusters, where the nuclearity and the nature of the metals present are of primary concern, will also be discussed. The molecular chemistʼs toolbox allows the combination of ligands, which can range from a single atom to complex biorelevant molecules, and metals to form monoor polynuclear metal complexes. When metal centres are associated within the same molecule through metal-metal interactions, clusters This Account will focus on some recent aspects of the research performed in the authorʼs laboratory. Selected examples of complexes in which the ligands play an essential role in determining the molecular properties will be examined. Concerning the applications of these complexes, we will limit ourselves to some aspects related to the catalytic oligomerization of ethylene. In the search for such catalysts, we found that deprotonation of N,OH ligands chelated to Ni(II) with NaH can give rise to a range of heterometallic Na-Ni polynuclear complexes. In addition to their catalytic relevance, their magnetic properties were also investigated and have revealed in some cases Single Molecule Magnet behaviour. The
在2013年11月2日至4日在冲绳举行的第63届日本配位化学学会会议上,似乎有必要回顾一下,今年是诺贝尔奖授予阿尔弗雷德·维尔纳(Alfred Werner, 1866-1919) 100周年。“表彰他在分子中原子连接方面的工作,使他对早期的研究有了新的认识,并开辟了新的研究领域,特别是在无机化学领域”。他的开创性成就奠定了配位化学的基础。阐明金属-配体相互作用的性质并认识到它们在确定配位配合物的结构和性质方面的核心作用很快成为主要努力的主题。今天使用的一些配体的复杂性与维尔纳的化学中发现的配体(卤化物、水、氨、乙二胺等)形成鲜明对比,它们通常需要多步有机合成。有趣的是,在这个化学巨人的时代,金属-金属键可以发生在分子内,而不仅仅是在大块金属中,这个概念是不存在的。后来,人们认识到这种键可以存在,并负责将两个三核配合物结合在一起,如[Mn2(CO)10] 2或[Ru3(CO)12]。团簇化学这一迅速发展的新领域被称为“后沃纳化学”。早在1999年,一本3卷的书就不足以涵盖金属团簇的合成、结构和理论化学的所有方面,以及它们在现代科学众多领域的各种应用。在本帐户中,我们将检查一些选择的例子,其中配体在决定整体分子性质方面起着重要作用。我们将局限于那些有关催化应用在乙烯低聚化。还将讨论一些多核配合物和金属团簇,其中存在的金属的核性和性质是主要关注的问题。分子化学家的工具箱允许配体的组合,其范围可以从单个原子到复杂的生物相关分子,和金属形成单核或多核金属配合物。当金属中心通过金属-金属相互作用在同一分子内相关联时,簇本帐户将侧重于作者实验室进行的研究的一些最新方面。选择的例子,其中配体在决定分子性质中起重要作用的配合物将被检查。关于这些配合物的应用,我们将限于与乙烯的催化低聚有关的一些方面。在寻找这类催化剂的过程中,我们发现N,OH配体与Ni(II)与na螯合的去质子化可以产生一系列异金属Na-Ni多核配合物。除了它们的催化作用外,它们的磁性也被研究了,并在某些情况下揭示了单分子磁铁的行为。我们还将讨论一些多核化学和簇化学,在这些化学中,预测金属核的核性和组成仍然是困难或不可能的。这强调了基础研究的重要性和认识到意外发现的贡献的必要性。还将提到簇化学与分子合成和活化、催化和纳米科学等各个领域的相关性。
{"title":"The Diversity of the Metal-Ligand Interplay in Coordination Chemistry†","authors":"P. Braunstein","doi":"10.4019/BJSCC.63.19","DOIUrl":"https://doi.org/10.4019/BJSCC.63.19","url":null,"abstract":"On the occasion of the 63th Conference of the Japan Society of Coordination Chemistry, held in Okinawa from November 2-4, 2013, it appears appropriate to recall that this year marks the 100th anniversary of the award of the Nobel Prize to Alfred Werner (1866-1919) \"in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier investigations and opened up new fields of research especially in inorganic chemistry\". His pioneering achievements laid the foundation of Coordination Chemistry. Elucidating the nature of the metal-ligand interactions and recognizing their central role in determining the structures and properties of coordination complexes soon became subjects of major endeavour. The complexity of some of the ligands used today contrasts with those found in Wernerʼs chemistry (halides, water, ammonia, ethylenediamine,...) and they often require multistep organic synthesis. Interestingly, in the days of this chemistry giant, the notion that metal-metal bonding could occur within molecules, and not only within bulk metals, was non-existent. Later on, it was recognized that such bonding could exist and be responsible for holding together dior trinuclear complexes, as in [Mn2(CO)10] 2 or [Ru3(CO)12]. 