Pub Date : 2024-09-01Epub Date: 2024-09-30DOI: 10.12717/DR.2024.28.3.87
Hyejin Seo, Jong-Won Yoon, Younghwi Kwon, Eunbyul Yeom
Banana peels, often discarded as waste, represent one of the most abundant food by-products, highlighting the need for effective waste management and resource recycling strategies. Due to their rich nutritional content, banana peels have been investigated for various health benefits, including anti-obesity effects. In this study, we examined the potential anti-aging properties of banana peel extracts (BPEs) in Drosophila melanogaster. Our findings demonstrated that flies fed with BPEs exhibited an extended lifespan and a significant improvement in age-related decline in climbing ability. Additionally, Dilp2 mRNA expression level is markedly decreased in aged flies fed with BPEs. These results suggest that BPEs may serve as a potential anti-aging agent by enhancing locomotor function and extending lifespan, potentially through the modulation of insulin signaling in D. melanogaster.
{"title":"Banana Peel Extracts Enhance Climbing Ability and Extend Lifespan in <i>Drosophila melanogaster</i>.","authors":"Hyejin Seo, Jong-Won Yoon, Younghwi Kwon, Eunbyul Yeom","doi":"10.12717/DR.2024.28.3.87","DOIUrl":"https://doi.org/10.12717/DR.2024.28.3.87","url":null,"abstract":"<p><p>Banana peels, often discarded as waste, represent one of the most abundant food by-products, highlighting the need for effective waste management and resource recycling strategies. Due to their rich nutritional content, banana peels have been investigated for various health benefits, including anti-obesity effects. In this study, we examined the potential anti-aging properties of banana peel extracts (BPEs) in <i>Drosophila melanogaster</i>. Our findings demonstrated that flies fed with BPEs exhibited an extended lifespan and a significant improvement in age-related decline in climbing ability. Additionally, <i>Dilp2</i> mRNA expression level is markedly decreased in aged flies fed with BPEs. These results suggest that BPEs may serve as a potential anti-aging agent by enhancing locomotor function and extending lifespan, potentially through the modulation of insulin signaling in <i>D. melanogaster</i>.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 3","pages":"87-94"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-30DOI: 10.12717/DR.2024.28.3.109
Youni Kim, Hyun-Kyung Lee, Kyeong-Yeon Park, Tayaba Ismail, Hongchan Lee, Hyun-Shik Lee
The actin cytoskeleton plays fundamental roles in ciliogenesis and the actin depolymerizing factor destrin regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of destrin in ciliogenesis have not been fully elucidated. Here, we investigated the function of destrin in ciliogenesis using Xenopus laevis and human retinal pigmented epithelial (hRPE1) cells. We discovered the loss of destrin increased the number of multiciliated cells in the Xenopus epithelium and impeded cilia motility. Additionally, destrin depletion remarkably reduced the length of primary cilia in the Xenopus neural tube and hRPE1 cells by affecting actin dynamics. Immunofluorescence using markers of ciliary components indicated that destrin controls the directionality and polarity of basal bodies and axonemal elongation by modulating actin dynamics, independent of basal body docking. In conclusion, destrin plays a significant role during vertebrate ciliogenesis regulating both primary and multicilia development. Our data suggest new insights for understanding the roles of actin dynamics in cilia development.
{"title":"Actin Depolymerizing Factor Destrin Regulates Cilia Development and Function during Vertebrate Embryogenesis.","authors":"Youni Kim, Hyun-Kyung Lee, Kyeong-Yeon Park, Tayaba Ismail, Hongchan Lee, Hyun-Shik Lee","doi":"10.12717/DR.2024.28.3.109","DOIUrl":"https://doi.org/10.12717/DR.2024.28.3.109","url":null,"abstract":"<p><p>The actin cytoskeleton plays fundamental roles in ciliogenesis and the actin depolymerizing factor destrin regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of destrin in ciliogenesis have not been fully elucidated. Here, we investigated the function of destrin in ciliogenesis using <i>Xenopus laevis</i> and human retinal pigmented epithelial (hRPE1) cells. We discovered the loss of destrin increased the number of multiciliated cells in the <i>Xenopus</i> epithelium and impeded cilia motility. Additionally, destrin depletion remarkably reduced the length of primary cilia in the <i>Xenopus</i> neural tube and hRPE1 cells by affecting actin dynamics. Immunofluorescence using markers of ciliary components indicated that destrin controls the directionality and polarity of basal bodies and axonemal elongation by modulating actin dynamics, independent of basal body docking. In conclusion, destrin plays a significant role during vertebrate ciliogenesis regulating both primary and multicilia development. Our data suggest new insights for understanding the roles of actin dynamics in cilia development.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 3","pages":"109-119"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-30DOI: 10.12717/DR.2024.28.2.55
Sil Jin, Chong Pyo Choe
In vertebrates, Fgf signaling is essential for the development of pharyngeal pouches, which controls facial skeletal development. Genetically, fgf3 and fgf8 are required for pouch formation in mice and zebrafish. However, loss-of-function phenotypes of fgf3 and fgf8 are milder than expected in mice and zebrafish, which suggests that an additional fgf gene(s) would be involved in pouch formation. Here, we analyzed the expression, regulation, and function of three fgfs, fgf4, fgf24, and fgf17, during pouch development in zebrafish. We find that they are expressed in the distinct regions of pharyngeal endoderm in pouch formation, with fgf4 and fgf17 also being expressed in the adjacent mesoderm, in addition to previously reported endodermal fgf3 and mesodermal fgf8 expression. The endodermal expression of fgf4, fgf24, and fgf17 and the mesodermal expression of fgf4 and fgf17 are positively regulated by Tbx1 but not by Fgf3, in pouch formation. Fgf8 is required to express the endodermal expression of fgf4 and fgf24. Interestingly, however, single mutant, all double mutant combinations, and triple mutant for fgf4, fgf24, and fgf17 do not show any defects in pouches and facial skeletons. Considering a high degree of genetic redundancy in the Fgf signaling components in craniofacial development in zebrafish, our result suggests that fgf4, fgf24, and fgf17 have a potential role for pouch formation, with a redundancy with other fgf gene(s).
