Pub Date : 2022-08-31DOI: 10.48550/arXiv.2208.14743
Mohamed Sayed, J. Gibson, Jamie Watson, V. Prisacariu, Michael Firman, Clément Godard
Traditionally, 3D indoor scene reconstruction from posed images happens in two phases: per-image depth estimation, followed by depth merging and surface reconstruction. Recently, a family of methods have emerged that perform reconstruction directly in final 3D volumetric feature space. While these methods have shown impressive reconstruction results, they rely on expensive 3D convolutional layers, limiting their application in resource-constrained environments. In this work, we instead go back to the traditional route, and show how focusing on high quality multi-view depth prediction leads to highly accurate 3D reconstructions using simple off-the-shelf depth fusion. We propose a simple state-of-the-art multi-view depth estimator with two main contributions: 1) a carefully-designed 2D CNN which utilizes strong image priors alongside a plane-sweep feature volume and geometric losses, combined with 2) the integration of keyframe and geometric metadata into the cost volume which allows informed depth plane scoring. Our method achieves a significant lead over the current state-of-the-art for depth estimation and close or better for 3D reconstruction on ScanNet and 7-Scenes, yet still allows for online real-time low-memory reconstruction. Code, models and results are available at https://nianticlabs.github.io/simplerecon
{"title":"SimpleRecon: 3D Reconstruction Without 3D Convolutions","authors":"Mohamed Sayed, J. Gibson, Jamie Watson, V. Prisacariu, Michael Firman, Clément Godard","doi":"10.48550/arXiv.2208.14743","DOIUrl":"https://doi.org/10.48550/arXiv.2208.14743","url":null,"abstract":"Traditionally, 3D indoor scene reconstruction from posed images happens in two phases: per-image depth estimation, followed by depth merging and surface reconstruction. Recently, a family of methods have emerged that perform reconstruction directly in final 3D volumetric feature space. While these methods have shown impressive reconstruction results, they rely on expensive 3D convolutional layers, limiting their application in resource-constrained environments. In this work, we instead go back to the traditional route, and show how focusing on high quality multi-view depth prediction leads to highly accurate 3D reconstructions using simple off-the-shelf depth fusion. We propose a simple state-of-the-art multi-view depth estimator with two main contributions: 1) a carefully-designed 2D CNN which utilizes strong image priors alongside a plane-sweep feature volume and geometric losses, combined with 2) the integration of keyframe and geometric metadata into the cost volume which allows informed depth plane scoring. Our method achieves a significant lead over the current state-of-the-art for depth estimation and close or better for 3D reconstruction on ScanNet and 7-Scenes, yet still allows for online real-time low-memory reconstruction. Code, models and results are available at https://nianticlabs.github.io/simplerecon","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"170 1","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79386930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-31DOI: 10.48550/arXiv.2208.14863
Juyong Lee, Seokjun Ahn, Jaesik Park
We present a novel method of learning style-agnostic representation using both style transfer and adversarial learning in the reinforcement learning framework. The style, here, refers to task-irrelevant details such as the color of the background in the images, where generalizing the learned policy across environments with different styles is still a challenge. Focusing on learning style-agnostic representations, our method trains the actor with diverse image styles generated from an inherent adversarial style perturbation generator, which plays a min-max game between the actor and the generator, without demanding expert knowledge for data augmentation or additional class labels for adversarial training. We verify that our method achieves competitive or better performances than the state-of-the-art approaches on Procgen and Distracting Control Suite benchmarks, and further investigate the features extracted from our model, showing that the model better captures the invariants and is less distracted by the shifted style. The code is available at https://github.com/POSTECH-CVLab/style-agnostic-RL.
