首页 > 最新文献

Clinical and translational discovery最新文献

英文 中文
Probe-capture targeted next-generation sequencing: A novel approach for pathogen and antimicrobial resistance detection in sepsis 探针捕获靶向下一代测序:败血症中病原体和抗菌素耐药性检测的新方法
IF 1.9 Pub Date : 2025-08-13 DOI: 10.1002/ctd2.70079
Chitra Ravi, Adam D. Irwin, Patrick N. A. Harris

Sepsis is a syndrome of life-threatening organ dysfunction caused by a dysregulated immune response to infection.1, 2 It is a global health priority as recognised by the World Health Organisation3 and according to the Global Burden of Disease Study 2017, 11 million sepsis related fatalities and 48.9 million sepsis episodes occurred globally in 2017.4 Bloodstream infections (BSIs), defined by the presence of viable bacteria (or fungi) in the bloodstream, are an important cause of sepsis.5, 6 Early identification of a causative pathogen and its antimicrobial resistance (AMR) profile is essential for appropriate and timely treatment.7, 8 However, using the current gold standard of microbial identification through blood cultures (BCs), a causative pathogen is only detected in around 30% of cases.9 Although culture-based methods are inexpensive and simple, their turnaround time (TAT) can stretch to several days10 (Figure 1), delaying diagnoses and leading to inappropriate antimicrobial treatment.11 Furthermore, BCs may fail due to slow-growing, fastidious or non-culturable microbes, low microbial load or prior antibiotic treatment.12-14 Clinical metagenomic next-generation sequencing (mNGS) uses untargeted shotgun sequencing of all DNA or RNA in a sample to identify microbial genomes present in the sample15-18 (Figure 1). mNGS provides a high-throughput pathogen detection method and is increasingly employed in various infectious syndromes, including BSI,19, 20 central nervous system,21 bone and joint,22 respiratory infections.23 Although mNGS is pathogen agnostic and could be quicker than BC (Figure 1), sensitivity can be compromised due to high human DNA background (>99%) in blood samples and low microbial loads during BSI (1–10 colony-forming units [CFU]/mL).24-27 Thus, a more sensitive approach for diagnosing BSI using NGS is urgently required.

Targeted NGS (tNGS) is an approach that selectively amplifies specific genomic regions or gene sequences, such as AMR determinants. This targeted enrichment enhances sensitivity and minimises host nucleic acid background, offering improved performance over untargeted shotgun mNGS.32 An example of tNGS is hybridisation-based probe-capture metagenomics. Short DNA/RNA oligonucleotide probes (or “baits”) are designed to be complementary to various pathogen sequences and can be designed to identify over 3,000 species.33-35 This method enables greater genome coverage by using overlapping probes, ensuring more comprehensive target capture and reduced background or host DNA32, 36

脓毒症是一种危及生命的器官功能障碍综合征,由对感染的免疫反应失调引起。1,2根据世界卫生组织(World health组织)的认可,这是一个全球卫生优先事项3,根据2017年全球疾病负担研究,2017年全球发生了1100万例败血症相关死亡和4890万例败血症发作。血液感染(bsi)是由血液中存在活菌(或真菌)定义的,是败血症的重要原因。5,6病原及其抗微生物药物耐药性(AMR)谱的早期识别对于适当和及时的治疗至关重要。然而,使用目前通过血液培养(bc)进行微生物鉴定的金标准,仅在约30%的病例中检测到致病病原体尽管基于培养的方法既便宜又简单,但其周转时间(TAT)可能会延长至数天(图1),从而延误诊断并导致不适当的抗菌治疗11此外,BCs可能由于生长缓慢,挑剔或不可培养的微生物,低微生物负荷或先前的抗生素治疗而失败。12-14临床宏基因组新一代测序(mNGS)使用对样本中所有DNA或RNA的非靶向散弹枪测序来鉴定样本中存在的微生物基因组15-18(图1)。mNGS提供了一种高通量病原体检测方法,并越来越多地用于各种感染综合征,包括BSI,19, 20中枢神经系统,21骨和关节,22呼吸道感染23虽然mNGS与病原体无关,而且比BC更快(图1),但由于血液样本中人类DNA背景较高(>99%),而BSI期间微生物负荷较低(1 - 10菌落形成单位[CFU]/mL),敏感性可能会受到损害。因此,迫切需要一种使用NGS诊断BSI的更灵敏的方法。靶向NGS (tNGS)是一种选择性扩增特定基因组区域或基因序列(如AMR决定因子)的方法。这种靶向富集提高了灵敏度,最大限度地减少了宿主核酸背景,提供了比非靶向霰弹枪mNGS.32更好的性能tNGS的一个例子是基于杂交的探针捕获宏基因组学。短DNA/RNA寡核苷酸探针(或“诱饵”)被设计为各种病原体序列的补充,可以被设计为识别3000多种物种。33-35该方法通过使用重叠探针实现更大的基因组覆盖,确保更全面的目标捕获和减少背景或宿主DNA32, 36(图2)。尽管RNA探针比DNA探针具有更高的灵敏度和杂交稳定性,从而提高了杂交捕获效率,但其固有的不稳定性和小心处理要求导致首选使用DNA探针(图2)Probe-capture最初是为人类基因组研究开发的,用于识别人类基因组中的疾病相关突变和罕见变异38,也已开发用于Illumina和安捷伦基因组学等NGS平台。这种捕获方法在研究线粒体疾病41,42和筛查癌症患者的潜在遗传变异方面显示出有效性。43、44已证明探针捕获在传染病监测45、46和检测一系列病原体方面的有效性,包括艾滋病毒47、HCV48和严重急性呼吸系统综合征冠状病毒2、49等病毒49、结核分枝杆菌50等细菌和白色念珠菌51等真菌这些寡核苷酸面板的设计既可以从合成DNA制造平台定制(例如Integrated DNA Technologies52和Twist Bioscience53),也可以作为预先设计的商业面板购买(例如综合病毒研究面板,Twist Bioscience) 54此外,可以从各种测序平台获得能够测序多种AMR基因的综合AMR面板,包括Illumina(例如Illumina Respiratory Pathogen ID/AMR Enrichment Panel [rip] Kit)55、56和Ion Torrent GeneStudio (dart - qm)。57探针捕获tNGS已成功地用于从全血和血浆样本中鉴定BSI病原体。33,59,60 Sun及其同事证明探针捕获技术与bc相比具有更高的病原体检出率(51.6% vs. 17.4%, p <当与bc和实时聚合酶链反应(PCR)联合使用时,探针捕获的一致性率为91.8%,敏感性和特异性分别为100%和87.1%。根据探针捕获结果,64例(34.8%)患者成功调整了抗生素治疗,41例(22.3%)患者在抗生素调整后的顺序器官衰竭评估(SOFA)评分降低了2分以上该研究还证明了在24小时内获得最终报告的可能性,与bc相比显着缩短(中位TAT为19.1比111小时,p <0.001)。 虽然特异性PCR可以在12小时内提供临床诊断中的快速病原体鉴定,并且已被证明比mNGS更敏感,但它不像探针捕获那样具有不可知性在一项评估80例疑似BSI患者的前瞻性研究中,探针捕获显示出更快的TAT和更高的灵敏度,与两种BC相比(91.3% vs. 23.2%, p <0.001)和mNGS (91.3% vs. 63.9%, p = 0.001)。此外,22/80(31.9%)的患者在基于探针捕获结果的治疗后调整中表现出临床改善。33虽然探针捕获的tNGS比传统的和基于猎枪的方法具有显著的优势,但在其更广泛的临床应用中,必须考虑到一些实际和技术上的限制。其中包括需要已知的参考基因组或转录组来设计探针,这是识别参考数据有限的新型病原体时的一个障碍使用已定义的面板可以限制新病原体的检测,因为这些探针可以容忍高达20%的差异,超过50%的覆盖率参考基因组,不能识别更多不同的生物体。65探针捕获方法对于高变序列具有挑战性,例如在具有高突变率的病原体中,随着探针和靶标之间的差异增加,捕获性能可能会降低。此外,对于高度重复区域或鸟嘌呤-胞嘧啶含量高的区域,探针捕获可能不太有效,因为它具有探针设计和杂交的复杂性此外,这种方法可能面临额外的生物信息学挑战,包括杂交偏差和下游分析中的并发症,如脱靶捕获和嵌合读取,使处理复杂化。46,70,71最后,这种方法在复杂的工作流程中可能会产生大量的成本和大量的时间投资。54,72尽管存在这些挑战,探针捕获tNGS仍然是传染病诊断(包括败血症诊断)的一种非常有前途和潜在的变革性方法。即使在低微生物负荷和高宿主背景的样品中,它也能提供强大而精确的病原体和AMR基因,这解决了传统和基于霰弹枪的mNGS方法的主要局限性。这使得探针捕获不仅是诊断的一种有价值的工具,而且也是抗菌素耐药性管理和监测行动的一种工具此外,它整合到集中临床实验室的潜力为在时间敏感的决策至关重要的重症监护环境中进行快速、可操作的诊断铺平了道路。现在必须严格评估探针捕获tNGS的临床应用,最好通过随机临床试验,关注以患者为中心的结果,以确保有意义的转化影响。所有作者对这项工作贡献均等。作者声明无利益冲突。这项工作得到了国家卫生和医学研究委员会、昆士兰卫生和昆士兰儿童医院基金会的临床研究奖学金的支持。不需要道德许可。
{"title":"Probe-capture targeted next-generation sequencing: A novel approach for pathogen and antimicrobial resistance detection in sepsis","authors":"Chitra Ravi,&nbsp;Adam D. Irwin,&nbsp;Patrick N. A. Harris","doi":"10.1002/ctd2.70079","DOIUrl":"https://doi.org/10.1002/ctd2.70079","url":null,"abstract":"<p>Sepsis is a syndrome of life-threatening organ dysfunction caused by a dysregulated immune response to infection.<span><sup>1, 2</sup></span> It is a global health priority as recognised by the World Health Organisation<span><sup>3</sup></span> and according to the Global Burden of Disease Study 2017, 11 million sepsis related fatalities and 48.9 million sepsis episodes occurred globally in 2017.<span><sup>4</sup></span> Bloodstream infections (BSIs), defined by the presence of viable bacteria (or fungi) in the bloodstream, are an important cause of sepsis.<span><sup>5, 6</sup></span> Early identification of a causative pathogen and its antimicrobial resistance (AMR) profile is essential for appropriate and timely treatment.<span><sup>7, 8</sup></span> However, using the current gold standard of microbial identification through blood cultures (BCs), a causative pathogen is only detected in around 30% of cases.<span><sup>9</sup></span> Although culture-based methods are inexpensive and simple, their turnaround time (TAT) can stretch to several days<span><sup>10</sup></span> (Figure 1), delaying diagnoses and leading to inappropriate antimicrobial treatment.<span><sup>11</sup></span> Furthermore, BCs may fail due to slow-growing, fastidious or non-culturable microbes, low microbial load or prior antibiotic treatment.<span><sup>12-14</sup></span> Clinical metagenomic next-generation sequencing (mNGS) uses untargeted shotgun sequencing of all DNA or RNA in a sample to identify microbial genomes present in the sample<span><sup>15-18</sup></span> (Figure 1). mNGS provides a high-throughput pathogen detection method and is increasingly employed in various infectious syndromes, including BSI,<span><sup>19, 20</sup></span> central nervous system,<span><sup>21</sup></span> bone and joint,<span><sup>22</sup></span> respiratory infections.<span><sup>23</sup></span> Although mNGS is pathogen agnostic and could be quicker than BC (Figure 1), sensitivity can be compromised due to high human DNA background (&gt;99%) in blood samples and low microbial loads during BSI (1–10 colony-forming units [CFU]/mL).<span><sup>24-27</sup></span> Thus, a more sensitive approach for diagnosing BSI using NGS is urgently required.</p><p>Targeted NGS (tNGS) is an approach that selectively amplifies specific genomic regions or gene sequences, such as AMR determinants. This targeted enrichment enhances sensitivity and minimises host nucleic acid background, offering improved performance over untargeted shotgun mNGS.<span><sup>32</sup></span> An example of tNGS is hybridisation-based probe-capture metagenomics. Short DNA/RNA oligonucleotide probes (or “baits”) are designed to be complementary to various pathogen sequences and can be designed to identify over 3,000 species.<span><sup>33-35</sup></span> This method enables greater genome coverage by using overlapping probes, ensuring more comprehensive target capture and reduced background or host DNA<span><sup>32, 36</sup></span> ","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sticky situation, strategic strike: Targeting neutrophil extracellular trap-work in cancer 棘手的局面,战略打击:靶向肿瘤中性粒细胞胞外陷阱工作
IF 1.9 Pub Date : 2025-08-02 DOI: 10.1002/ctd2.70068
Bo Cao, Ting La