3 The new and fast growing field of cluster chemistry became coined a “post-Wernerian chemistry”. Already in 1999, a 3 volumes book was not sufficient to cover all the aspects of the synthetic, structural and theoretical chemistry of metal clusters and their diverse applications in numerous fields of modern science. In this Account, we shall examine selected examples of complexes in which the ligands play an essential role in determining the overall molecular properties. We will limit ourselves to those relevant to catalytic applications in ethylene oligomerization. Some polynuclear complexes and metal clusters, where the nuclearity and the nature of the metals present are of primary concern, will also be discussed. The molecular chemistʼs toolbox allows the combination of ligands, which can range from a single atom to complex biorelevant molecules, and metals to form monoor polynuclear metal complexes. When metal centres are associated within the same molecule through metal-metal interactions, clusters This Account will focus on some recent aspects of the research performed in the authorʼs laboratory. Selected examples of complexes in which the ligands play an essential role in determining the molecular properties will be examined. Concerning the applications of these complexes, we will limit ourselves to some aspects related to the catalytic oligomerization of ethylene. In the search for such catalysts, we found that deprotonation of N,OH ligands chelated to Ni(II) with NaH can give rise to a range of heterometallic Na-Ni polynuclear complexes. In addition to their catalytic relevance, their magnetic properties were also investigated and have revealed in some cases Single Molecule Magnet behaviour. The","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"63 1","pages":"19-28"},"PeriodicalIF":0.0,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.63.19","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70512805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photophysical Properties of Transition Metal Complexes under Rigid Environments 刚性环境下过渡金属配合物的光物理性质
Pub Date : 2014-05-31 DOI: 10.4019/BJSCC.63.46
A. Ito
{"title":"Photophysical Properties of Transition Metal Complexes under Rigid Environments","authors":"A. Ito","doi":"10.4019/BJSCC.63.46","DOIUrl":"https://doi.org/10.4019/BJSCC.63.46","url":null,"abstract":"","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"63 1","pages":"46-48"},"PeriodicalIF":0.0,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.63.46","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70513116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Modification of Coordination Polymers with Biomolecules for Cellular Uptake 生物分子配位聚合物的表面修饰及细胞摄取
Pub Date : 2014-01-01 DOI: 10.4019/BJSCC.64.25
T. Koshiyama
Coordination polymers (CPs) or metal-organic frameworks (MOFs) are attractive porous materials because of their potential applications such as molecular storage, separation, heterogeneous catalysis, chemical sensing and others. Recently, nano-sized MOFs have been studied as drug delivery vehicles and biomedical imaging agents. Despite the growing interest on MOFs in the biological field, their instability and poor biocompatibility restrict their application to biomaterials. In order to improve the stability and to provide biocompatibility, surface modification of MOFs has been advanced by using a thin silica shell, hydrophilic organic polymers (PEG and PVP) and biomolecules. In this topic, I focus on the recent researches on the surface modification of MOF nanoparticles with biomolecules such as nucleic acid, lipid bilayer and protein. The MOF nanoparticles covered with biomolecules exhibit increased stability under physiological condition, and enhanced cellular uptake compared with unmodified MOF nanoparticles. These results clearly indicate that biomolecule conjugation to MOFs is a useful strategy for creating novel biomaterials. Fig. 1 (a) Structure of [Zr6(m3-O)4(m3-OH)4(C8H3O4)6] (UiO66)4), (b) Surface modification of UiO-66-N3 nanoparticles dibenzylcyclooctyne (DBCO) functionalized DNA.