我们提出了一种在强化学习框架中使用风格迁移和对抗学习来学习风格不可知表征的新方法。这里的风格指的是与任务无关的细节,比如图像中背景的颜色,在不同风格的环境中泛化学习到的策略仍然是一个挑战。专注于学习风格不可知表示,我们的方法用一个固有的对抗性风格扰动生成器生成的不同图像风格来训练actor,该生成器在actor和生成器之间进行最小-最大博弈,而不需要专家知识来增强数据或额外的类标签来进行对抗性训练。我们验证了我们的方法在Procgen和distraction Control Suite基准测试上取得了与最先进的方法相比具有竞争力或更好的性能,并进一步研究了从我们的模型中提取的特征,表明该模型更好地捕获了不变量,并且较少受到转移风格的干扰。代码可在https://github.com/POSTECH-CVLab/style-agnostic-RL上获得。
{"title":"Style-Agnostic Reinforcement Learning","authors":"Juyong Lee, Seokjun Ahn, Jaesik Park","doi":"10.48550/arXiv.2208.14863","DOIUrl":"https://doi.org/10.48550/arXiv.2208.14863","url":null,"abstract":"We present a novel method of learning style-agnostic representation using both style transfer and adversarial learning in the reinforcement learning framework. The style, here, refers to task-irrelevant details such as the color of the background in the images, where generalizing the learned policy across environments with different styles is still a challenge. Focusing on learning style-agnostic representations, our method trains the actor with diverse image styles generated from an inherent adversarial style perturbation generator, which plays a min-max game between the actor and the generator, without demanding expert knowledge for data augmentation or additional class labels for adversarial training. We verify that our method achieves competitive or better performances than the state-of-the-art approaches on Procgen and Distracting Control Suite benchmarks, and further investigate the features extracted from our model, showing that the model better captures the invariants and is less distracted by the shifted style. The code is available at https://github.com/POSTECH-CVLab/style-agnostic-RL.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"56 1","pages":"604-620"},"PeriodicalIF":0.0,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90567685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-30DOI: 10.48550/arXiv.2208.14201
Hongkai Chen, Zixin Luo, Lei Zhou, Yurun Tian, Mingmin Zhen, Tian Fang, D. McKinnon, Yanghai Tsin, Long Quan
Generating robust and reliable correspondences across images is a fundamental task for a diversity of applications. To capture context at both global and local granularity, we propose ASpanFormer, a Transformer-based detector-free matcher that is built on hierarchical attention structure, adopting a novel attention operation which is capable of adjusting attention span in a self-adaptive manner. To achieve this goal, first, flow maps are regressed in each cross attention phase to locate the center of search region. Next, a sampling grid is generated around the center, whose size, instead of being empirically configured as fixed, is adaptively computed from a pixel uncertainty estimated along with the flow map. Finally, attention is computed across two images within derived regions, referred to as attention span. By these means, we are able to not only maintain long-range dependencies, but also enable fine-grained attention among pixels of high relevance that compensates essential locality and piece-wise smoothness in matching tasks. State-of-the-art accuracy on a wide range of evaluation benchmarks validates the strong matching capability of our method.
{"title":"ASpanFormer: Detector-Free Image Matching with Adaptive Span Transformer","authors":"Hongkai Chen, Zixin Luo, Lei Zhou, Yurun Tian, Mingmin Zhen, Tian Fang, D. McKinnon, Yanghai Tsin, Long Quan","doi":"10.48550/arXiv.2208.14201","DOIUrl":"https://doi.org/10.48550/arXiv.2208.14201","url":null,"abstract":"Generating robust and reliable correspondences across images is a fundamental task for a diversity of applications. To capture context at both global and local granularity, we propose ASpanFormer, a Transformer-based detector-free matcher that is built on hierarchical attention structure, adopting a novel attention operation which is capable of adjusting attention span in a self-adaptive manner. To achieve this goal, first, flow maps are regressed in each cross attention phase to locate the center of search region. Next, a sampling grid is generated around the center, whose size, instead of being empirically configured as fixed, is adaptively computed from a pixel uncertainty estimated along with the flow map. Finally, attention is computed across two images within derived regions, referred to as attention span. By these means, we are able to not only maintain long-range dependencies, but also enable fine-grained attention among pixels of high relevance that compensates essential locality and piece-wise smoothness in matching tasks. State-of-the-art accuracy on a wide range of evaluation benchmarks validates the strong matching capability of our method.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"14 1","pages":"20-36"},"PeriodicalIF":0.0,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81919749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-29DOI: 10.48550/arXiv.2208.13722