Neutrophil extracellular traps (NETs), once recognised solely as antimicrobial defenders, have emerged as key, yet paradoxical, players in the complex theatre of cancer. These intricate webs of DNA decorated with cytotoxic granule proteins, ejected by activated or dying neutrophils via NETosis, are now implicated in nearly every stage of tumour progression. Recent advances, as comprehensively reviewed by Wang et al. in Clinical and Translational Medicine, reveal that NETs are dynamically regulated by the tumour microenvironment (TME) and exhibit context-dependent pro- or anti-tumour effects.1 Cytokines (IL-8, G-CSF, TNF-α), tumour-derived extracellular vesicles (EVs), platelets, complement factors, and even extracellular matrix (ECM) aberrations can trigger NETosis. Once formed, NETs wield a double-edged sword: their DNA scaffolds, proteases (NE, MPO), histones, and associated proteins can directly fuel tumour cell proliferation, invasion, epithelial–mesenchymal transition (EMT), and awakening of dormant cells, whilst simultaneously establishing physical traps for circulating tumour cells (CTCs) in distant organs, facilitating metastasis.2 They contribute to a pro-thrombotic state, therapy resistance (particularly to chemotherapy and immunotherapy), and immunosuppression by excluding cytotoxic T cells. Conversely, under specific contexts, NETs may exert anti-tumour cytotoxicity. Clinically, NETs components (e.g., citrullinated histone H3 [CitH3], cell-free DNA [cfDNA]) serve as diagnostic/prognostic biomarkers, whilst therapeutic strategies targeting NET formation (e.g., PAD4 inhibitors) or degradation (e.g., DNase I) show promise in preclinical models. Despite progress, key challenges—including NETs heterogeneity, detection standardisation, and therapeutic specificity—remain unresolved.

The burgeoning field of NETs in oncology holds immense potential, but significant challenges and exciting opportunities lie ahead. Future studies should prioritise (Figure 1).

The intricate dance between NETs and cancer is far from fully choreographed. Whilst their detrimental roles in promoting metastasis, thrombosis, immunosuppression, and therapy resistance are increasingly clear, harnessing their biology offers unprecedented opportunities. The future lies in moving beyond broad inhibition towards precision targeting—understanding the nuances of NET heterogeneity, context-specific functions, and their intricate interactions within the TME. Overcoming technical hurdles in detection and drug delivery, rigorously validating biomarkers, and designing intelligent clinical trials combining NET-targeting strategies with established and emerging therapies are critical next steps. Success in this endeavour promises not only deeper biological insights but also the development of novel diagnostic tools and therapeutic arsenals to disrupt the dark side of NETs, ultimately improving outcomes for cancer p

中性粒细胞细胞外陷阱(NETs),一度被认为是抗菌防御者,在复杂的癌症舞台上成为关键的,但矛盾的角色。这些由活化或死亡的中性粒细胞通过NETosis喷射出的带有细胞毒性颗粒蛋白的复杂DNA网,现在几乎涉及肿瘤进展的每个阶段。Wang等人在《临床与转化医学》(Clinical and Translational Medicine)杂志上全面回顾了最近的进展,发现NETs受肿瘤微环境(TME)的动态调节,并表现出与环境相关的促肿瘤或抗肿瘤作用细胞因子(IL-8、G-CSF、TNF-α)、肿瘤源性细胞外囊泡(ev)、血小板、补体因子,甚至细胞外基质(ECM)畸变都可引发NETosis。net一旦形成,就会使用一把双刃剑:它们的DNA支架、蛋白酶(NE、MPO)、组蛋白和相关蛋白可以直接促进肿瘤细胞的增殖、侵袭、上皮-间质转化(EMT)和休眠细胞的唤醒,同时为远处器官中的循环肿瘤细胞(ctc)建立物理陷阱,促进转移它们有助于促血栓形成状态、治疗抵抗(特别是对化疗和免疫治疗)以及通过排除细胞毒性T细胞而产生的免疫抑制。相反,在特定情况下,NETs可能发挥抗肿瘤细胞毒性。临床上,NETs成分(如瓜氨酸化组蛋白H3 [CitH3],无细胞DNA [cfDNA])作为诊断/预后的生物标志物,而针对NET形成(如PAD4抑制剂)或降解(如DNase I)的治疗策略在临床前模型中显示出希望。尽管取得了进展,但关键的挑战——包括网络异质性、检测标准化和治疗特异性——仍未解决。肿瘤学中新兴的神经网络领域拥有巨大的潜力,但重大的挑战和令人兴奋的机会摆在面前。未来的研究应该优先考虑(图1)。net和癌症之间错综复杂的关系远没有完全编排好。虽然它们在促进转移、血栓形成、免疫抑制和治疗耐药性方面的有害作用越来越清楚,但利用它们的生物学提供了前所未有的机会。未来在于从广泛的抑制转向精确的目标——理解NET异构性的细微差别、上下文特定的功能以及它们在TME中复杂的相互作用。克服检测和给药方面的技术障碍,严格验证生物标志物,设计将net靶向策略与现有和新兴疗法相结合的智能临床试验是接下来的关键步骤。这一努力的成功不仅预示着更深入的生物学见解,而且预示着新的诊断工具和治疗手段的发展,以破坏NETs的阴暗面,最终改善被它们纠缠的网络所负担的癌症患者的预后。从理解NET机制到将其转化为有效药物的过程是复杂的,但征服转移和治疗耐药性的潜在回报使其成为肿瘤学领域一个引人注目的前沿。这个手稿的初稿是曹博写的。Ting La和Bo Cao审阅了手稿。作者声明无利益冲突。陕西省自然科学基础研究计划项目[2023-JC-QN-0858]和国家自然科学基金项目[82372638]资助。不适用。
{"title":"Sticky situation, strategic strike: Targeting neutrophil extracellular trap-work in cancer","authors":"Bo Cao,&nbsp;Ting La","doi":"10.1002/ctd2.70068","DOIUrl":"https://doi.org/10.1002/ctd2.70068","url":null,"abstract":"<p>Neutrophil extracellular traps (NETs), once recognised solely as antimicrobial defenders, have emerged as key, yet paradoxical, players in the complex theatre of cancer. These intricate webs of DNA decorated with cytotoxic granule proteins, ejected by activated or dying neutrophils via NETosis, are now implicated in nearly every stage of tumour progression. Recent advances, as comprehensively reviewed by Wang et al. in <i>Clinical and Translational Medicine</i>, reveal that NETs are dynamically regulated by the tumour microenvironment (TME) and exhibit context-dependent pro- or anti-tumour effects.<span><sup>1</sup></span> Cytokines (IL-8, G-CSF, TNF-α), tumour-derived extracellular vesicles (EVs), platelets, complement factors, and even extracellular matrix (ECM) aberrations can trigger NETosis. Once formed, NETs wield a double-edged sword: their DNA scaffolds, proteases (NE, MPO), histones, and associated proteins can directly fuel tumour cell proliferation, invasion, epithelial–mesenchymal transition (EMT), and awakening of dormant cells, whilst simultaneously establishing physical traps for circulating tumour cells (CTCs) in distant organs, facilitating metastasis.<span><sup>2</sup></span> They contribute to a pro-thrombotic state, therapy resistance (particularly to chemotherapy and immunotherapy), and immunosuppression by excluding cytotoxic T cells. Conversely, under specific contexts, NETs may exert anti-tumour cytotoxicity. Clinically, NETs components (e.g., citrullinated histone H3 [CitH3], cell-free DNA [cfDNA]) serve as diagnostic/prognostic biomarkers, whilst therapeutic strategies targeting NET formation (e.g., PAD4 inhibitors) or degradation (e.g., DNase I) show promise in preclinical models. Despite progress, key challenges—including NETs heterogeneity, detection standardisation, and therapeutic specificity—remain unresolved.</p><p>The burgeoning field of NETs in oncology holds immense potential, but significant challenges and exciting opportunities lie ahead. Future studies should prioritise (Figure 1).</p><p>The intricate dance between NETs and cancer is far from fully choreographed. Whilst their detrimental roles in promoting metastasis, thrombosis, immunosuppression, and therapy resistance are increasingly clear, harnessing their biology offers unprecedented opportunities. The future lies in moving beyond broad inhibition towards precision targeting—understanding the nuances of NET heterogeneity, context-specific functions, and their intricate interactions within the TME. Overcoming technical hurdles in detection and drug delivery, rigorously validating biomarkers, and designing intelligent clinical trials combining NET-targeting strategies with established and emerging therapies are critical next steps. Success in this endeavour promises not only deeper biological insights but also the development of novel diagnostic tools and therapeutic arsenals to disrupt the dark side of NETs, ultimately improving outcomes for cancer p","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144758656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-PF4 antibody inhibit proliferation of lung cancer cells without TP53 mutation by inducing apoptosis and cell cycle arrest 抗pf4抗体通过诱导细胞凋亡和细胞周期阻滞抑制无TP53突变的肺癌细胞增殖
Pub Date : 2025-07-28 DOI: 10.1002/ctd2.70075
Mengjia Qian, Zhihui Min, Yanxia Zhan, Lili Ji, Bijun Zhu, Miaomiao Zhang, Qi Shen, Pengcheng Xu, Hao Chen, Yunfeng Cheng

