Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2022.05.002
Luigi De Colibus , Melissa Stunnenberg, Teunis B.H. Geijtenbeek
The human DEAD-Box Helicase 3 X-Linked (DDX3X) is an ATP-dependent RNA helicase involved in virtually every step of RNA metabolism, ranging from transcription regulation in the nucleus to translation initiation and stress granule (SG) formation, and plays crucial roles in innate immunity, as well as tumorigenesis and viral infections.
This review discusses latest advances in DDX3X biology and structure-function relationship, including the implications of the recent DDX3X crystal structure in complex with double stranded RNA for RNA metabolism, DDX3X involvement in the cross-talk between innate immune responses and cell stress adaptation, and the roles of DDX3X in controlling cell fate.
{"title":"DDX3X structural analysis: Implications in the pharmacology and innate immunity","authors":"Luigi De Colibus , Melissa Stunnenberg, Teunis B.H. Geijtenbeek","doi":"10.1016/j.crimmu.2022.05.002","DOIUrl":"10.1016/j.crimmu.2022.05.002","url":null,"abstract":"<div><p>The human DEAD-Box Helicase 3 X-Linked (DDX3X) is an ATP-dependent RNA helicase involved in virtually every step of RNA metabolism, ranging from transcription regulation in the nucleus to translation initiation and stress granule (SG) formation, and plays crucial roles in innate immunity, as well as tumorigenesis and viral infections.</p><p>This review discusses latest advances in DDX3X biology and structure-function relationship, including the implications of the recent DDX3X crystal structure in complex with double stranded RNA for RNA metabolism, DDX3X involvement in the cross-talk between innate immune responses and cell stress adaptation, and the roles of DDX3X in controlling cell fate.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 100-109"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590255522000075/pdfft?md5=9b0787930d1700c0d399066d6d26fcf6&pid=1-s2.0-S2590255522000075-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47422484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2021.12.003
Barbara Nunes Padovani , Mariana Abrantes do Amaral , Camila Morales Fénero , Lais Cavalieri Paredes , Guilherme José Boturra de Barros , Izabella Karina Xavier , Meire Ioshie Hiyane , Bruno Ghirotto , Carmen G. Feijóo , Niels Olsen Saraiva Câmara , Tatiana Takiishi
Little is known about the diversity in immune profile of the different wild type strains of zebrafish (Danio rerio), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative.
{"title":"Different wild type strains of zebrafish show divergent susceptibility to TNBS-induced intestinal inflammation displaying distinct immune cell profiles","authors":"Barbara Nunes Padovani , Mariana Abrantes do Amaral , Camila Morales Fénero , Lais Cavalieri Paredes , Guilherme José Boturra de Barros , Izabella Karina Xavier , Meire Ioshie Hiyane , Bruno Ghirotto , Carmen G. Feijóo , Niels Olsen Saraiva Câmara , Tatiana Takiishi","doi":"10.1016/j.crimmu.2021.12.003","DOIUrl":"10.1016/j.crimmu.2021.12.003","url":null,"abstract":"<div><p>Little is known about the diversity in immune profile of the different wild type strains of zebrafish (<em>Danio rerio</em>), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 13-22"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590255521000275/pdfft?md5=6747212195ac66ec8507918e0b012d8f&pid=1-s2.0-S2590255521000275-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45123152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2021.12.002
Silvia A. Fuertes Marraco , Daniel Alpern , Sébastien Lofek , Joao Lourenco , Amandine Bovay , Hélène Maby-El Hajjami , Mauro Delorenzi , Bart Deplancke , Daniel E. Speiser
CD8 T cells have multiple functional properties that mediate acute phase and long-term immune protection. Several effector and memory CD8 T cell subsets have been described with diverse functionalities and marker profiles. In contrast to the many comprehensive mouse studies, most human studies lack samples from the acute infection phase, a major reason why current knowledge of human T cell subsets and differentiation remains incomplete, particularly with regard to the T cell heterogeneity early during the immune response. Here we analysed the human CD8 T cell response to yellow fever vaccination as the best-known model to study the human immune response to acute viral infection. We performed flow cytometry on 21 markers conventionally used in mice and in humans to describe differentiation, activation, cycling, and so-called effector functions. We found clearly distinct ‘acute traits’ at the peak of the response that are shared amongst all non-naïve antigen-specific subsets, including memory-differentiated cells. These acute traits were low BCL-2 and high KI67, CD38, HLA-DR, as well as increased Granzyme B and Perforin, previously attributed only to effector cells at the peak of the response. Furthermore, analysis of chromatin accessibility at the single cell level revealed that memory- and effector-differentiated cells clustered together specifically in the acute phase. Altogether, we demonstrate ‘acute traits’ across differentiation subsets, and point out the need to discriminate the differentiation states when studying human CD8 T cells that undergo an acute response.