Yen-Cheng Liu, Chih-Yao Ma, Xiaoliang Dai, Junjiao Tian, Péter Vajda, Zijian He, Z. Kira
Recent developments for Semi-Supervised Object Detection (SSOD) have shown the promise of leveraging unlabeled data to improve an object detector. However, thus far these methods have assumed that the unlabeled data does not contain out-of-distribution (OOD) classes, which is unrealistic with larger-scale unlabeled datasets. In this paper, we consider a more practical yet challenging problem, Open-Set Semi-Supervised Object Detection (OSSOD). We first find the existing SSOD method obtains a lower performance gain in open-set conditions, and this is caused by the semantic expansion, where the distracting OOD objects are mispredicted as in-distribution pseudo-labels for the semi-supervised training. To address this problem, we consider online and offline OOD detection modules, which are integrated with SSOD methods. With the extensive studies, we found that leveraging an offline OOD detector based on a self-supervised vision transformer performs favorably against online OOD detectors due to its robustness to the interference of pseudo-labeling. In the experiment, our proposed framework effectively addresses the semantic expansion issue and shows consistent improvements on many OSSOD benchmarks, including large-scale COCO-OpenImages. We also verify the effectiveness of our framework under different OSSOD conditions, including varying numbers of in-distribution classes, different degrees of supervision, and different combinations of unlabeled sets.
{"title":"Open-Set Semi-Supervised Object Detection","authors":"Yen-Cheng Liu, Chih-Yao Ma, Xiaoliang Dai, Junjiao Tian, Péter Vajda, Zijian He, Z. Kira","doi":"10.48550/arXiv.2208.13722","DOIUrl":"https://doi.org/10.48550/arXiv.2208.13722","url":null,"abstract":"Recent developments for Semi-Supervised Object Detection (SSOD) have shown the promise of leveraging unlabeled data to improve an object detector. However, thus far these methods have assumed that the unlabeled data does not contain out-of-distribution (OOD) classes, which is unrealistic with larger-scale unlabeled datasets. In this paper, we consider a more practical yet challenging problem, Open-Set Semi-Supervised Object Detection (OSSOD). We first find the existing SSOD method obtains a lower performance gain in open-set conditions, and this is caused by the semantic expansion, where the distracting OOD objects are mispredicted as in-distribution pseudo-labels for the semi-supervised training. To address this problem, we consider online and offline OOD detection modules, which are integrated with SSOD methods. With the extensive studies, we found that leveraging an offline OOD detector based on a self-supervised vision transformer performs favorably against online OOD detectors due to its robustness to the interference of pseudo-labeling. In the experiment, our proposed framework effectively addresses the semantic expansion issue and shows consistent improvements on many OSSOD benchmarks, including large-scale COCO-OpenImages. We also verify the effectiveness of our framework under different OSSOD conditions, including varying numbers of in-distribution classes, different degrees of supervision, and different combinations of unlabeled sets.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"109 1","pages":"143-159"},"PeriodicalIF":0.0,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80715142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. Humans can continuously learn new knowledge. However, machine learning models suffer from drastic dropping in performance on previous tasks after learning new tasks. Cognitive science points out that the competition of similar knowledge is an important cause of forgetting. In this paper, we design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain. It tackles the problem from two aspects: extracting knowledge and memorizing knowledge. First, we disrupt the sample’s background distribution through a background attack, which strengthens the model to extract the key features of each task. Second, according to the similarity between incremental knowledge and base knowledge, we design an adaptive fusion of incremental knowledge, which helps the model allocate capacity to the knowledge of different difficulties. It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum. The proposed method is validated on the MNIST, CIFAR100, CUB200 and ImageNet100 datasets. The code is available at https://github.com/bhrqw/ARI .