Background

Elevated platelet count is correlated with poor survival of lung cancer. Platelet factor 4 (PF4), a platelet-specific protein, plays an important role in platelet function. Emerging evidence suggests that regulation of PF4 can modulate platelet function to impact the progression of lung cancer.

Methods

Anti-PF4 antibody was used to neutralise PF4 to regulate platelet function in the co-culture of platelets and lung cancer cells lines of H1299 and A549. The proliferation, apoptosis and cell cycle were examined by cell counting kit-8 (CCK-8) test and flow cytometry.

Results

Anti-PF4 antibody inhibited the proliferation of H1299 and A549 cells when stimulated with platelets, yet induced cell cycle arrest and cell apoptosis only in A549, not H1299. The proliferation, cell cycle distribution and apoptosis were not affected by anti-PF4 antibody in A549TP53‒ cells.

Conclusion

Anti-PF4 antibody exerted anti-proliferative effects by inducing apoptosis and cell cycle arrest in lung cancer cells without TP53 mutation via p53 signalling pathway when stimulated with platelets.

背景:血小板计数升高与肺癌生存率低相关。血小板因子4 (PF4)是一种血小板特异性蛋白,在血小板功能中起重要作用。新出现的证据表明,PF4的调节可以调节血小板功能,从而影响肺癌的进展。方法利用抗PF4抗体中和PF4调节血小板与肺癌细胞系H1299、A549共培养的血小板功能。采用细胞计数试剂盒-8 (CCK-8)和流式细胞术检测细胞增殖、凋亡和细胞周期。结果抗pf4抗体在血小板刺激下抑制H1299和A549细胞的增殖,但仅在A549细胞中引起细胞周期阻滞和细胞凋亡,而在H1299细胞中没有。抗pf4抗体对A549TP53 -细胞的增殖、细胞周期分布和凋亡均无影响。结论抗pf4抗体在血小板刺激下通过p53信号通路诱导TP53突变肺癌细胞凋亡和细胞周期阻滞,发挥抗增殖作用。
{"title":"Anti-PF4 antibody inhibit proliferation of lung cancer cells without TP53 mutation by inducing apoptosis and cell cycle arrest","authors":"Mengjia Qian,&nbsp;Zhihui Min,&nbsp;Yanxia Zhan,&nbsp;Lili Ji,&nbsp;Bijun Zhu,&nbsp;Miaomiao Zhang,&nbsp;Qi Shen,&nbsp;Pengcheng Xu,&nbsp;Hao Chen,&nbsp;Yunfeng Cheng","doi":"10.1002/ctd2.70075","DOIUrl":"https://doi.org/10.1002/ctd2.70075","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Elevated platelet count is correlated with poor survival of lung cancer. Platelet factor 4 (PF4), a platelet-specific protein, plays an important role in platelet function. Emerging evidence suggests that regulation of PF4 can modulate platelet function to impact the progression of lung cancer.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Anti-PF4 antibody was used to neutralise PF4 to regulate platelet function in the co-culture of platelets and lung cancer cells lines of H1299 and A549. The proliferation, apoptosis and cell cycle were examined by cell counting kit-8 (CCK-8) test and flow cytometry.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Anti-PF4 antibody inhibited the proliferation of H1299 and A549 cells when stimulated with platelets, yet induced cell cycle arrest and cell apoptosis only in A549, not H1299. The proliferation, cell cycle distribution and apoptosis were not affected by anti-PF4 antibody in A549<sup>TP53‒</sup> cells.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Anti-PF4 antibody exerted anti-proliferative effects by inducing apoptosis and cell cycle arrest in lung cancer cells without TP53 mutation via p53 signalling pathway when stimulated with platelets.</p>\u0000 </section>\u0000 </div>","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patients with symptoms of haemolytic anaemia and thrombocytopenia revealed by genetic testing as sitosterolemia 有溶血性贫血和血小板减少症状的患者经基因检测为谷甾醇血症
Pub Date : 2025-07-28 DOI: 10.1002/ctd2.70071
Mengjia Qian, Pu Chen, Yanxia Zhan, Bijun Zhu, Lingyan Wang, Miaomiao Zhang, Yujie Zhou, Hao Chen, Lili Ji, Yunfeng Cheng

Background

Sitosterolemia is a rare, inherited, autosomal recessive disorder of lipid metabolism. Patients with sitosterolemia may exhibit diverse, distinct clinical characteristics.

Methods and results

We report cases of sitosterolemia with haematological abnormalities as primary initial symptoms. Both patients were seen with symptoms of haemolytic anaemia and thrombocytopenia. Their plasma levels of low-density lipoprotein-cholesterol were normal. Genetic tests were arranged as stomatocytes were found in their peripheral blood smears. Three heterozygous mutations in adenosine triphosphate-binding cassette subfamily G member 5 (ABCG5) were identified in case 1. A mutation in integrin beta 3 was discovered in case 2, while no mutations were found in ABCG5 or ABCG8. Sitosterolemia was considered for both cases, and Ezetimibe was used for treatment, with quick curative responses.

Conclusion

For patients with unexplained haemolytic anaemia, thrombocytopenia, especially with stomatocytes present in peripheral blood, the diagnosis of sitosterolemia should be considered, and genetic testing is recommended.

背景:谷甾醇血症是一种罕见的遗传性常染色体隐性脂质代谢疾病。谷甾醇血症患者可能表现出多种不同的临床特征。方法和结果我们报告以血液学异常为主要初始症状的谷固醇血症病例。两例患者均有溶血性贫血和血小板减少的症状。他们的血浆低密度脂蛋白-胆固醇水平正常。当外周血涂片中发现有口细胞时,进行基因检测。在病例1中鉴定出三磷酸腺苷结合盒亚家族G成员5 (ABCG5)的三个杂合突变。在病例2中发现了整合素β 3突变,而在ABCG5和ABCG8中未发现突变。这两种情况都考虑到谷甾醇血症,并使用依折替布进行治疗,疗效迅速。结论对于不明原因的溶血性贫血、血小板减少症患者,特别是外周血有气孔细胞的患者,应考虑谷固醇血症的诊断,并建议进行基因检测。
{"title":"Patients with symptoms of haemolytic anaemia and thrombocytopenia revealed by genetic testing as sitosterolemia","authors":"Mengjia Qian,&nbsp;Pu Chen,&nbsp;Yanxia Zhan,&nbsp;Bijun Zhu,&nbsp;Lingyan Wang,&nbsp;Miaomiao Zhang,&nbsp;Yujie Zhou,&nbsp;Hao Chen,&nbsp;Lili Ji,&nbsp;Yunfeng Cheng","doi":"10.1002/ctd2.70071","DOIUrl":"https://doi.org/10.1002/ctd2.70071","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Sitosterolemia is a rare, inherited, autosomal recessive disorder of lipid metabolism. Patients with sitosterolemia may exhibit diverse, distinct clinical characteristics.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods and results</h3>\u0000 \u0000 <p>We report cases of sitosterolemia with haematological abnormalities as primary initial symptoms. Both patients were seen with symptoms of haemolytic anaemia and thrombocytopenia. Their plasma levels of low-density lipoprotein-cholesterol were normal. Genetic tests were arranged as stomatocytes were found in their peripheral blood smears. Three heterozygous mutations in adenosine triphosphate-binding cassette subfamily G member 5 (ABCG5) were identified in case 1. A mutation in integrin beta 3 was discovered in case 2, while no mutations were found in ABCG5 or ABCG8. Sitosterolemia was considered for both cases, and Ezetimibe was used for treatment, with quick curative responses.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>For patients with unexplained haemolytic anaemia, thrombocytopenia, especially with stomatocytes present in peripheral blood, the diagnosis of sitosterolemia should be considered, and genetic testing is recommended.</p>\u0000 </section>\u0000 </div>","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential of NAT10-mediated ac4C acetylation in clinical translation nat10介导的ac4C乙酰化在临床翻译中的潜力
Pub Date : 2025-07-27 DOI: 10.1002/ctd2.70061
Xuqiao Mei, Wanxin Duan, Jiawei Hu, Shisiyu Zheng, Yuhuang Xu, Yongguang Zhang, Jianming Weng, Xiao Yang

RNA modifications have recently garnered significant attention as key players in epigenetic regulation,1 such as N6-methyladenosine (m6A), pseudouridine (ψ), N1-methyladenosine (m1A), N4-acetylcytidine (ac4C), 5-methylcytosine (m5C) and its oxidised product 5-hydroxymethylcytosine (hm5C). N-acetyltransferase 10 (NAT10), the sole enzyme identified for ac4C acetylation, modulates RNA stability, translation efficiency and metabolic reprogramming, thereby impacting cellular homeostasis and disease progression. This commentary highlights the multifaceted roles of NAT10 in health and disease, emphasising its potential as a therapeutic target.