配位聚合物(CPs)或金属-有机框架(mof)因其在分子存储、分离、非均相催化、化学传感等方面的潜在应用而成为极具吸引力的多孔材料。近年来,纳米mof作为药物传递载体和生物医学显像剂得到了广泛的研究。尽管mof在生物领域受到越来越多的关注,但其不稳定性和较差的生物相容性限制了其在生物材料中的应用。为了提高mof的稳定性和提供生物相容性,人们采用薄硅壳、亲水性有机聚合物(PEG和PVP)和生物分子对其进行表面改性。本课题重点介绍了近年来核酸、脂质双分子层和蛋白质等生物分子对MOF纳米颗粒表面改性的研究进展。与未修饰的MOF纳米颗粒相比,覆盖生物分子的MOF纳米颗粒在生理条件下表现出更高的稳定性,并增强了细胞摄取。这些结果清楚地表明,生物分子偶联到mof是一种有效的策略,以创造新的生物材料。图1 (a) [Zr6(m3-O)4(m3-OH)4(C8H3O4)6] (UiO66)4的结构,(b) UiO66 - n3纳米颗粒二苄基环辛基(DBCO)功能化DNA的表面修饰。
{"title":"Surface Modification of Coordination Polymers with Biomolecules for Cellular Uptake","authors":"T. Koshiyama","doi":"10.4019/BJSCC.64.25","DOIUrl":"https://doi.org/10.4019/BJSCC.64.25","url":null,"abstract":"Coordination polymers (CPs) or metal-organic frameworks (MOFs) are attractive porous materials because of their potential applications such as molecular storage, separation, heterogeneous catalysis, chemical sensing and others. Recently, nano-sized MOFs have been studied as drug delivery vehicles and biomedical imaging agents. Despite the growing interest on MOFs in the biological field, their instability and poor biocompatibility restrict their application to biomaterials. In order to improve the stability and to provide biocompatibility, surface modification of MOFs has been advanced by using a thin silica shell, hydrophilic organic polymers (PEG and PVP) and biomolecules. In this topic, I focus on the recent researches on the surface modification of MOF nanoparticles with biomolecules such as nucleic acid, lipid bilayer and protein. The MOF nanoparticles covered with biomolecules exhibit increased stability under physiological condition, and enhanced cellular uptake compared with unmodified MOF nanoparticles. These results clearly indicate that biomolecule conjugation to MOFs is a useful strategy for creating novel biomaterials. Fig. 1 (a) Structure of [Zr6(m3-O)4(m3-OH)4(C8H3O4)6] (UiO66)4), (b) Surface modification of UiO-66-N3 nanoparticles dibenzylcyclooctyne (DBCO) functionalized DNA.","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"64 1","pages":"25-28"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.64.25","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70513375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Trend in the Measurements of Luminescence Spectra and Quantum Yields of Metal Complexes 金属配合物发光光谱和量子产率测量的最新进展
Pub Date : 2014-01-01 DOI: 10.4019/BJSCC.64.14
Hitoshi Ishida
近年、有機 EL材料やセンサー分子など発光材料開発 研究の発展により発光性金属錯体への注目が集まったこ とから 1, 、多くの研究者が発光性金属錯体の開発や光 物性研究に取り組むようになった。その結果、金属錯体 の発光物性に関する研究が、錯体化学討論会をはじめ関 連するジャーナルから発表される件数が急激に増加して いるが、中には発光現象に関する知識が不十分なままデ ータを発表するケースも多く見られている。背景には、 発光測定に不慣れな合成化学者が、「装置にサンプルを セットしてボタンを押す(あるいはクリックする)だけ で信頼できる結果(スペクトル等)が得られる」と信じ ていることがあるようだ。実際、サンプル調製上の問題 のために正しい結果が得られないだけでなく、装置の校 正が不十分なために正しい結果が得られていない場合も 多く見られる。新規な化合物を合成した研究者が結果を 報告する場合、比較できるデータがないために間違いに 気付きにくい。測定条件やサンプル調製、また測定装置 の原理の概略を理解するだけで、間違いのかなりの部分 は防げるように思われるが、金属錯体分野から光化学分 野に参入した研究者にとって、どのように勉強すればよ いのかはわかりにくいようだ。 金属錯体の光化学分野では、配位化合物の光物 理・光化学に関する国際会議 (International Symposium on the Photophysics and Photochemistry of Coordination Compounds)が 2年に一度開催されている。この分野 における急激な研究者人口の増大と、検討不十分な研 究発表の増加が憂慮されため、2009年に札幌で行われ た第 18回シンポジウムにおいて、発光測定に関する 問題点を議論する特別セッションが設けられた。この 機会に、IUPAC Inorganic Chemistry Divisionに無機化合 物の発光スペクトルおよび量子収率測定のガイドライ ンを作成するプロジェクト “Guidelines for Measurement of Luminescence Spectra and Quantum Yields of Inorganic Compounds, Metal Complexes and Materials (Project No.: 2009-045-1-200)” を立ち上げることが話し合われ、石田 が Chairとして提案させていただいた。プロジェクトメ ンバーは、Beeby, Andrew (Durham University, UK), Bünzli, Jean-Claude G.(EPFL, Switzerland), Campagna, Sebastiano (University of Messina, Italy), De Cola, Luisa (University of Strasbourg, France), Ford, Peter (University of California Santa Barbara, USA), Gordon, Keith (Otago University, New Zealand), Hasegawa, Yasuchika (Hokkaido University, Japan), Hasegawa, Miki (Aoyama Gakuin University, Japan), Katoh, In a luminescent metal complex, the singlet excited state readily converts the excitation energy to the triplet state by increasing the spin-orbit coupling due to the presence of a heavy atom such a metal ion. The emission is called phosphorescence, which can be frequently observed even at room temperature. This review indicates the problems that inorganic chemists may confront while measuring the emission spectra and the emission quantum yields of metal complexes and introduces the IUPAC project to prepare the guidelines for the measurements. Common textbooks in photochemistry usually aim at the physical and/or organic chemists, and they are not always suitable for inorganic chemists who measure the room-temperature phosphorescence. This review describes the procedures for measuring the emission spectra and the quantum yields of the metal complexes in solution from the viewpoints of selection of solvent, sample concentration, de-aeration, and temperature control. It describes both the relative and absolute methods to determine the emission quantum yields. It further indicates that the measurements of solid-state samples are much more difficult than solutions and recommends that the experimental conditions are reported in as much details as possible.