{"title":"Shared acute phase traits in effector and memory human CD8 T cells","authors":"Silvia A. Fuertes Marraco , Daniel Alpern , Sébastien Lofek , Joao Lourenco , Amandine Bovay , Hélène Maby-El Hajjami , Mauro Delorenzi , Bart Deplancke , Daniel E. Speiser","doi":"10.1016/j.crimmu.2021.12.002","DOIUrl":"10.1016/j.crimmu.2021.12.002","url":null,"abstract":"<div><p>CD8 T cells have multiple functional properties that mediate acute phase and long-term immune protection. Several effector and memory CD8 T cell subsets have been described with diverse functionalities and marker profiles. In contrast to the many comprehensive mouse studies, most human studies lack samples from the acute infection phase, a major reason why current knowledge of human T cell subsets and differentiation remains incomplete, particularly with regard to the T cell heterogeneity early during the immune response. Here we analysed the human CD8 T cell response to yellow fever vaccination as the best-known model to study the human immune response to acute viral infection. We performed flow cytometry on 21 markers conventionally used in mice and in humans to describe differentiation, activation, cycling, and so-called effector functions. We found clearly distinct ‘acute traits’ at the peak of the response that are shared amongst all non-naïve antigen-specific subsets, including memory-differentiated cells. These acute traits were low BCL-2 and high KI67, CD38, HLA-DR, as well as increased Granzyme B and Perforin, previously attributed only to effector cells at the peak of the response. Furthermore, analysis of chromatin accessibility at the single cell level revealed that memory- and effector-differentiated cells clustered together specifically in the acute phase. Altogether, we demonstrate ‘acute traits’ across differentiation subsets, and point out the need to discriminate the differentiation states when studying human CD8 T cells that undergo an acute response.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 1-12"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590255521000263/pdfft?md5=730bed32f6132af0dc7428d66450beee&pid=1-s2.0-S2590255521000263-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41600933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2022.08.009
Aisling Forder , Greg L. Stewart , Nikita Telkar , Wan L. Lam , Cathie Garnis
Nasopharyngeal carcinoma (NPC) is unique among head and neck cancers for its strong causative association with Epstein Barr-Virus and high levels of immune infiltration that play a role in pathogenesis. As such, immunotherapy for the treatment of NPC is a promising area of research in the pursuit of improving patient outcomes. Understanding the tumour immune microenvironment (TIME) of NPC is the key to developing targeted immunotherapies and stratifying patients to determine optimal treatment regimens. Recent research has uncovered distinct characteristics of the TIME in NPC as well as important differences between the different disease subtypes; however, reviewing the state of the field reveals a further need for the application of novel techniques like multiplexed hyperspectral imaging and mass cytometry. These techniques can be used to identify spatial, compositional, and functional aspects of the TIME in NPC such as immune cell sociology, novel immune populations, and differences in immune-related signalling pathways in NPC in order to identify clinically relevant characteristics for targeted immunotherapy development and biomarker discovery.