NAT10 is a multifunctional enzyme belonging to the GCN5-related N-acetyltransferase (GNAT) family. The NAT10 gene is located on chromosome 11p13 and comprises 29 exons and 28 introns, encoding a 1025-amino acid protein. NAT10 is highly conserved from bacteria to humans, featuring both an acetyltransferase domain and an RNA-binding domain.2 It catalyses the acetylation of specific RNA transcripts using acetyl-CoA as a substrate, primarily modifying tRNAs, rRNAs and mRNAs at specific sites. These modifications alter the structure and function of these RNA molecules, mainly to maintain mRNA stability and to enhance translation efficiency.3 However, the precise molecular mechanisms by which NAT10 increases mRNA stability through ac4C modification remain to be fully elucidated, requiring further in-depth research.

NAT10 plays diverse roles in cellular metabolism, cancer progression, cardiac injury, viral replication and other physiological and pathological processes. It directly regulates mRNA stability and translation efficiency through ac4C modification (e.g., SLC30A9, Mybbp1a) and interacts with other proteins to modulate key signalling pathways.4, 5 Additionally, NAT10 possesses biological functions independent of its classical RNA acetyltransferase activity (i.e., ac4C modification). These include roles in DNA repair, cytoskeletal regulation and epigenetic regulation via distinct molecular mechanisms.6 NAT10 is emerging as a potential therapeutic target in diseases such as cancer, cardiac injury and viral infections. Inhibiting its acetyltransferase activity or blocking its downstream signalling may provide novel therapeutic strategies.

NAT10-mediated ac4C modification of mRNA plays a significant role in various tumour-related processes. NAT10 enhances p53 stability and transcriptional activity by acetylating specific lysine residues on p53, thereby contributing significantly to tumour suppression.7 Conversely, upregulated NAT10 expression can promote the development of certain cancers by enhancing the stability and translation efficiency of target mRNA through ac4C modification. For instance, in bladder cancer, downregulation of NAT10 reduces ac4C mod

近年来,RNA修饰作为表观遗传调控的关键参与者受到了广泛关注,如n6 -甲基腺苷(m6A)、假尿嘧啶(ψ)、n1 -甲基腺苷(m1A)、n4 -乙酰胞苷(ac4C)、5-甲基胞嘧啶(m5C)及其氧化产物5-羟甲基胞嘧啶(hm5C)。n -乙酰转移酶10 (NAT10)是唯一被鉴定为ac4C乙酰化的酶,调节RNA稳定性、翻译效率和代谢重编程,从而影响细胞稳态和疾病进展。这篇评论强调了NAT10在健康和疾病中的多方面作用,强调了其作为治疗靶点的潜力。NAT10是一种多功能酶,属于gcn5相关的n -乙酰转移酶(GNAT)家族。NAT10基因位于染色体11p13上,由29个外显子和28个内含子组成,编码一个含1025个氨基酸的蛋白。NAT10从细菌到人类高度保守,具有乙酰转移酶结构域和rna结合结构域2它使用乙酰辅酶a作为底物催化特定RNA转录物的乙酰化,主要修饰特定位点的trna、rnas和mrna。这些修饰改变了这些RNA分子的结构和功能,主要是为了维持mRNA的稳定性和提高翻译效率然而,NAT10通过ac4C修饰提高mRNA稳定性的确切分子机制尚未完全阐明,需要进一步深入研究。NAT10在细胞代谢、癌症进展、心脏损伤、病毒复制等生理病理过程中发挥着多种作用。它通过ac4C修饰(如SLC30A9、Mybbp1a)直接调控mRNA的稳定性和翻译效率,并与其他蛋白相互作用调节关键信号通路。4,5此外,NAT10具有独立于其经典的RNA乙酰转移酶活性(即ac4C修饰)的生物学功能。这包括通过不同的分子机制在DNA修复、细胞骨架调节和表观遗传调节中的作用NAT10正在成为癌症、心脏损伤和病毒感染等疾病的潜在治疗靶点。抑制其乙酰转移酶活性或阻断其下游信号传导可能提供新的治疗策略。nat10介导的ac4C mRNA修饰在多种肿瘤相关过程中发挥重要作用。NAT10通过乙酰化p53上特定赖氨酸残基来增强p53的稳定性和转录活性,从而显著促进肿瘤抑制相反,上调NAT10表达可通过ac4C修饰增强靶mRNA的稳定性和翻译效率,从而促进某些癌症的发展。例如,在膀胱癌中,下调NAT10可降低ac4C修饰,损害BCL9L、SOX4和AKT1的翻译效率和稳定性,从而减弱致瘤性在胃癌中,nat10介导的MDM2 mRNA的ac4C乙酰化稳定了转录物并上调了其表达,导致p53抑制和癌症进展在弥漫性大b细胞淋巴瘤(DLBCL)中,NAT10通过ac4C修饰增强SLC30A9 mRNA的稳定性,激活AMPK/mTOR信号通路,促进DLBCL进展NAT10在大多数癌症组织中高表达,也可能与NAT10介导的ac4C修饰调节的脂肪酸代谢途径有关。通过ac4C修饰,调节脂肪酸代谢相关基因mRNA的稳定性,从而影响脂质积累,支持癌细胞存活在乳腺癌中,NAT10的高表达增强了脂质利用和脂肪酸代谢,这表明抑制NAT10可能是癌症治疗的潜在靶点在血液系统恶性肿瘤中,过表达的NAT10与急性髓性白血病(AML)患者的不良预后和化疗耐药相关。NAT10抑制导致AML细胞G1期细胞周期阻滞,促进细胞凋亡。此外,NAT10稳定BCL-XL mRNA并增强其翻译,从而抑制细胞凋亡,促进MM细胞增殖。12NAT10还与心血管疾病和免疫调节有关。它的表达在血管重塑过程中上调,诱导血管平滑肌细胞(VSMCs)的表型转换。NAT10敲低可降低ac4C的表达,导致VSMCs中收缩标记基因(如α-SMA、Calponin、SM22)上调。这些发现表明NAT10通过mRNA ac4C乙酰化促进VSMC表型转换。此外,NAT10促进血管损伤后的新内膜形成和VSMC表型转换。本研究发现整合素-β1 (ITGB1)和I型胶原α - 2链(Col1a2)是NAT10的关键下游靶点。 nat10介导的ac4C修饰增强了这些mrna的稳定性,导致ITGB1和COL1A2表达增加,从而促进VSMC增殖和血管重构通过组蛋白乙酰化和mRNA修饰在多个水平上调节基因表达,NAT10代表了一个复杂的治疗干预调节网络。进一步的研究探索了ITGB1在nat10介导的血管重构中的功能意义。在类风湿关节炎(RA)中,NAT10增加PTX3 mRNA n4乙酰化,增强其稳定性和翻译效率,从而促进RA滑膜侵袭和免疫细胞浸润。这突出了NAT10在RA发病机制中的重要性,并表明它是未来RA干预的潜在靶点。14通过nat10介导的ac4C乙酰化作用于不同的靶基因,促进不同的肿瘤发展。重塑蛋白是一种小分子抑制剂,可抑制NAT10及其下游靶点的表达,抑制细胞生长,促进细胞周期阻滞。它通过促进细胞凋亡,诱导细胞衰老,逆转上皮-间质转化和缺氧状态,在多种癌症中表现出抗肿瘤作用重塑蛋白可以抑制多种癌细胞的增殖、迁移和侵袭,是一种很有前景的癌症治疗药物。Yu等人证实,remodeling in治疗可降低NAT10和ITGB1表达,降低新生内膜形成和VSMC增殖,抑制ITGB1 - fak信号活性这些发现表明,NAT10是血管重构相关疾病如动脉粥样硬化和支架内再狭窄的潜在治疗靶点。然而,需要进一步的研究来了解NAT10抑制对整体细胞功能的更广泛的细胞影响,并评估潜在的脱靶效应。Ma等人发现NAT10调节小鼠和人心肌细胞中Uqcr11和Uqcrb mRNA的表达。在小鼠心肌细胞中,NAT10的过度表达促进了心脏再生,改善了损伤后的心脏功能相反,在新生小鼠中,NAT10基因缺失或重塑蛋白处理都会损害心脏再生。在机制上,NAT10独立于ac4C酶活性抑制Uqcr11和Uqcrb的表达。跨不同疾病模型的比较研究对于确定NAT10功能的共享和独特机制至关重要。越来越多的证据继续加深我们对NAT10与各种疾病之间关系的理解。NAT10既是致癌基因,也是RNA表观遗传修饰的关键调控因子,在疾病和癌症中表达上调。然而,nat10介导的ac4C修饰所调控的靶基因在不同疾病和癌症类型中存在显著差异,其下游作用的普适性和特异性有待进一步研究。虽然NAT10是癌症、心脏损伤和病毒感染等疾病的潜在治疗靶点,但抑制其乙酰转移酶活性或阻断相关信号通路的策略可能提供新的治疗机会。然而,由于NAT10是目前唯一已知的ac4c调节酶,缺乏酶冗余限制了其作为药物靶点的广泛适用性。虽然重塑蛋白能有效抑制NAT10表达并降低ac4C水平,但其确切的作用机制尚不完全清楚。梅旭桥、段万鑫、胡佳伟撰写了本文,郑士hiyu、徐玉煌、张永光、翁江明对相关论文进行了评审和整理,杨晓对本文进行了审稿。本研究经福建医科大学漳州附属医院伦理委员会批准。
{"title":"The potential of NAT10-mediated ac4C acetylation in clinical translation","authors":"Xuqiao Mei,&nbsp;Wanxin Duan,&nbsp;Jiawei Hu,&nbsp;Shisiyu Zheng,&nbsp;Yuhuang Xu,&nbsp;Yongguang Zhang,&nbsp;Jianming Weng,&nbsp;Xiao Yang","doi":"10.1002/ctd2.70061","DOIUrl":"https://doi.org/10.1002/ctd2.70061","url":null,"abstract":"<p>RNA modifications have recently garnered significant attention as key players in epigenetic regulation,<span><sup>1</sup></span> such as N6-methyladenosine (m6A), pseudouridine (ψ), N1-methyladenosine (m1A), N4-acetylcytidine (ac4C), 5-methylcytosine (m5C) and its oxidised product 5-hydroxymethylcytosine (hm5C). N-acetyltransferase 10 (NAT10), the sole enzyme identified for ac4C acetylation, modulates RNA stability, translation efficiency and metabolic reprogramming, thereby impacting cellular homeostasis and disease progression. This commentary highlights the multifaceted roles of NAT10 in health and disease, emphasising its potential as a therapeutic target.</p><p>NAT10 is a multifunctional enzyme belonging to the GCN5-related N-acetyltransferase (GNAT) family. The NAT10 gene is located on chromosome 11p13 and comprises 29 exons and 28 introns, encoding a 1025-amino acid protein. NAT10 is highly conserved from bacteria to humans, featuring both an acetyltransferase domain and an RNA-binding domain.<span><sup>2</sup></span> It catalyses the acetylation of specific RNA transcripts using acetyl-CoA as a substrate, primarily modifying tRNAs, rRNAs and mRNAs at specific sites. These modifications alter the structure and function of these RNA molecules, mainly to maintain mRNA stability and to enhance translation efficiency.<span><sup>3</sup></span> However, the precise molecular mechanisms by which NAT10 increases mRNA stability through ac4C modification remain to be fully elucidated, requiring further in-depth research.</p><p>NAT10 plays diverse roles in cellular metabolism, cancer progression, cardiac injury, viral replication and other physiological and pathological processes. It directly regulates mRNA stability and translation efficiency through ac4C modification (e.g., SLC30A9, Mybbp1a) and interacts with other proteins to modulate key signalling pathways.<span><sup>4, 5</sup></span> Additionally, NAT10 possesses biological functions independent of its classical RNA acetyltransferase activity (i.e., ac4C modification). These include roles in DNA repair, cytoskeletal regulation and epigenetic regulation via distinct molecular mechanisms.<span><sup>6</sup></span> NAT10 is emerging as a potential therapeutic target in diseases such as cancer, cardiac injury and viral infections. Inhibiting its acetyltransferase activity or blocking its downstream signalling may provide novel therapeutic strategies.</p><p>NAT10-mediated ac4C modification of mRNA plays a significant role in various tumour-related processes. NAT10 enhances p53 stability and transcriptional activity by acetylating specific lysine residues on p53, thereby contributing significantly to tumour suppression.<span><sup>7</sup></span> Conversely, upregulated NAT10 expression can promote the development of certain cancers by enhancing the stability and translation efficiency of target mRNA through ac4C modification. For instance, in bladder cancer, downregulation of NAT10 reduces ac4C mod","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144714897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significance of stereologically spatiotemporal cells in molecular medicine 立体时空细胞在分子医学中的意义
Pub Date : 2025-07-27 DOI: 10.1002/ctd2.70077
Xuanqi Liu, Wanxin Duan, Yuyang Qiu, Ruyi Li, Yuanlin Song, Xiangdong Wang