近年来,随着有机EL材料和传感器分子等发光材料开发研究的发展,人们开始关注发光性金属络合物。因此,许多研究者开始致力于发光性金属络合物的开发和光物性研究。其结果是,有关金属络合物的发光物性的研究,在络合物化学讨论会等相关期刊上发表的数量急剧增加,但其中有关发光现象的知识仍然不足。发表路由器的情况也很多。背景是,不熟悉发光测定的合成化学家相信“只要在装置上设置样本,按下(或点击)按钮,就能得到可靠的结果(光谱等)”。实际上,不仅因为样品制备上的问题而不能得到正确的结果,因为设备的校正不充分而不能得到正确结果的情况也很多。合成新化合物的研究人员在报告结果时,由于没有可比较的数据,很难发现错误。只要理解测定条件、样品制备以及测定装置的原理,就可以避免大部分错误,但对于从金属络合物领域进入光化学领域的研究者来说,应该如何学习呢?是伊还是伊似乎很难判断。在金属配合物的光化学领域,召开了有关配位化合物光物理、光化学的国际会议(International Symposium on the Photophysics and Photochemistry)of Coordination Compounds)每两年举办一次。由于担心该领域的研究人员人口急剧增加,以及研讨不充分的研究发表增加,2009年在札幌举行的第18次研讨会上,关于发光测定的相关内容。设置了讨论问题点的特别会议。借此机会,在IUPAC Inorganic Chemistry Division创建无机化合物的发光光谱和量子收率测量指南线的项目“Guidelines forMeasurement of Luminescence Spectra and Quantum Yields of Inorganic Compounds,Metal Complexes and Materials (Project No.: 2009-045-1-200)”,石田作为Chair提案。项目成员包括Beeby, Andrew (Durham University, UK), Bunzli, Jean-Claude G.(EPFL, Switzerland),Campagna, Sebastiano (University of Messina, Italy), De Cola, Luisa (University of Strasbourg,France), Ford, Peter (University of California Santa Barbara, USA),戈登,Keith (Otago University, New Zealand), Hasegawa, Yasuchika (Hokkaido University, Japan), Hasegawa,Miki (Aoyama Gakuin University, Japan), Katoh, In a luminescent metal complex,singlet excited state readily converts the excitation energy to the triplet state by increasingthe spin-orbit coupling due to the presence of a heavy atom such a metal ion. the emission is calledphosphorescence,which can be frequently observed even at room temperature. This review indicates the problems thatinorganic chemists may confront while measuring the emission spectra and the emission quantum yieldsmetal complexes and introduces the IUPAC project to prepare the guidelines for the measurements。Common textbooks in photochemistry usually aim at the物理and/or organic chemists,and they are not always suitable for inorganic chemists who measure the rom -temperaturephosphorescence. This review describes the procedures for measuring the emission spectra and thequantum yields of the metal complexes in solution from the viewpoints of selection of solvent,sample concentration, de-aeration,and temperature control. It describes both the relative and absolute methods to determine theemission quantum yields. It further indicates that the measurements of solid-state samples are muchmore difficult than solutions and recommends that the experimental conditions are reported in asmuch details as possible。
{"title":"Recent Trend in the Measurements of Luminescence Spectra and Quantum Yields of Metal Complexes","authors":"Hitoshi Ishida","doi":"10.4019/BJSCC.64.14","DOIUrl":"https://doi.org/10.4019/BJSCC.64.14","url":null,"abstract":"近年、有機 EL材料やセンサー分子など発光材料開発 研究の発展により発光性金属錯体への注目が集まったこ とから 1, 、多くの研究者が発光性金属錯体の開発や光 物性研究に取り組むようになった。その結果、金属錯体 の発光物性に関する研究が、錯体化学討論会をはじめ関 連するジャーナルから発表される件数が急激に増加して いるが、中には発光現象に関する知識が不十分なままデ ータを発表するケースも多く見られている。背景には、 発光測定に不慣れな合成化学者が、「装置にサンプルを セットしてボタンを押す(あるいはクリックする)だけ で信頼できる結果(スペクトル等)が得られる」と信じ ていることがあるようだ。実際、サンプル調製上の問題 のために正しい結果が得られないだけでなく、装置の校 正が不十分なために正しい結果が得られていない場合も 多く見られる。新規な化合物を合成した研究者が結果を 報告する場合、比較できるデータがないために間違いに 気付きにくい。測定条件やサンプル調製、また測定装置 の原理の概略を理解するだけで、間違いのかなりの部分 は防げるように思われるが、金属錯体分野から光化学分 野に参入した研究者にとって、どのように勉強すればよ いのかはわかりにくいようだ。 