{"title":"Anti-Retroactive Interference for Lifelong Learning","authors":"Runqi Wang, Yuxiang Bao, Baochang Zhang, Jianzhuang Liu, Wentao Zhu, Guodong Guo","doi":"10.48550/arXiv.2208.12967","DOIUrl":"https://doi.org/10.48550/arXiv.2208.12967","url":null,"abstract":". Humans can continuously learn new knowledge. However, machine learning models suffer from drastic dropping in performance on previous tasks after learning new tasks. Cognitive science points out that the competition of similar knowledge is an important cause of forgetting. In this paper, we design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain. It tackles the problem from two aspects: extracting knowledge and memorizing knowledge. First, we disrupt the sample’s background distribution through a background attack, which strengthens the model to extract the key features of each task. Second, according to the similarity between incremental knowledge and base knowledge, we design an adaptive fusion of incremental knowledge, which helps the model allocate capacity to the knowledge of different difficulties. It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum. The proposed method is validated on the MNIST, CIFAR100, CUB200 and ImageNet100 datasets. The code is available at https://github.com/bhrqw/ARI .","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"27 1","pages":"163-178"},"PeriodicalIF":0.0,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82486029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-26DOI: 10.48550/arXiv.2208.12448
Yunyao Mao, Wen-gang Zhou, Zhenbo Lu, Jiajun Deng, Houqiang Li
In 3D action recognition, there exists rich complementary information between skeleton modalities. Nevertheless, how to model and utilize this information remains a challenging problem for self-supervised 3D action representation learning. In this work, we formulate the cross-modal interaction as a bidirectional knowledge distillation problem. Different from classic distillation solutions that transfer the knowledge of a fixed and pre-trained teacher to the student, in this work, the knowledge is continuously updated and bidirectionally distilled between modalities. To this end, we propose a new Cross-modal Mutual Distillation (CMD) framework with the following designs. On the one hand, the neighboring similarity distribution is introduced to model the knowledge learned in each modality, where the relational information is naturally suitable for the contrastive frameworks. On the other hand, asymmetrical configurations are used for teacher and student to stabilize the distillation process and to transfer high-confidence information between modalities. By derivation, we find that the cross-modal positive mining in previous works can be regarded as a degenerated version of our CMD. We perform extensive experiments on NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD II datasets. Our approach outperforms existing self-supervised methods and sets a series of new records. The code is available at: https://github.com/maoyunyao/CMD
{"title":"CMD: Self-supervised 3D Action Representation Learning with Cross-modal Mutual Distillation","authors":"Yunyao Mao, Wen-gang Zhou, Zhenbo Lu, Jiajun Deng, Houqiang Li","doi":"10.48550/arXiv.2208.12448","DOIUrl":"https://doi.org/10.48550/arXiv.2208.12448","url":null,"abstract":"In 3D action recognition, there exists rich complementary information between skeleton modalities. Nevertheless, how to model and utilize this information remains a challenging problem for self-supervised 3D action representation learning. In this work, we formulate the cross-modal interaction as a bidirectional knowledge distillation problem. Different from classic distillation solutions that transfer the knowledge of a fixed and pre-trained teacher to the student, in this work, the knowledge is continuously updated and bidirectionally distilled between modalities. To this end, we propose a new Cross-modal Mutual Distillation (CMD) framework with the following designs. On the one hand, the neighboring similarity distribution is introduced to model the knowledge learned in each modality, where the relational information is naturally suitable for the contrastive frameworks. On the other hand, asymmetrical configurations are used for teacher and student to stabilize the distillation process and to transfer high-confidence information between modalities. By derivation, we find that the cross-modal positive mining in previous works can be regarded as a degenerated version of our CMD. We perform extensive experiments on NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD II datasets. Our approach outperforms existing self-supervised methods and sets a series of new records. The code is available at: https://github.com/maoyunyao/CMD","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"7 1","pages":"734-752"},"PeriodicalIF":0.0,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74250847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-24DOI: 10.48550/arXiv.2208.11342
Keshigeyan Chandrasegaran, Ngoc-Trung Tran, A. Binder, Ngai-Man Cheung
Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