With continuous development of biotechnology, our understanding of cells, the fundamental units of the human body and their functions has deepened significantly. The structural and functional characteristics of cells are increasingly recognised as multidimensional and complex, shaped by their tissue and organ locations, intercellular connections, interactions in the extracellular fluids and the dynamics of subcellular organelles and molecules. Cellular heterogeneity among cells primarily arises from variations in the extracellular microenvironment, intracellular genetic diversity, and the spatial and dynamic arrangement of subcellular components, including nuclei, organelles, molecules and cytoplasm. Recent research has evidenced that a large proportion of proteins are spatially allocated in intracellular compartments, including both membrane-bound and membrane-less organelles. This localisation forms protein-driven spatial networks that link these organelles, and orient interconnections among the compartments.1 These spatiotemporal distributions of proteins dynamically altered in response to extracellular stimuli and pathogens, regulating protein movements, remodelling and functions independently of mere changes in protein abundance. Trans-compartmental translocations of intracellular components orientate dynamic and multiple regulations of signalling and functions. Studies on the spatiotemporal dynamics of intracellular proteomic and phosphor-proteomic signalling networks have demonstrated that receptor adaptor proteins can be re-distributed among subcellular compartments. This can perform transition from a free cytosolic form to membrane-bound fractions and be targeted to receptors through vesicles, a process activated by the phosphorylation of tyrosine residues in the receptor such as the interaction between epidermal growth factor and epidermal growth factor receptor.2 Various subcellular compartmentations are recognised and defined by specific biomarkers at a two-dimensional (2D) level, which partly shows the spatialisation and temporalisation of compartments and molecular relocations in stereological cells (See Figure 1)

To distinguish this from conventional 1D or 2D spatialisation, we define the concept of the ‘stereologically spatiotemporal cell’ (SST-cell) to describe the precise 3D localisation and interactions of intra- and extracellular components at the single-cell levels. We propose that understanding the SST-cell represents a new frontline in clinical single-cell biomedicine, providing new insights for the clinical translation and application of molecular medicine.3 Changes in intracellular components result in a high complexity of intercellular heterogeneity and multidimensional dynamics, posing challenges for real-time monitoring and reproducibility. One of the major challenges is to accurately delineate and interpret the complex multidimensional st