金属錯体の光化学分野では、配位化合物の光物 理・光化学に関する国際会議 (International Symposium on the Photophysics and Photochemistry of Coordination Compounds)が 2年に一度開催されている。この分野 における急激な研究者人口の増大と、検討不十分な研 究発表の増加が憂慮されため、2009年に札幌で行われ た第 18回シンポジウムにおいて、発光測定に関する 問題点を議論する特別セッションが設けられた。この 機会に、IUPAC Inorganic Chemistry Divisionに無機化合 物の発光スペクトルおよび量子収率測定のガイドライ ンを作成するプロジェクト “Guidelines for Measurement of Luminescence Spectra and Quantum Yields of Inorganic Compounds, Metal Complexes and Materials (Project No.: 2009-045-1-200)” を立ち上げることが話し合われ、石田 が Chairとして提案させていただいた。プロジェクトメ ンバーは、Beeby, Andrew (Durham University, UK), Bünzli, Jean-Claude G.(EPFL, Switzerland), Campagna, Sebastiano (University of Messina, Italy), De Cola, Luisa (University of Strasbourg, France), Ford, Peter (University of California Santa Barbara, USA), Gordon, Keith (Otago University, New Zealand), Hasegawa, Yasuchika (Hokkaido University, Japan), Hasegawa, Miki (Aoyama Gakuin University, Japan), Katoh, In a luminescent metal complex, the singlet excited state readily converts the excitation energy to the triplet state by increasing the spin-orbit coupling due to the presence of a heavy atom such a metal ion. The emission is called phosphorescence, which can be frequently observed even at room temperature. This review indicates the problems that inorganic chemists may confront while measuring the emission spectra and the emission quantum yields of metal complexes and introduces the IUPAC project to prepare the guidelines for the measurements. Common textbooks in photochemistry usually aim at the physical and/or organic chemists, and they are not always suitable for inorganic chemists who measure the room-temperature phosphorescence. This review describes the procedures for measuring the emission spectra and the quantum yields of the metal complexes in solution from the viewpoints of selection of solvent, sample concentration, de-aeration, and temperature control. It describes both the relative and absolute methods to determine the emission quantum yields. It further indicates that the measurements of solid-state samples are much more difficult than solutions and recommends that the experimental conditions are reported in as much details as possible.","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"64 1","pages":"14-24"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.64.14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70513244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Developments in Silica-Based Nanoporous Materials 硅基纳米多孔材料的研究进展
Pub Date : 2014-01-01 DOI: 10.4019/BJSCC.64.2
K. Kuroda
無機化学の中で錯体化学とケイ酸塩化学はともに独自 の歴史を有しているが、両分野に跨る研究も古くから知 られている。[SiO4]四面体が二次元的に連結して層状ケ イ酸塩が形成されるが、中でも層状粘土鉱物層間に金属 錯体をインターカレートさせて、錯体の構造変化や物性 上の特徴を調査するなどの研究は、古くから知られてい る。層状粘土鉱物中のケイ酸塩シート上の空隙配列を活 かした錯体の光学分割、三次元ケイ酸塩骨格を有する結 晶性ミクロ多孔質のゼオライト内への錯体導入や機能発 現など多くの報告がある。 最近の PCP/MOFの発展により多孔質体の化学が大き な変貌をとげている。多孔質体化学としてはミクロ多孔 質結晶として古くから知られているゼオライトや 1980 年代終盤から始まったメソ多孔体があり、それらはシリ カ・ケイ酸塩化学が基盤となり、大きく展開されてきた。 これらの物質群が今後も大きく発展することが期待さ れている状況下、本 Accountsでは筆者らのシリカ・ケ イ酸塩系多孔質物質研究に関わる研究成果を中心に紹介 し、今後の展開に資することを目的としている。
无机化学中配合物化学和硅酸盐化学都有自己独特的历史,但跨越两个领域的研究也很早就为人所知。四面体二维连接形成层状硅酸盐,其中在层状黏土矿物层间进行金属配合物的interkate,调查配合物的结构变化和物性特征等研究,自古以来就为人所知。看。利用层状粘土矿物中硅酸盐薄片上的空隙排列的配合物的光学分割,将配合物导入具有三维硅酸盐骨架的结晶性微多孔质岩石内以及功能表现等很多报告。最近PCP/MOF的发展使多孔化学发生了巨大的变化。在多孔体化学中,有作为微观多孔质结晶自古就为人所知的沸石和从20世纪80年代末开始的墨索多孔体,它们以硅酸盐化学为基础,得到了很大的发展。在这些物质群今后也有望得到长足发展的情况下,本Accounts主要介绍了笔者在硅酸盐类多孔物质研究方面的研究成果。四、目的是为今后的发展提供帮助。