{"title":"New insights into the tumour immune microenvironment of nasopharyngeal carcinoma","authors":"Aisling Forder , Greg L. Stewart , Nikita Telkar , Wan L. Lam , Cathie Garnis","doi":"10.1016/j.crimmu.2022.08.009","DOIUrl":"10.1016/j.crimmu.2022.08.009","url":null,"abstract":"<div><p>Nasopharyngeal carcinoma (NPC) is unique among head and neck cancers for its strong causative association with Epstein Barr-Virus and high levels of immune infiltration that play a role in pathogenesis. As such, immunotherapy for the treatment of NPC is a promising area of research in the pursuit of improving patient outcomes. Understanding the tumour immune microenvironment (TIME) of NPC is the key to developing targeted immunotherapies and stratifying patients to determine optimal treatment regimens. Recent research has uncovered distinct characteristics of the TIME in NPC as well as important differences between the different disease subtypes; however, reviewing the state of the field reveals a further need for the application of novel techniques like multiplexed hyperspectral imaging and mass cytometry. These techniques can be used to identify spatial, compositional, and functional aspects of the TIME in NPC such as immune cell sociology, novel immune populations, and differences in immune-related signalling pathways in NPC in order to identify clinically relevant characteristics for targeted immunotherapy development and biomarker discovery.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 222-227"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/67/main.PMC9475211.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40367200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2022.04.001
Deming Sun , Hui Shao , Henry J. Kaplan
The extracellular level of adenosine increases greatly during inflammation, which modulates immune responses. We have previously reported that adenosine enhances Th17 responses while it suppresses Th1 responses. This study examined whether response of DC to adenosine contributes to the biased effect of adenosine and determined whether adenosine and TLR ligands have counteractive or synergistic effects on DC function. Our results show that adenosine is actively involved in both in vitro and in vivo activation of pathogenic T cells by DCs; however, under adenosine effect DCs' capability of promoting Th1 versus Th17 responses are dissociated. Moreover, activation of A2ARs on DCs inhibits Th1 responses whereas activation of A2BRs on DC enhances Th17 responses. An intriguing observation was that TLR engagement switches the adenosine receptor from A2ARs to A2BRs usage of bone marrow-derived dendritic cells (BMDCs) and adenosine binding to BMDCs via A2BR converts adenosine's anti-to proinflammatory effect. The dual effects of adenosine and TLR ligand on BMDCs synergistically enhances the Th17 responses whereas the dual effect on Th1 responses is antagonistic. The results imply that Th17 responses will gain dominance when inflammatory environment accumulates both TLR ligands and adenosine and the underlying mechanisms include that TLR ligand exposure has a unique effect switching adenosine receptor usage of DCs from A2ARs to A2BRs, via which Th17 responses are promoted. Our observation should improve our understanding on the balance of Th1 and Th17 responses in the pathogenesis of autoimmune and other related diseases.
{"title":"TLR ligand ligation switches adenosine receptor usage of BMDCs leading to augmented Th17 responses in experimental autoimmune uveitis","authors":"Deming Sun , Hui Shao , Henry J. Kaplan","doi":"10.1016/j.crimmu.2022.04.001","DOIUrl":"10.1016/j.crimmu.2022.04.001","url":null,"abstract":"<div><p>The extracellular level of adenosine increases greatly during inflammation, which modulates immune responses. We have previously reported that adenosine enhances Th17 responses while it suppresses Th1 responses. This study examined whether response of DC to adenosine contributes to the biased effect of adenosine and determined whether adenosine and TLR ligands have counteractive or synergistic effects on DC function. Our results show that adenosine is actively involved in both in vitro and in vivo activation of pathogenic T cells by DCs; however, under adenosine effect DCs' capability of promoting Th1 versus Th17 responses are dissociated. Moreover, activation of A2ARs on DCs inhibits Th1 responses whereas activation of A2BRs on DC enhances Th17 responses. An intriguing observation was that TLR engagement switches the adenosine receptor from A2ARs to A2BRs usage of bone marrow-derived dendritic cells (BMDCs) and