随着生物技术的不断发展,我们对细胞这一人体基本单位及其功能的认识已经大大加深。细胞的结构和功能特征越来越被认为是多维的和复杂的,由它们的组织和器官位置、细胞间连接、细胞外液体中的相互作用以及亚细胞细胞器和分子的动力学决定。细胞间的异质性主要源于细胞外微环境的变化、细胞内遗传多样性以及亚细胞成分(包括细胞核、细胞器、分子和细胞质)的空间和动态排列。最近的研究表明,很大一部分蛋白质在空间上分布在细胞内的区室中,包括膜结合和无膜细胞器。这种定位形成了蛋白质驱动的空间网络,将这些细胞器连接起来,并确定区室之间的相互连接方向这些蛋白质的时空分布随着细胞外刺激和病原体的变化而动态改变,调节蛋白质的运动、重塑和功能,而不仅仅是蛋白质丰度的变化。细胞内成分的跨室易位定向信号和功能的动态和多重调节。对细胞内蛋白质组学和磷酸化蛋白质组学信号网络时空动态的研究表明,受体衔接蛋白可以在亚细胞区室中重新分布。这可以完成从游离胞质形式到膜结合部分的转变,并通过囊泡靶向受体,这是一个由受体中酪氨酸残基磷酸化激活的过程,如表皮生长因子和表皮生长因子受体之间的相互作用各种亚细胞区隔在二维(2D)水平上被特定的生物标志物识别和定义,这在一定程度上显示了立体细胞中区隔和分子重定位的空间化和时间化(见图1)。我们定义了“立体时空细胞”(sst细胞)的概念,以描述单细胞水平上细胞内和细胞外成分的精确3D定位和相互作用。我们认为,了解sst细胞代表着临床单细胞生物医学的新前沿,为分子医学的临床转化和应用提供了新的见解细胞内成分的变化导致细胞间异质性和多维动态的高度复杂性,对实时监测和可重复性提出了挑战。其中一个主要的挑战是准确地描述和解释单个细胞内部和周围复杂的多维结构和功能。由于很难检测到细胞内成分的动态变化,揭示和监测细胞成分在其精确的立体时空背景下的表型多样性、自主反应和代谢功能仍然是一个挑战。最近开发了一种将高通量、高精度单细胞RNA测序与复杂成像相结合的新技术,用于不同内胚层区域的遗传追踪密码这种方法揭示了内胚层细胞在单细胞分辨率上的时空和遗传谱系分化。在早期内胚层器官发生过程中,每个单细胞的时空轨迹和动态重排受到三维细胞外微环境和细胞间通讯的影响。这些发现表明,立体和时空调节可能在器官发育中通过多源细胞募集或分化发挥重要作用。利用来自组织切片的连续空间转录组数据,如Stereo-seq获得的数据,结合单细胞分辨率作图的计算作图,可以全面呈现sst内和sst外细胞目前的观点集中在sst细胞内和细胞外立体变化的重要性,使其能够精确检测细胞内位置变化的技术进步,以及它们对诊断和治疗人类疾病的影响。三维染色质结构的时空变化对于确定sst细胞内的转录调控、遗传表观遗传学和遗传信息传递具有重要意义。技术的进步加深了我们对三维染色质密度和结构变化的理解。其空间结构的动态变化改变了基因的表达,在遗传病的发生和调控中起着重要作用。 染色体的三维结构确保了它们的正确形成,空间定位促进了调节因子的招募,并奠定了这些因子维持染色质结构的机制。这种三维染色质结构可以被复制介质的功能障碍和DNA双链断裂破坏,并损害拓扑相关结构域而不是DNA合成本身,导致受损染色质中的意外复制事件和增加DNA损伤,特别是在癌细胞中在细胞周期中,染色质的时空结构受到染色体复合体(包括染色质环挤压内聚、姐妹染色质内聚和有丝分裂染色体相关凝聚蛋白)结构维持之间的相互作用的动态调节。这种三维染色质组织不仅在维持转录组网络完整性和核形状方面起着至关重要的作用,而且在影响亚细胞器的时空位置和sst细胞的整体结构方面也起着至关重要的作用。最近,一种名为连接mRNA与染色质结构的基于测序的新方法,使得能够同时测量细胞核中的单细胞3D基因组结构和同一细胞细胞质中的转录组谱这个强大的单细胞测量工具精确捕获高阶染色质结构,全面提供转录组谱,根据染色质相互作用和基因表达准确区分细胞类型,动态检测基因定位在表达中的作用,系统地定义发育过程中连续的细胞状态轨迹。三维染色质结构的时空改变可导致多种疾病,包括器官发育缺陷、神经连通性异常、致癌和癌症进展。细胞内大量的细胞器和亚细胞器及其相互交流决定了细胞的生物学类型、亚型规范和类型特异性功能。细胞的分子现象和功能完全取决于细胞器的数量、体积、速度、位置和细胞器间的动态接触,特别是在膜结合细胞器之间。大多数细胞器和亚细胞器是用特定的蛋白质标记来鉴定的,这些标记定义了它们的身份、特异性、空间分离和丰度,以响应微环境或病理刺激。所有细胞器相互作用的集合,被称为细胞器相互作用组,通过直接的膜接触或细胞器之间基于邻近的相互作用来进行分子交换和信号转导。Takei等人使用双层DNA seqFISH+(一种在同一单细胞中同时检测基因组位点、转录组和亚核结构的方法)证明,作为亚核区室一部分的抑制染色质或异染色质区域以细胞类型依赖的模式变化在亚核相互作用组中,RNA聚合酶ii富集区和斑点相关区均显示细胞类型特异性基因表达,其中前者与长而稀疏分布的基因局部相关,后者与短而密集排列的基因相关。高分辨率、单细胞多组学技术能够同时观察复杂组织中单细胞的亚核结构、相应的基因组区域和受调控的基因表达,为研究疾病中基因失调、错误表达和功能障碍的机制提供了新的见解。每个细胞器在三维空间中的特征分布和分散模式以及细胞器相互作用组之间可复制的接触模式可以根据病原体,致癌物和治疗而改变。其中,内质网(ER)的各种形态和功能很难通过细胞内的动态形态学和细胞质流动来监测。粘附位点的分解、肌动蛋白动力学和内质膜极化可能受内质肌动蛋白系链取向钙信号因子和内质肌动蛋白界面附近钙信号的调控内质网的这些形态亚结构域/亚细胞器可能是为与其他细胞器接触并发挥作用而准备的。这些线粒体和溶酶体的动力学和相互作用是通过活跃的gtp结合的溶酶体RAB7进行载体和调节的,并且可以被RAB7 gtpase激活蛋白TBC1D15断开,或通过TBC1D15被溶酶体RAB7水解分裂。细胞器相互作用组的干预可能是发现诊断生物标志物和治疗靶点的新选择。细胞内和细胞外成分的多维动态决定了细胞在体内组织和器官功能中的表现。 技术的发展,如连续立体序列,DNA纳米球模式阵列和原位RNA捕获的组合,允许使用高空间分辨率组学测序来定义细胞内和细胞外成分的3D位置和接触。这种空间组学测序方法可以详细分析不同细胞亚型和状态之间的空间异质性,以及它们的细胞间通讯使用连续的空间转录组学,他们的胚胎内和胚胎外分子和细胞成分的3D谱系轨迹已经被追踪,揭示了它们的相互作用如何促进早期发育人类胚胎的发育严重依赖于这些细胞的三维空间排列的特征和模式,而细胞内转录组调控定向了这些细胞的定位和功能。通过整合实验和计算工具来高效和特殊地捕获连续的空间转录组,我们发现肿瘤的转移能力高度依赖于肿瘤微环境中各种细胞类型的空间重排和接触这种空间分解的方法提供了确定细胞内和细胞外成分的立体空间化的潜力,绘制三维细胞-细胞相互作用与转录组调节网络的同时状态,并探索基于细胞空间重新定位的分子机制。例如,人类胸腺的空间图谱已经展示了胎儿发育中期t细胞谱系分化的完整3D轨迹,包括细胞因子和趋化因子表达模式,胸腺上皮细胞群和亚型在髓质和皮质区域之间的空间转移,以及CD4和CD8
{"title":"Significance of stereologically spatiotemporal cells in molecular medicine","authors":"Xuanqi Liu,&nbsp;Wanxin Duan,&nbsp;Yuyang Qiu,&nbsp;Ruyi Li,&nbsp;Yuanlin Song,&nbsp;Xiangdong Wang","doi":"10.1002/ctd2.70077","DOIUrl":"https://doi.org/10.1002/ctd2.70077","url":null,"abstract":"<p>With continuous development of biotechnology, our understanding of cells, the fundamental units of the human body and their functions has deepened significantly. The structural and functional characteristics of cells are increasingly recognised as multidimensional and complex, shaped by their tissue and organ locations, intercellular connections, interactions in the extracellular fluids and the dynamics of subcellular organelles and molecules. Cellular heterogeneity among cells primarily arises from variations in the extracellular microenvironment, intracellular genetic diversity, and the spatial and dynamic arrangement of subcellular components, including nuclei, organelles, molecules and cytoplasm. Recent research has evidenced that a large proportion of proteins are spatially allocated in intracellular compartments, including both membrane-bound and membrane-less organelles. This localisation forms protein-driven spatial networks that link these organelles, and orient interconnections among the compartments.<span><sup>1</sup></span> These spatiotemporal distributions of proteins dynamically altered in response to extracellular stimuli and pathogens, regulating protein movements, remodelling and functions independently of mere changes in protein abundance. Trans-compartmental translocations of intracellular components orientate dynamic and multiple regulations of signalling and functions. Studies on the spatiotemporal dynamics of intracellular proteomic and phosphor-proteomic signalling networks have demonstrated that receptor adaptor proteins can be re-distributed among subcellular compartments. This can perform transition from a free cytosolic form to membrane-bound fractions and be targeted to receptors through vesicles, a process activated by the phosphorylation of tyrosine residues in the receptor such as the interaction between epidermal growth factor and epidermal growth factor receptor.<span><sup>2</sup></span> Various subcellular compartmentations are recognised and defined by specific biomarkers at a two-dimensional (2D) level, which partly shows the spatialisation and temporalisation of compartments and molecular relocations in stereological cells (See Figure 1)</p><p>To distinguish this from conventional 1D or 2D spatialisation, we define the concept of the ‘stereologically spatiotemporal cell’ (SST-cell) to describe the precise 3D localisation and interactions of intra- and extracellular components at the single-cell levels. We propose that understanding the SST-cell represents a new frontline in clinical single-cell biomedicine, providing new insights for the clinical translation and application of molecular medicine.<span><sup>3</sup></span> Changes in intracellular components result in a high complexity of intercellular heterogeneity and multidimensional dynamics, posing challenges for real-time monitoring and reproducibility. One of the major challenges is to accurately delineate and interpret the complex multidimensional st","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144714898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical marine biomedicine: An emerging area in clinical and translational medicine 临床海洋生物医学:临床和转化医学的新兴领域
Pub Date : 2025-07-24 DOI: 10.1002/ctd2.70050
Xiaojun Yan, Wanxin Duan, Xiangdong Wang

Marine biomedicine is an important field in oceanology and bio-ecosystem and has evolved significantly alongside advances in biotechnology and growing understanding of marine life. In this perspective, we propose a refined concept of clinical marine biomedicine, with a clear mission to establish an emerging discipline that bridges marine biomedicine and clinical practice. The exploration of marine-origin sources should be emphasised, with a strong focus on the identification, validation and development of human disease-specific diagnostics and target-oriented pharmaceutics. The perspective headlines some of critical components, including marine-oriented human evolution and development, humanised marine-based models, biomarker innovation and validation, marine microbiomes and metabolites, and target nutrition and therapy. We envision that clinical marine biomedicine will become a crucial pillar clinical molecular medicine, contributing to the improvement of human health and the prognosis of patient.