{"title":"Developments in Silica-Based Nanoporous Materials","authors":"K. Kuroda","doi":"10.4019/BJSCC.64.2","DOIUrl":"https://doi.org/10.4019/BJSCC.64.2","url":null,"abstract":"無機化学の中で錯体化学とケイ酸塩化学はともに独自 の歴史を有しているが、両分野に跨る研究も古くから知 られている。[SiO4]四面体が二次元的に連結して層状ケ イ酸塩が形成されるが、中でも層状粘土鉱物層間に金属 錯体をインターカレートさせて、錯体の構造変化や物性 上の特徴を調査するなどの研究は、古くから知られてい る。層状粘土鉱物中のケイ酸塩シート上の空隙配列を活 かした錯体の光学分割、三次元ケイ酸塩骨格を有する結 晶性ミクロ多孔質のゼオライト内への錯体導入や機能発 現など多くの報告がある。 最近の PCP/MOFの発展により多孔質体の化学が大き な変貌をとげている。多孔質体化学としてはミクロ多孔 質結晶として古くから知られているゼオライトや 1980 年代終盤から始まったメソ多孔体があり、それらはシリ カ・ケイ酸塩化学が基盤となり、大きく展開されてきた。 これらの物質群が今後も大きく発展することが期待さ れている状況下、本 Accountsでは筆者らのシリカ・ケ イ酸塩系多孔質物質研究に関わる研究成果を中心に紹介 し、今後の展開に資することを目的としている。","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"64 1","pages":"2-13"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.64.2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70513311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescent Mechanochromism and Spontaneous Phase Transformation of Gold(I) Isocyanide Complexes 金(I)异氰化物配合物的发光机械变色和自发相变
Pub Date : 2013-11-30 DOI: 10.4019/BJSCC.62.3
Hajime Ito, T. Seki
{"title":"Luminescent Mechanochromism and Spontaneous Phase Transformation of Gold(I) Isocyanide Complexes","authors":"Hajime Ito, T. Seki","doi":"10.4019/BJSCC.62.3","DOIUrl":"https://doi.org/10.4019/BJSCC.62.3","url":null,"abstract":"","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"62 1","pages":"3-11"},"PeriodicalIF":0.0,"publicationDate":"2013-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70512643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Homogeneous Catalysis of Nickel(II) Complexes Promoting Hydrogen Production with High Turnover Numbers 镍(II)配合物促进高周转率制氢的均相催化作用
Pub Date : 2013-11-30 DOI: 10.4019/BJSCC.62.26
K. Yamauchi
{"title":"Homogeneous Catalysis of Nickel(II) Complexes Promoting Hydrogen Production with High Turnover Numbers","authors":"K. Yamauchi","doi":"10.4019/BJSCC.62.26","DOIUrl":"https://doi.org/10.4019/BJSCC.62.26","url":null,"abstract":"","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"62 1","pages":"26-28"},"PeriodicalIF":0.0,"publicationDate":"2013-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.62.26","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70512975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Harmony of π-π Stacking Interaction and Metal Complexation to Generate Molecular Functional Emergence π-π叠层相互作用与金属络合的和谐产生分子功能涌现
Pub Date : 2013-11-30 DOI: 10.4019/BJSCC.62.12
Y. Yamada, Kentaro Tanaka
分子組織化学は、組織化された分子間の相互作用によ って、個々の分子からは得られない、新しい反応性、電 子特性、磁性など創発的な機能を引き出すことを目的と している。このような分子組織を創製するためには、自 在な次元的空間設計、精密な分子合成、および多数・多 種の分子コンポーネントの自己組織化を通し、階層的に プログラムされた物質構築が重要な鍵となる。分子組織 の構築において、生体分子組織の階層性は示唆に富んで いる。基本的なビルディングブロック分子 (アミノ酸、 ヌクレオシド、糖、脂質など )が配列化し、「数」、「組成」、 「配列」、「方向」に分布を持たないファインな分子として、 タンパク質、DNA、RNA、多糖などの生体高分子の一 次構造が形づくられ、それらが厳密な「選択性」の上で、 正確な「空間配置」をとりながら組織化し、適切な「タ イミング」で高度な機能を発現している。これらの機能 は、個々のビルディングブロック分子からは予想もでき ない創発的なものであり、分子組織構築の様々なヒント が散見できる。 多数・多種類のコンポーネントから分子組織を構築す るために、また外部刺激に応答する柔軟性を有する分子 組織を構築するために、非共有結合性の弱い相互作用、 すなわち水素結合や ppスタッキング相互作用、金属 配位結合などを利用することは、極めて有効である。本 稿では特に、芳香族性の分子の ppスタッキング相互 作用によって構築される「場」と金属錯体とのハーモニ ーによって生み出される機能性分子組織の構築について 概観したい。 本論に入る前に、芳香族性分子の p-pスタッキング相 互作用について整理しておく。