{"title":"Discovering Transferable Forensic Features for CNN-generated Images Detection","authors":"Keshigeyan Chandrasegaran, Ngoc-Trung Tran, A. Binder, Ngai-Man Cheung","doi":"10.48550/arXiv.2208.11342","DOIUrl":"https://doi.org/10.48550/arXiv.2208.11342","url":null,"abstract":"Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"3 1","pages":"671-689"},"PeriodicalIF":0.0,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88266800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-23DOI: 10.48550/arXiv.2208.10730
M. Ho, Min Wu, Che-Ming Wu
While hematoxylin and eosin (H&E) is a standard staining procedure, immunohistochemistry (IHC) staining further serves as a diagnostic and prognostic method. However, acquiring special staining results requires substantial costs. Hence, we proposed a strategy for ultra-high-resolution unpaired image-to-image translation: Kernelized Instance Normalization (KIN), which preserves local information and successfully achieves seamless stain transformation with constant GPU memory usage. Given a patch, corresponding position, and a kernel, KIN computes local statistics using convolution operation. In addition, KIN can be easily plugged into most currently developed frameworks without re-training. We demonstrate that KIN achieves state-of-the-art stain transformation by replacing instance normalization (IN) layers with KIN layers in three popular frameworks and testing on two histopathological datasets. Furthermore, we manifest the generalizability of KIN with high-resolution natural images. Finally, human evaluation and several objective metrics are used to compare the performance of different approaches. Overall, this is the first successful study for the ultra-high-resolution unpaired image-to-image translation with constant space complexity. Code is available at: https://github.com/Kaminyou/URUST
{"title":"Ultra-high-resolution unpaired stain transformation via Kernelized Instance Normalization","authors":"M. Ho, Min Wu, Che-Ming Wu","doi":"10.48550/arXiv.2208.10730","DOIUrl":"https://doi.org/10.48550/arXiv.2208.10730","url":null,"abstract":"While hematoxylin and eosin (H&E) is a standard staining procedure, immunohistochemistry (IHC) staining further serves as a diagnostic and prognostic method. However, acquiring special staining results requires substantial costs. Hence, we proposed a strategy for ultra-high-resolution unpaired image-to-image translation: Kernelized Instance Normalization (KIN), which preserves local information and successfully achieves seamless stain transformation with constant GPU memory usage. Given a patch, corresponding position, and a kernel, KIN computes local statistics using convolution operation. In addition, KIN can be easily plugged into most currently developed frameworks without re-training. We demonstrate that KIN achieves state-of-the-art stain transformation by replacing instance normalization (IN) layers with KIN layers in three popular frameworks and testing on two histopathological datasets. Furthermore, we manifest the generalizability of KIN with high-resolution natural images. Finally, human evaluation and several objective metrics are used to compare the performance of different approaches. Overall, this is the first successful study for the ultra-high-resolution unpaired image-to-image translation with constant space complexity. Code is available at: https://github.com/Kaminyou/URUST","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"47 1","pages":"490-505"},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75992416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-23DOI: 10.48550/arXiv.2208.10652
Chunfeng Yao, Jimei Yang, Duygu Ceylan, Yi Zhou, Yang Zhou, Ming-Hsuan Yang
Estimating 3D human pose and shape from 2D images is a crucial yet challenging task. While prior methods with model-based representations can perform reasonably well on whole-body images, they often fail when parts of the body are occluded or outside the frame. Moreover, these results usually do not faithfully capture the human silhouettes due to their limited representation power of deformable models (e.g., representing only the naked body). An alternative approach is to estimate dense vertices of a predefined template body in the image space. Such representations are effective in localizing vertices within an image but cannot handle out-of-frame body parts. In this work, we learn dense human body estimation that is robust to partial observations. We explicitly model the visibility of human joints and vertices in the x, y, and z axes separately. The visibility in x and y axes help distinguishing out-of-frame cases, and the visibility in depth axis corresponds to occlusions (either self-occlusions or occlusions by other objects). We obtain pseudo ground-truths of visibility labels from dense UV correspondences and train a neural network to predict visibility along with 3D coordinates. We show that visibility can serve as 1) an additional signal to resolve depth ordering ambiguities of self-occluded vertices and 2) a regularization term when fitting a human body model to the predictions. Extensive experiments on multiple 3D human datasets demonstrate that visibility modeling significantly improves the accuracy of human body estimation, especially for partial-body cases. Our project page with code is at: https://github.com/chhankyao/visdb.