海洋生物医学是海洋学和生物生态系统的一个重要领域,随着生物技术的进步和对海洋生物的认识不断加深,海洋生物医学得到了显著的发展。从这个角度来看,我们提出了一个精炼的临床海洋生物医学概念,并明确了建立一个连接海洋生物医学和临床实践的新兴学科的使命。应强调对海洋来源的探索,重点是确定、验证和开发针对人类疾病的诊断方法和面向目标的药物。该展望概述了一些关键组成部分,包括以海洋为导向的人类进化和发展、人性化的海洋模型、生物标志物创新和验证、海洋微生物组和代谢物,以及目标营养和治疗。我们展望临床海洋生物医学将成为临床分子医学的重要支柱,为改善人类健康和患者预后做出贡献。
{"title":"Clinical marine biomedicine: An emerging area in clinical and translational medicine","authors":"Xiaojun Yan,&nbsp;Wanxin Duan,&nbsp;Xiangdong Wang","doi":"10.1002/ctd2.70050","DOIUrl":"https://doi.org/10.1002/ctd2.70050","url":null,"abstract":"<p>Marine biomedicine is an important field in oceanology and bio-ecosystem and has evolved significantly alongside advances in biotechnology and growing understanding of marine life. In this perspective, we propose a refined concept of clinical marine biomedicine, with a clear mission to establish an emerging discipline that bridges marine biomedicine and clinical practice. The exploration of marine-origin sources should be emphasised, with a strong focus on the identification, validation and development of human disease-specific diagnostics and target-oriented pharmaceutics. The perspective headlines some of critical components, including marine-oriented human evolution and development, humanised marine-based models, biomarker innovation and validation, marine microbiomes and metabolites, and target nutrition and therapy. We envision that clinical marine biomedicine will become a crucial pillar clinical molecular medicine, contributing to the improvement of human health and the prognosis of patient.</p>","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144695911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial homeostasis orchestrates the fate of beta-cells and the outcomes of islet transplantation 线粒体稳态协调β细胞的命运和胰岛移植的结果
Pub Date : 2025-07-24 DOI: 10.1002/ctd2.70070
Baicheng Kuang, Yuanyuan Zhao, Nianqiao Gong
<p>In addition to producing energy, mitochondria are also key regulators of cell survival, death and immune signalling. This is particularly evident in the pancreas, where mitochondrial function governs the fate of both acinar cells and insulin-producing beta-cells, especially under inflammatory or stressed conditions. Over recent years, increasing attention has been directed towards investigating the role of mitochondrial dynamics (fusion, fission, mitophagy and biogenesis) in shaping disease outcomes for metabolic diseases, including pancreatitis, autoimmune diabetes and islet transplantation.<span><sup>1</sup></span> In this regard, the study by Cobo-Vuilleumier et al. provided a valuable new layer of understanding by showing that the nuclear receptor liver receptor homolog-1 (LRH-1/NR5A2) reprograms both macrophages and dendritic cells towards an immune-tolerant phenotype by modulating mitochondrial functionality.<span><sup>2</sup></span> This research identified mitochondria as a central checkpoint not only for innate immune activation but also for the preservation of beta-cells. The authors demonstrated that pharmacological activation of LRH-1 in myeloid cells triggered mitohormesis, characterised by a suppression of oxidative phosphorylation, slight enhancement of glycolytic activity, and induction of activating transcription factor 4 (ATF4)–growth differentiation factor 15 (GDF15) signalling. Consequently, pro-inflammatory macrophages and dendritic cells were converted into tolerogenic phenotypes that mitigated local immune aggression against islets in models of autoimmune diabetes. These findings suggest that reprogramming immune cell metabolism via mitochondrial remodelling could serve as a novel strategy for the restoration of islet tolerance in type 1 diabetes (T1D). Importantly, this mitochondrial-driven form of immunomodulation may synergise with other interventions that protect the islets.</p><p>Of particular interest is the vulnerability of pancreatic beta-cells to mitochondrial stress. These cells are metabolically demanding and rely heavily on mitochondrial ATP production to couple glucose sensing with insulin secretion. Unlike many other cell types, beta-cells exhibit relatively low levels of endogenous antioxidant enzymes, making them especially prone to oxidative damage.<span><sup>3</sup></span> In a recently published study, Amo-Shiinoki et al. provided compelling evidence that mitochondrial dysfunction is a central driver of beta-cells dedifferentiation in Wolfram syndrome (WS), which is caused by mutations in the endoplasmic reticulum (ER)-resident protein WFS1.<span><sup>4</sup></span> The authors demonstrated that <i>Wfs1</i>-null beta-cells undergo dedifferentiation rather than apoptosis, marked by loss of mature beta-cells markers (e.g., MafA) and re-expression of progenitor genes (e.g., Aldh1a3, Neurog3). Notably, these changes were accompanied by significant metabolic remodelling: impaired glycolysis-TCA coupling, re
除了产生能量,线粒体也是细胞存活、死亡和免疫信号的关键调节器。这在胰腺中尤其明显,线粒体功能控制着腺泡细胞和产生胰岛素的β细胞的命运,尤其是在炎症或应激条件下。近年来,人们越来越关注线粒体动力学(融合、裂变、线粒体自噬和生物发生)在形成代谢性疾病(包括胰腺炎、自身免疫性糖尿病和胰岛移植)的疾病结果中的作用在这方面,Cobo-Vuilleumier等人的研究提供了一个有价值的新理解层,他们表明核受体肝受体同源物-1 (LRH-1/NR5A2)通过调节线粒体功能将巨噬细胞和树突状细胞重编程为免疫耐受表型这项研究发现线粒体不仅是先天免疫激活的中心检查点,也是保存β细胞的中心检查点。作者证明,髓细胞中LRH-1的药理激活可触发有丝分裂,其特征是氧化磷酸化抑制,糖酵解活性轻微增强,并诱导激活转录因子4 (ATF4) -生长分化因子15 (GDF15)信号传导。因此,在自身免疫性糖尿病模型中,促炎巨噬细胞和树突状细胞转化为耐受性表型,减轻了对胰岛的局部免疫攻击。这些发现表明,通过线粒体重塑对免疫细胞代谢进行重编程可能是恢复1型糖尿病(T1D)胰岛耐受性的一种新策略。重要的是,这种线粒体驱动的免疫调节形式可能与其他保护胰岛的干预措施协同作用。特别令人感兴趣的是胰腺β细胞对线粒体应激的脆弱性。这些细胞需要代谢,严重依赖线粒体ATP的产生,将葡萄糖感知与胰岛素分泌结合起来。与许多其他类型的细胞不同,β细胞表现出相对较低水平的内源性抗氧化酶,这使得它们特别容易受到氧化损伤在最近发表的一项研究中,Amo-Shiinoki等人提供了令人信服的证据,证明线粒体功能障碍是Wolfram综合征(WS)中β细胞去分化的主要驱动因素,而WS是由内质网(ER)蛋白WFS1.4的突变引起的。作者证明,wfs1缺失的β细胞经历去分化而不是凋亡,其特征是成熟β细胞标记物(如MafA)的缺失和祖基因(如Aldh1a3, Neurog3)的重新表达。值得注意的是,这些变化伴随着显著的代谢重塑:糖酵解- tca偶联受损,ATP产生减少,丙酮酸脱氢酶磷酸化增加,尽管线粒体氧化能力得以保留。这些改变反映了线粒体功能不足的状态,这严重破坏了胰岛素分泌和β细胞的身份。重要的是,氧化还原调节因子硫氧还蛋白相互作用蛋白(Txnip)被内质网应激上调,其缺失恢复了糖酵解通量、ATP生成和β细胞成熟,从而阻止了糖尿病的进展。这些发现强化了线粒体稳态不仅支持而且决定β细胞功能和存活的概念,其破坏可导致去分化和不可逆的β细胞衰竭,不仅在遗传性糖尿病中可见,而且对胰岛移植也有影响。我们的团队之前已经证明了间充质干细胞(MSCs)对胰岛具有保护作用,特别是通过调节内质网应激在我们最近的研究(未发表)中,我们使用了一种共移植模型,在该模型中,来自人脐带间充质干细胞(hucMSC-EVs)的细胞外囊(EVs)与原代胰岛一起在链脲佐菌素诱导的糖尿病小鼠的肾被膜下传递。我们发现,hucmsc - ev显著改善了胰岛存活率,微调了内质网和线粒体之间的通讯,恢复了线粒体超微结构,并保留了β细胞的功能。此外,hucmsc - ev还能减轻内质网应激标志物(C/EBP同源蛋白,CHOP;结合免疫球蛋白(Bip)和减少细胞凋亡。我们的数据支持一个模型,其中间充质干细胞不仅作为免疫调节剂,而且作为线粒体保护剂,以保持β细胞功能和改善胰岛移植。结合Cobo-Vuilleumier等人的见解,很明显,免疫细胞代谢和β细胞线粒体完整性的双重调节对于胰岛移植的最佳结果至关重要。 这些发现在临床环境中尤为重要。胰岛移植后早期,移植物暴露于缺氧、营养剥夺、缺血再灌注损伤和先天免疫激活。6,7这些应激源导致线粒体快速功能障碍,引发β细胞凋亡或坏死,导致原发移植胰岛的丧失。增强线粒体自噬、稳定内质网应激信号或提供线粒体支持的策略,无论是通过药物治疗还是通过MSCs等细胞治疗,都可能显著提高这一关键时期胰岛的存活率(图1)。从翻译的角度来看,靶向线粒体途径有几个优势。首先,线粒体调节因子,如LRH-1,可以被药理激活,目前正在研究代谢疾病的激动剂其次,基于msc的产品(包括电动汽车)在早期临床试验中被证明是安全的,可以设计用于输送线粒体靶向货物第三,线粒体健康代表了多种途径(如氧化应激、内质网应激和免疫信号)的交汇点,使线粒体成为高度综合的治疗靶点。综上所述,线粒体稳态是一种统一的机制,它既控制胰腺细胞的命运,也控制炎症的免疫调节。Cobo-Vuilleumier等人的研究优雅地展示了免疫细胞中线粒体功能的重编程如何建立耐受性并保护β细胞。当与msc介导的线粒体拯救策略一起考虑时,一个强有力的案例出现了针对线粒体的综合方法,以改善胰岛移植的结果并阻止胰腺炎症性疾病的进展。未来的研究应继续阐明线粒体动力学、免疫信号和胰岛功能之间的相互作用,目的是将这些见解转化为临床治疗。匡BC,赵元勇,概念,文献综述,撰写原稿;龚NQ写作评论&;编辑、监督。作者声明无利益冲突。不适用。
{"title":"Mitochondrial homeostasis orchestrates the fate of beta-cells and the outcomes of islet transplantation","authors":"Baicheng Kuang,&nbsp;Yuanyuan Zhao,&nbsp;Nianqiao Gong","doi":"10.1002/ctd2.70070","DOIUrl":"https://doi.org/10.1002/ctd2.70070","url":null,"abstract":"&lt;p&gt;In addition to producing energy, mitochondria are also key regulators of cell survival, death and immune signalling. This is particularly evident in the pancreas, where mitochondrial function governs the fate of both acinar cells and insulin-producing beta-cells, especially under inflammatory or stressed conditions. Over recent years, increasing attention has been directed towards investigating the role of mitochondrial dynamics (fusion, fission, mitophagy and biogenesis) in shaping disease outcomes for metabolic diseases, including pancreatitis, autoimmune diabetes and islet transplantation.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; In this regard, the study by Cobo-Vuilleumier et al. provided a valuable new layer of understanding by showing that the nuclear receptor liver receptor homolog-1 (LRH-1/NR5A2) reprograms both macrophages and dendritic cells towards an immune-tolerant phenotype by modulating mitochondrial functionality.&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; This research identified mitochondria as a central checkpoint not only for innate immune activation but also for the preservation of beta-cells. The authors demonstrated that pharmacological activation of LRH-1 in myeloid cells triggered mitohormesis, characterised by a suppression of oxidative phosphorylation, slight enhancement of glycolytic activity, and induction of activating transcription factor 4 (ATF4)–growth differentiation factor 15 (GDF15) signalling. Consequently, pro-inflammatory macrophages and dendritic cells were converted into tolerogenic phenotypes that mitigated local immune aggression against islets in models of autoimmune diabetes. These findings suggest that reprogramming immune cell metabolism via mitochondrial remodelling could serve as a novel strategy for the restoration of islet tolerance in type 1 diabetes (T1D). Importantly, this mitochondrial-driven form of immunomodulation may synergise with other interventions that protect the islets.&lt;/p&gt;&lt;p&gt;Of particular interest is the vulnerability of pancreatic beta-cells to mitochondrial stress. These cells are metabolically demanding and rely heavily on mitochondrial ATP production to couple glucose sensing with insulin secretion. Unlike many other cell types, beta-cells exhibit relatively low levels of endogenous antioxidant enzymes, making them especially prone to oxidative damage.&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; In a recently published study, Amo-Shiinoki et al. provided compelling evidence that mitochondrial dysfunction is a central driver of beta-cells dedifferentiation in Wolfram syndrome (WS), which is caused by mutations in the endoplasmic reticulum (ER)-resident protein WFS1.&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; The authors demonstrated that &lt;i&gt;Wfs1&lt;/i&gt;-null beta-cells undergo dedifferentiation rather than apoptosis, marked by loss of mature beta-cells markers (e.g., MafA) and re-expression of progenitor genes (e.g., Aldh1a3, Neurog3). Notably, these changes were accompanied by significant metabolic remodelling: impaired glycolysis-TCA coupling, re","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144695910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphatidylethanolamine: A key player in lung disease 磷脂酰乙醇胺:肺部疾病的关键因素
Pub Date : 2025-07-23 DOI: 10.1002/ctd2.70076
Linlin Zhang, Wanxin Duan, Liyang Li