芳香族性分子は、(1) 平 面性もしくは直線性が高い、(2) 非芳香族性分子に比べ て小さな HOMO-LUMOギャップをもつ、(3) 非芳香族 性分子に比べて分極しやすい、などの特性を示す。3次 元の p-pスタッキング構造をデザインするための重要な キーポイントが、特に (1)および (3)に見られる。大き な分極率を示す芳香族性分子では、分子内に誘起双極子 が生じやすいため、誘起双極子間の相互作用 (分散力 ) が、芳香族性分子間の p-p相互作用に大きく寄与してい る。さらに、平面性の分子同士が面と面を向かい合わせ て接することにより、分散力の効果が最大限に活かされ ることとなり、いわゆる face-to-faceの会合様式が形成 される。 同種の芳香族性分子間の会合では、分子内の電荷分布 によって、分子同士が平行に少しずれた形でスタッキン グした構造 (Fig. 1b)や、サイドオン (ヘリンボーン )型 の構造 (Fig. 1c)が多くみられる。一方、異なる 2種類の In this review, we focus on the integrated assemblies of metal complexes and their functional emergence generated by the synergy effects of p-p stacking interaction and metal complexation. Programmable construction of integrated molecular assemblies is the best measure for bringing out the emergent functions which can be evolved from the intermolecular communications of functional molecular components. Combination of p-p stacking interaction and metal complexation allows not only to reinforce the mutual interactions but also to generate the emergent intermolecular communications. This review introduces the recent studies including the synergy effects on electrical, magnetic, catalytic and molecular recognition functions in soft, crystalline and single molecular materials.
分子组织化学的目的是通过有组织的分子之间的相互作用,激发出单个分子无法获得的新的反应性、电子特性、磁性等创造性功能。为了制造这样的分子组织,关键在于通过自主的维度空间设计、精密的分子合成以及大量、多种分子组件的自组装,实现分层编程的物质构建。在分子组织的构建中,生物分子组织的层次性是富有启示的。基本的构筑物分子(氨基酸、核苷、糖、脂质等)被排列,作为没有“数量”、“组成”、“序列”、“方向”分布的精细分子,形成蛋白质、DNA、RNA、多糖等生物大分子的一级结构,它们在严密的“选择性”上,以正确的“空间排列”进行组织,以适当的“形状”表现高级功能。这些功能是单个建筑块分子所无法想象的,具有创造性,从中可以发现分子组织构建的各种线索。通过非共价键性的弱相互作用,即氢键结合,来构建来自多个和多种组件的分子组织,以及构建具有响应外部刺激的柔性的分子组织。利用pp堆叠相互作用、金属配位结合等是极为有效的。本论文将特别概述由芳香族分子的pp堆叠相互作用所构建的“场”和金属配合物的谐波所产生的功能性分子组织的构建。在进入正文之前,先整理一下芳香族性分子的p-p堆叠相互作用。芳香族性分子具有以下特性:(1)平面性或线性高;(2)与非芳香族性分子相比具有较小的ho - lumo间隙;(3)与非芳香族性分子相比更容易极化。设计三阶元p-p堆叠结构的关键在(1)和(3)中尤其明显。在具有较大极化率的芳香族性分子中,分子内容易产生诱导偶极,因此诱导偶极之间的相互作用(分散力)对芳香族性分子之间的p-p相互作用有很大的贡献。并且,平面性的分子面对面接触,可以最大限度地发挥分散力的效果,形成所谓的face-to-face的会合样式。在同种芳香族性分子之间的会合中,根据分子内的电荷分布,分子之间以平行的稍微偏移的形式堆叠在一起的结构(Fig. 1b)和sideon(人字形)型的结构(Fig.1c)比较多见。另一方面,两种不同的In this review,we focus on the integrated assemblies of metal complexes and their functional emergence generated bythe synergy effects of p- pstacking interaction and metal complexation.可编程constructionof integrated molecular assemblies is the best measure for bringing out the emergent functions whichcan be evolved from the intermolecular communications of功能molecular components.Combination of p-p stacking interaction and metal complexation allows not only to reinforce themutual interactions but also to generate the emergent intermolecular communications. This reviewintroduces the recent studies including the synergy effects on电子,magnetic,catalytic and molecular recognition functions in soft, crystalline and single molecular materials。
{"title":"Harmony of π-π Stacking Interaction and Metal Complexation to Generate Molecular Functional Emergence","authors":"Y. Yamada, Kentaro Tanaka","doi":"10.4019/BJSCC.62.12","DOIUrl":"https://doi.org/10.4019/BJSCC.62.12","url":null,"abstract":"分子組織化学は、組織化された分子間の相互作用によ って、個々の分子からは得られない、新しい反応性、電 子特性、磁性など創発的な機能を引き出すことを目的と している。このような分子組織を創製するためには、自 在な次元的空間設計、精密な分子合成、および多数・多 種の分子コンポーネントの自己組織化を通し、階層的に プログラムされた物質構築が重要な鍵となる。分子組織 の構築において、生体分子組織の階層性は示唆に富んで いる。