adenosine binding to BMDCs via A2BR converts adenosine's anti-to proinflammatory effect. The dual effects of adenosine and TLR ligand on BMDCs synergistically enhances the Th17 responses whereas the dual effect on Th1 responses is antagonistic. The results imply that Th17 responses will gain dominance when inflammatory environment accumulates both TLR ligands and adenosine and the underlying mechanisms include that TLR ligand exposure has a unique effect switching adenosine receptor usage of DCs from A2ARs to A2BRs, via which Th17 responses are promoted. Our observation should improve our understanding on the balance of Th1 and Th17 responses in the pathogenesis of autoimmune and other related diseases.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 73-84"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/8f/main.PMC9768583.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10439562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The myeloid cellular compartment comprises monocytes, dendritic cells (DCs), macrophages and granulocytes. As diverse as this group of cells may be, they are all an important part of the innate immune system and are therefore linked by the necessity to be acutely sensitive to their environment and to rapidly and appropriately respond to any changes that may occur. The nuclear orphan receptors NR4A1, NR4A2 and NR4A3 are encoded by immediate early genes as their expression is rapidly induced in response to various signals. It is perhaps because of this characteristic that this family of transcription factors has many known roles in myeloid cells. In this review, we will regroup and discuss the diverse roles NR4As have in different myeloid cell subsets, including in differentiation, migration, activation, and metabolism. We will also highlight the importance these molecules have in the development of myeloid leukemia.
{"title":"Role of NR4A family members in myeloid cells and leukemia","authors":"Salix Boulet , Laure Le Corre , Livia Odagiu , Nathalie Labrecque","doi":"10.1016/j.crimmu.2022.02.001","DOIUrl":"10.1016/j.crimmu.2022.02.001","url":null,"abstract":"<div><p>The myeloid cellular compartment comprises monocytes, dendritic cells (DCs), macrophages and granulocytes. As diverse as this group of cells may be, they are all an important part of the innate immune system and are therefore linked by the necessity to be acutely sensitive to their environment and to rapidly and appropriately respond to any changes that may occur. The nuclear orphan receptors NR4A1, NR4A2 and NR4A3 are encoded by immediate early genes as their expression is rapidly induced in response to various signals. It is perhaps because of this characteristic that this family of transcription factors has many known roles in myeloid cells. In this review, we will regroup and discuss the diverse roles NR4As have in different myeloid cell subsets, including in differentiation, migration, activation, and metabolism. We will also highlight the importance these molecules have in the development of myeloid leukemia.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 23-36"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590255522000014/pdfft?md5=c4cc645a85554703e4f3991bc8121e4d&pid=1-s2.0-S2590255522000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47800223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2022.08.006
Sher Ali , Štěpánka Nedvědová , Gul Badshah , Muhammad S. Afridi , Abdullah , Lívia M. Dutra , Umar Ali , Samara G. Faria , Frederico L.F. Soares , Rafi U. Rahman , Fernando A.C.Q. Cançado , Micheli M.C.C. Aoyanagi , Lucas G.D. Freire , Alan D.C. Santos , Andersson Barison , Carlos A.F. Oliveira
In this review, the disease and immunogenicity affected by COVID-19 vaccination at the metabolic level are described considering the use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of different biological samples. Consistently, we explain how different biomarkers can be examined in the saliva, blood plasma/serum, bronchoalveolar-lavage fluid (BALF), semen, feces, urine, cerebrospinal fluid (CSF) and breast milk. For example, the proposed approach for the given samples can allow one to detect molecular biomarkers that can be relevant to disease and/or vaccine interference in a system metabolome. The analysis of the given biomaterials by NMR often produces complex chemical data which can be elucidated by multivariate statistical tools, such as PCA and PLS-DA/OPLS-DA methods. Moreover, this approach may aid to improve strategies that can be helpful in disease control and treatment management in the future.