Phosphatidylethanolamine (PE) is a pivotal glycerophospholipid that constitutes a significant portion of cellular membranes, playing a crucial role in maintaining membrane fluidity, supporting protein integration, and mediating signal transduction. In the lungs, PE is also a key component of pulmonary surfactant, which is essential for preserving alveolar stability and facilitating efficient gas exchange. Recent research has highlighted the association between dysregulated PE metabolism and various lung diseases, such as asthma, pulmonary fibrosis and chronic obstructive pulmonary disease. Nevertheless, the molecular mechanisms underlying these associations remain poorly understood, and the potential of PE as a therapeutic target or biomarker for lung diseases has yet to be fully explored. This review aims to provide a comprehensive overview of the biological functions and biosynthetic pathways of PE, with a particular focus on its roles in pulmonary physiology and pathology. We summarise current findings on PE alterations in different lung diseases and discuss the potential implications of targeting PE metabolism for therapeutic interventions.

磷脂酰乙醇胺(PE)是一种关键的甘油磷脂,构成细胞膜的重要组成部分,在维持细胞膜流动性、支持蛋白质整合和介导信号转导方面起着至关重要的作用。在肺中,PE也是肺表面活性物质的重要组成部分,它对保持肺泡稳定性和促进有效的气体交换至关重要。最近的研究强调了PE代谢失调与各种肺部疾病(如哮喘、肺纤维化和慢性阻塞性肺疾病)之间的关联。然而,这些关联背后的分子机制仍然知之甚少,PE作为肺部疾病的治疗靶点或生物标志物的潜力尚未得到充分探索。本综述旨在提供PE的生物学功能和生物合成途径的全面概述,特别关注其在肺生理和病理中的作用。我们总结了不同肺部疾病中PE改变的最新发现,并讨论了针对PE代谢进行治疗干预的潜在意义。
{"title":"Phosphatidylethanolamine: A key player in lung disease","authors":"Linlin Zhang,&nbsp;Wanxin Duan,&nbsp;Liyang Li","doi":"10.1002/ctd2.70076","DOIUrl":"https://doi.org/10.1002/ctd2.70076","url":null,"abstract":"<p>Phosphatidylethanolamine (PE) is a pivotal glycerophospholipid that constitutes a significant portion of cellular membranes, playing a crucial role in maintaining membrane fluidity, supporting protein integration, and mediating signal transduction. In the lungs, PE is also a key component of pulmonary surfactant, which is essential for preserving alveolar stability and facilitating efficient gas exchange. Recent research has highlighted the association between dysregulated PE metabolism and various lung diseases, such as asthma, pulmonary fibrosis and chronic obstructive pulmonary disease. Nevertheless, the molecular mechanisms underlying these associations remain poorly understood, and the potential of PE as a therapeutic target or biomarker for lung diseases has yet to be fully explored. This review aims to provide a comprehensive overview of the biological functions and biosynthetic pathways of PE, with a particular focus on its roles in pulmonary physiology and pathology. We summarise current findings on PE alterations in different lung diseases and discuss the potential implications of targeting PE metabolism for therapeutic interventions.\u0000\u0000 </p>","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144687951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the potential risks of employing large language models in peer review 评估在同行评审中使用大型语言模型的潜在风险
Pub Date : 2025-06-27 DOI: 10.1002/ctd2.70067
Lingxuan Zhu, Yancheng Lai, Jiarui Xie, Weiming Mou, Lihaoyun Huang, Chang Qi, Tao Yang, Aimin Jiang, Wenyi Gan, Dongqiang Zeng, Bufu Tang, Mingjia Xiao, Guangdi Chu, Zaoqu Liu, Quan Cheng, Anqi Lin, Peng Luo

Objective

This study aims to systematically investigate the potential harms of Large Language Models (LLMs) in the peer review process.

Background

LLMs are increasingly used in academic processes, including peer review. While they can address challenges like reviewer scarcity and review efficiency, concerns about fairness, transparency and potential biases in LLM-generated reviews have not been thoroughly investigated.

Methods

Claude 2.0 was used to generate peer review reports, rejection recommendations, citation requests and refutations for 20 original, unmodified cancer biology manuscripts obtained from eLife's new publishing model. Artificial intelligence (AI) detection tools (zeroGPT and GPTzero) assessed whether the reviews were identifiable as LLM-generated.All LLM-generated outputs were evaluated for reasonableness by two expert on a five-point Likert scale.

Results

LLM-generated reviews were somewhat consistent with human reviews but lacked depth, especially in detailed critique. The model proved highly proficient at generating convincing rejection comments and could create plausible citation requests, including requests for unrelated references. AI detectors struggled to identify LLM-generated reviews, with 82.8% of responses classified as human-written by GPTzero.

Conclusions

LLMs can be readily misused to undermine the peer review process by generating biased, manipulative, and difficult-to-detect content, posing a significant threat to academic integrity. Guidelines and detection tools are needed to ensure LLMs enhance rather than harm the peer review process.

目的系统探讨大型语言模型(Large Language Models, LLMs)在同行评审过程中的潜在危害。法学硕士越来越多地用于学术过程,包括同行评审。虽然他们可以解决诸如审稿人稀缺和审稿效率等挑战,但法学硕士生成的审稿中对公平性、透明度和潜在偏见的担忧尚未得到彻底调查。方法采用Claude 2.0软件对来自eLife新出版模式的20篇未经修改的癌症生物学原稿进行同行评议报告、退稿建议、引文请求和反驳。人工智能(AI)检测工具(zeroGPT和GPTzero)评估评论是否可识别为llm生成。所有llm生成的输出由两位专家在五点李克特量表上评估合理性。结果llm生成的评论在一定程度上与人类评论一致,但缺乏深度,特别是在详细的评论中。该模型被证明在生成令人信服的拒绝评论方面非常精通,并且可以创建合理的引用请求,包括对不相关参考文献的请求。人工智能探测器很难识别法学硕士生成的评论,其中82.8%的回复被归为GPTzero编写的人工评论。法学硕士很容易被滥用,通过产生有偏见、操纵和难以检测的内容来破坏同行评议过程,对学术诚信构成重大威胁。需要指导方针和检测工具来确保法学硕士促进而不是损害同行评审过程。
{"title":"Evaluating the potential risks of employing large language models in peer review","authors":"Lingxuan Zhu,&nbsp;Yancheng Lai,&nbsp;Jiarui Xie,&nbsp;Weiming Mou,&nbsp;Lihaoyun Huang,&nbsp;Chang Qi,&nbsp;Tao Yang,&nbsp;Aimin Jiang,&nbsp;Wenyi Gan,&nbsp;Dongqiang Zeng,&nbsp;Bufu Tang,&nbsp;Mingjia Xiao,&nbsp;Guangdi Chu,&nbsp;Zaoqu Liu,&nbsp;Quan Cheng,&nbsp;Anqi Lin,&nbsp;Peng Luo","doi":"10.1002/ctd2.70067","DOIUrl":"https://doi.org/10.1002/ctd2.70067","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>This study aims to systematically investigate the potential harms of Large Language Models (LLMs) in the peer review process.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>LLMs are increasingly used in academic processes, including peer review. While they can address challenges like reviewer scarcity and review efficiency, concerns about fairness, transparency and potential biases in LLM-generated reviews have not been thoroughly investigated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Claude 2.0 was used to generate peer review reports, rejection recommendations, citation requests and refutations for 20 original, unmodified cancer biology manuscripts obtained from <i>eLife</i>'s new publishing model. Artificial intelligence (AI) detection tools (zeroGPT and GPTzero) assessed whether the reviews were identifiable as LLM-generated.All LLM-generated outputs were evaluated for reasonableness by two expert on a five-point Likert scale.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>LLM-generated reviews were somewhat consistent with human reviews but lacked depth, especially in detailed critique. The model proved highly proficient at generating convincing rejection comments and could create plausible citation requests, including requests for unrelated references. AI detectors struggled to identify LLM-generated reviews, with 82.8% of responses classified as human-written by GPTzero.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>LLMs can be readily misused to undermine the peer review process by generating biased, manipulative, and difficult-to-detect content, posing a significant threat to academic integrity. Guidelines and detection tools are needed to ensure LLMs enhance rather than harm the peer review process.</p>\u0000 </section>\u0000 </div>","PeriodicalId":72605,"journal":{"name":"Clinical and translational discovery","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctd2.70067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144503161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clinical and translational discovery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1