基本的なビルディングブロック分子 (アミノ酸、 ヌクレオシド、糖、脂質など )が配列化し、「数」、「組成」、 「配列」、「方向」に分布を持たないファインな分子として、 タンパク質、DNA、RNA、多糖などの生体高分子の一 次構造が形づくられ、それらが厳密な「選択性」の上で、 正確な「空間配置」をとりながら組織化し、適切な「タ イミング」で高度な機能を発現している。これらの機能 は、個々のビルディングブロック分子からは予想もでき ない創発的なものであり、分子組織構築の様々なヒント が散見できる。 多数・多種類のコンポーネントから分子組織を構築す るために、また外部刺激に応答する柔軟性を有する分子 組織を構築するために、非共有結合性の弱い相互作用、 すなわち水素結合や ppスタッキング相互作用、金属 配位結合などを利用することは、極めて有効である。本 稿では特に、芳香族性の分子の ppスタッキング相互 作用によって構築される「場」と金属錯体とのハーモニ ーによって生み出される機能性分子組織の構築について 概観したい。 本論に入る前に、芳香族性分子の p-pスタッキング相 互作用について整理しておく。芳香族性分子は、(1) 平 面性もしくは直線性が高い、(2) 非芳香族性分子に比べ て小さな HOMO-LUMOギャップをもつ、(3) 非芳香族 性分子に比べて分極しやすい、などの特性を示す。3次 元の p-pスタッキング構造をデザインするための重要な キーポイントが、特に (1)および (3)に見られる。大き な分極率を示す芳香族性分子では、分子内に誘起双極子 が生じやすいため、誘起双極子間の相互作用 (分散力 ) が、芳香族性分子間の p-p相互作用に大きく寄与してい る。さらに、平面性の分子同士が面と面を向かい合わせ て接することにより、分散力の効果が最大限に活かされ ることとなり、いわゆる face-to-faceの会合様式が形成 される。 同種の芳香族性分子間の会合では、分子内の電荷分布 によって、分子同士が平行に少しずれた形でスタッキン グした構造 (Fig. 1b)や、サイドオン (ヘリンボーン )型 の構造 (Fig. 1c)が多くみられる。一方、異なる 2種類の In this review, we focus on the integrated assemblies of metal complexes and their functional emergence generated by the synergy effects of p-p stacking interaction and metal complexation. Programmable construction of integrated molecular assemblies is the best measure for bringing out the emergent functions which can be evolved from the intermolecular communications of functional molecular components. Combination of p-p stacking interaction and metal complexation allows not only to reinforce the mutual interactions but also to generate the emergent intermolecular communications. This review introduces the recent studies including the synergy effects on electrical, magnetic, catalytic and molecular recognition functions in soft, crystalline and single molecular materials.","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"88 1","pages":"12-22"},"PeriodicalIF":0.0,"publicationDate":"2013-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.62.12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70512829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Researches on Hydrogen Generation Reaction Catalyzed by Group 8 Transition-Metal Complex 8族过渡金属配合物催化制氢反应的研究进展
Pub Date : 2013-11-30 DOI: 10.4019/BJSCC.62.23
Masumi Itazaki, M. Kamitani
{"title":"Recent Researches on Hydrogen Generation Reaction Catalyzed by Group 8 Transition-Metal Complex","authors":"Masumi Itazaki, M. Kamitani","doi":"10.4019/BJSCC.62.23","DOIUrl":"https://doi.org/10.4019/BJSCC.62.23","url":null,"abstract":"","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"62 1","pages":"23-26"},"PeriodicalIF":0.0,"publicationDate":"2013-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70512922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Valent Nonheme Iron Oxidants in Biology: Lessons from Synthetic FeIV=O Complexes. 生物学中的高价非血红素铁氧化剂:合成FeIV=O配合物的教训。
Lawrence Que
{"title":"High-Valent Nonheme Iron Oxidants in Biology: Lessons from Synthetic Fe<sup>IV</sup>=O Complexes.","authors":"Lawrence Que","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"62 ","pages":"30-37"},"PeriodicalIF":0.0,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322783/pdf/nihms602138.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33052343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bulletin of Japan Society of Coordination Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1