{"title":"Learning Visibility for Robust Dense Human Body Estimation","authors":"Chunfeng Yao, Jimei Yang, Duygu Ceylan, Yi Zhou, Yang Zhou, Ming-Hsuan Yang","doi":"10.48550/arXiv.2208.10652","DOIUrl":"https://doi.org/10.48550/arXiv.2208.10652","url":null,"abstract":"Estimating 3D human pose and shape from 2D images is a crucial yet challenging task. While prior methods with model-based representations can perform reasonably well on whole-body images, they often fail when parts of the body are occluded or outside the frame. Moreover, these results usually do not faithfully capture the human silhouettes due to their limited representation power of deformable models (e.g., representing only the naked body). An alternative approach is to estimate dense vertices of a predefined template body in the image space. Such representations are effective in localizing vertices within an image but cannot handle out-of-frame body parts. In this work, we learn dense human body estimation that is robust to partial observations. We explicitly model the visibility of human joints and vertices in the x, y, and z axes separately. The visibility in x and y axes help distinguishing out-of-frame cases, and the visibility in depth axis corresponds to occlusions (either self-occlusions or occlusions by other objects). We obtain pseudo ground-truths of visibility labels from dense UV correspondences and train a neural network to predict visibility along with 3D coordinates. We show that visibility can serve as 1) an additional signal to resolve depth ordering ambiguities of self-occluded vertices and 2) a regularization term when fitting a human body model to the predictions. Extensive experiments on multiple 3D human datasets demonstrate that visibility modeling significantly improves the accuracy of human body estimation, especially for partial-body cases. Our project page with code is at: https://github.com/chhankyao/visdb.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"154 1","pages":"412-428"},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78907177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-23DOI: 10.48550/arXiv.2208.11021
Yan Hu, A. J. Ma
Existing methods based on meta-learning predict novel-class labels for (target domain) testing tasks via meta knowledge learned from (source domain) training tasks of base classes. However, most existing works may fail to generalize to novel classes due to the probably large domain discrepancy across domains. To address this issue, we propose a novel adversarial feature augmentation (AFA) method to bridge the domain gap in few-shot learning. The feature augmentation is designed to simulate distribution variations by maximizing the domain discrepancy. During adversarial training, the domain discriminator is learned by distinguishing the augmented features (unseen domain) from the original ones (seen domain), while the domain discrepancy is minimized to obtain the optimal feature encoder. The proposed method is a plug-and-play module that can be easily integrated into existing few-shot learning methods based on meta-learning. Extensive experiments on nine datasets demonstrate the superiority of our method for cross-domain few-shot classification compared with the state of the art. Code is available at https://github.com/youthhoo/AFA_For_Few_shot_learning
{"title":"Adversarial Feature Augmentation for Cross-domain Few-shot Classification","authors":"Yan Hu, A. J. Ma","doi":"10.48550/arXiv.2208.11021","DOIUrl":"https://doi.org/10.48550/arXiv.2208.11021","url":null,"abstract":"Existing methods based on meta-learning predict novel-class labels for (target domain) testing tasks via meta knowledge learned from (source domain) training tasks of base classes. However, most existing works may fail to generalize to novel classes due to the probably large domain discrepancy across domains. To address this issue, we propose a novel adversarial feature augmentation (AFA) method to bridge the domain gap in few-shot learning. The feature augmentation is designed to simulate distribution variations by maximizing the domain discrepancy. During adversarial training, the domain discriminator is learned by distinguishing the augmented features (unseen domain) from the original ones (seen domain), while the domain discrepancy is minimized to obtain the optimal feature encoder. The proposed method is a plug-and-play module that can be easily integrated into existing few-shot learning methods based on meta-learning. Extensive experiments on nine datasets demonstrate the superiority of our method for cross-domain few-shot classification compared with the state of the art. Code is available at https://github.com/youthhoo/AFA_For_Few_shot_learning","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"10 2","pages":"20-37"},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91496337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}