{"title":"NMR spectroscopy spotlighting immunogenicity induced by COVID-19 vaccination to mitigate future health concerns","authors":"Sher Ali , Štěpánka Nedvědová , Gul Badshah , Muhammad S. Afridi , Abdullah , Lívia M. Dutra , Umar Ali , Samara G. Faria , Frederico L.F. Soares , Rafi U. Rahman , Fernando A.C.Q. Cançado , Micheli M.C.C. Aoyanagi , Lucas G.D. Freire , Alan D.C. Santos , Andersson Barison , Carlos A.F. Oliveira","doi":"10.1016/j.crimmu.2022.08.006","DOIUrl":"10.1016/j.crimmu.2022.08.006","url":null,"abstract":"<div><p>In this review, the disease and immunogenicity affected by COVID-19 vaccination at the metabolic level are described considering the use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of different biological samples. Consistently, we explain how different biomarkers can be examined in the saliva, blood plasma/serum, bronchoalveolar-lavage fluid (BALF), semen, feces, urine, cerebrospinal fluid (CSF) and breast milk. For example, the proposed approach for the given samples can allow one to detect molecular biomarkers that can be relevant to disease and/or vaccine interference in a system metabolome. The analysis of the given biomaterials by NMR often produces complex chemical data which can be elucidated by multivariate statistical tools, such as PCA and PLS-DA/OPLS-DA methods. Moreover, this approach may aid to improve strategies that can be helpful in disease control and treatment management in the future.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 199-214"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/7a/main.PMC9393187.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33441915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2022.08.004
Megan Schwarz , Slim Mzoughi , Daniel Lozano-Ojalvo , Anthony T. Tan , Antonio Bertoletti , Ernesto Guccione
As vaccine deployment improves the healthcare emergency status caused by the SARS-CoV-2 pandemic, we need reliable tools to evaluate the duration of protective immunity at a global scale. Seminal studies have demonstrated that while neutralizing antibodies can protect us from viral infection, T cell-mediated cellular immunity provides long-term protection from severe COVID-19, even in the case of emerging new variants of concern (VOC). Indeed, the emergence of VOCs, able to substantially escape antibodies generated by current vaccines, has made the analysis of correlates of humoral protection against infection obsolete. The focus should now shift towards immunological correlates of protection from disease based on quantification of cellular immunity.
Despite this evidence, an assessment of T cell responses is still overlooked. This is largely due to technical challenges and lack of validated diagnostic tests. Here, we review the current state of the art of available tests to distinguish between SARS-CoV-2 antigen-specific Tcells and non-antigen specific T-cells. These assays range from the analysis of the T cell-receptor (TCR) diversity (i.e. Immunoseq and MHC tetramer staining) to the detection of functional T cell activation (i.e. ICS, AIM, Elispot, ELLA, dqTACT, etc.) either from purified Peripheral Blood Mononuclear Cells (PBMCs) or whole blood.
We discuss advantages and disadvantages of each assay, proposing their ideal use for different scopes. Finally, we argue how it is paramount to deploy cheap, standardized, and scalable assays to measure T cell functionality to fill this critical diagnostic gap and manage these next years of the pandemic.
{"title":"T cell immunity is key to the pandemic endgame: How to measure and monitor it","authors":"Megan Schwarz , Slim Mzoughi , Daniel Lozano-Ojalvo , Anthony T. Tan , Antonio Bertoletti , Ernesto Guccione","doi":"10.1016/j.crimmu.2022.08.004","DOIUrl":"10.1016/j.crimmu.2022.08.004","url":null,"abstract":"<div><p>As vaccine deployment improves the healthcare emergency status caused by the SARS-CoV-2 pandemic, we need reliable tools to evaluate the duration of protective immunity at a global scale. Seminal studies have demonstrated that while neutralizing antibodies can protect us from viral infection, T cell-mediated cellular immunity provides long-term protection from severe COVID-19, even in the case of emerging new variants of concern (VOC). Indeed, the emergence of VOCs, able to substantially escape antibodies generated by current vaccines, has made the analysis of correlates of humoral protection against infection obsolete. The focus should now shift towards immunological correlates of protection from disease based on quantification of cellular immunity.</p><p>Despite this evidence, an assessment of T cell responses is still overlooked. This is largely due to technical challenges and lack of validated diagnostic tests. Here, we review the current state of the art of available tests to distinguish between SARS-CoV-2 antigen-specific Tcells and non-antigen specific T-cells. These assays range from the analysis of the T cell-receptor (TCR) diversity (i.e. Immunoseq and MHC tetramer staining) to the detection of functional T cell activation (i.e. ICS, AIM, Elispot, ELLA, dqTACT, etc.) either from purified Peripheral Blood Mononuclear Cells (PBMCs) or whole blood.</p><p>We discuss advantages and disadvantages of each assay, proposing their ideal use for different scopes. Finally, we argue how it is paramount to deploy cheap, standardized, and scalable assays to measure T cell functionality to fill this critical diagnostic gap and manage these next years of the pandemic.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 215-221"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/f2/main.PMC9434079.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40352274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2022.05.001
Fernando M. Ruggiero, Sebastian Springer
Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties.
{"title":"Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface","authors":"Fernando M. Ruggiero, Sebastian Springer","doi":"10.1016/j.crimmu.2022.05.001","DOIUrl":"10.1016/j.crimmu.2022.05.001","url":null,"abstract":"<div><p>Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 85-99"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590255522000063/pdfft?md5=7a44e3c14beda76c3a692e0ee69bcbd1&pid=1-s2.0-S2590255522000063-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44886482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crimmu.2022.11.001
Masih Alam, Rawshan Choudhury, Robert-Jan Lamers
Translational in vitro models such as cytokine release assay (CRA) are essential to assess the susceptibility to cytokine storm or CRS in a non-interventional manner in a human in vitro laboratory setting. Such models are also helpful to unravel disease mechanisms, to study the effects of new therapeutics and vaccines thereon and to diagnose or monitor diseases. Such assay will be important in predicting, planning and preparing for hospital intensive care units that are needed during the course of a pandemic. We present a CRA that can be adapted for assessing acute cytokine release risk against viral antigens, and potentially be used for cytokine storm simulation in viral infection outbreaks. We have used SARS-CoV-2 antigens and COVID-19 as a model. The assay can be challenged by changed or mutated forms of a virus in follow on waves of the epidemic and it can easily be modified for other future pandemics. We show that the membrane protein of SARS-CoV-2 is playing a major role in cytokine release (CR), mainly that of IL-6, IFNγ, TNFα and IL-8, that may be associated with COVID-19. These results are in agreement with recent clinical findings and new vaccine designs.
{"title":"An adaptable in vitro cytokine release assay (CRA): Susceptibility to cytokine storm in COVID-19 as a model","authors":"Masih Alam, Rawshan Choudhury, Robert-Jan Lamers","doi":"10.1016/j.crimmu.2022.11.001","DOIUrl":"10.1016/j.crimmu.2022.11.001","url":null,"abstract":"<div><p>Translational <em>in vitro</em> models such as cytokine release assay (CRA) are essential to assess the susceptibility to cytokine storm or CRS in a non-interventional manner in a human <em>in vitro</em> laboratory setting. Such models are also helpful to unravel disease mechanisms, to study the effects of new therapeutics and vaccines thereon and to diagnose or monitor diseases. Such assay will be important in predicting, planning and preparing for hospital intensive care units that are needed during the course of a pandemic. We present a CRA that can be adapted for assessing acute cytokine release risk against viral antigens, and potentially be used for cytokine storm simulation in viral infection outbreaks. We have used SARS-CoV-2 antigens and COVID-19 as a model. The assay can be challenged by changed or mutated forms of a virus in follow on waves of the epidemic and it can easily be modified for other future pandemics. We show that the membrane protein of SARS-CoV-2 is playing a major role in cytokine release (CR), mainly that of IL-6, IFNγ, TNFα and IL-8, that may be associated with COVID-19. These results are in agreement with recent clinical findings and new vaccine designs.</p></div>","PeriodicalId":72750,"journal":{"name":"Current research in immunology","volume":"3 ","pages":"Pages 239-243"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/a9/main.PMC9682056.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40488166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}