{"title":"A Potential Role of <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> in Pharyngeal Pouch Formation in Zebrafish.","authors":"Sil Jin, Chong Pyo Choe","doi":"10.12717/DR.2024.28.2.55","DOIUrl":"10.12717/DR.2024.28.2.55","url":null,"abstract":"<p><p>In vertebrates, Fgf signaling is essential for the development of pharyngeal pouches, which controls facial skeletal development. Genetically, <i>fgf3</i> and <i>fgf8</i> are required for pouch formation in mice and zebrafish. However, loss-of-function phenotypes of <i>fgf3</i> and <i>fgf8</i> are milder than expected in mice and zebrafish, which suggests that an additional <i>fgf</i> gene(s) would be involved in pouch formation. Here, we analyzed the expression, regulation, and function of three <i>fgfs</i>, <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i>, during pouch development in zebrafish. We find that they are expressed in the distinct regions of pharyngeal endoderm in pouch formation, with <i>fgf4</i> and <i>fgf17</i> also being expressed in the adjacent mesoderm, in addition to previously reported endodermal <i>fgf3</i> and mesodermal <i>fgf8</i> expression. The endodermal expression of <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> and the mesodermal expression of <i>fgf4</i> and <i>fgf17</i> are positively regulated by Tbx1 but not by Fgf3, in pouch formation. Fgf8 is required to express the endodermal expression of <i>fgf4</i> and <i>fgf24</i>. Interestingly, however, single mutant, all double mutant combinations, and triple mutant for <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> do not show any defects in pouches and facial skeletons. Considering a high degree of genetic redundancy in the Fgf signaling components in craniofacial development in zebrafish, our result suggests that <i>fgf4</i>, <i>fgf24</i>, and <i>fgf17</i> have a potential role for pouch formation, with a redundancy with other <i>fgf</i> gene(s).</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"55-65"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in Saccharomyces cerevisiae, the SUMO protease, Ulp2, is involved in splicing. In the ulp2Δ mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.
在真核生物中,RNA 剪接是一个重要的生物过程,对基因的精确表达至关重要。不准确的 RNA 剪接会导致 mRNA 生成异常,从而破坏蛋白质合成。据报道,为了调节剪接效率,一些剪接因子会发生类泛素修饰(SUMO)。我们的数据表明,在酿酒酵母中,SUMO蛋白酶Ulp2参与了剪接。在ulp2Δ突变体中,由于剪接不当,一些核糖体蛋白(RP)转录本中含有内含子的前mRNA水平显著增加。此外,我们还证实了 Ulp2 蛋白与 RP 基因内含子区的结合。这些发现凸显了Ulp2在RP转录本剪接中的关键作用。
{"title":"Yeast Small Ubiquitin-Like Modifier (SUMO) Protease Ulp2 is Involved in RNA Splicing.","authors":"Jeong-Min Park, Seungji Choi, Dong Kyu Choi, Hyun-Shik Lee, Dong-Hyung Cho, Jungmin Choi, Hong-Yeoul Ryu","doi":"10.12717/DR.2024.28.2.47","DOIUrl":"10.12717/DR.2024.28.2.47","url":null,"abstract":"<p><p>In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in <i>Saccharomyces cerevisiae</i>, the SUMO protease, Ulp2, is involved in splicing. In the <i>ulp2Δ</i> mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"47-54"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular prion protein (PrPC) encoded at Prnp gene is well-known to form a misfolded isoform, termed scrapie PrP (PrPSC) that cause transmissible degenerative diseases in central nervous system. The physiological role of PrPC has been proposed by many studies, showing that PrPC interacts with various intracellular, membrane, and extracellular molecules including mitochondrial inner membrane as a scaffold. PrPC is expressed in most cell types including reproductive organs. Numerous studies using PrPC knockout rodent models found no obvious phenotypic changes, in particular the clear phenotypes in development and reproduction have not demonstrated in these knockout models. However, various roles of PrPC have been evaluated at the cellular levels. In this review, we summarized the known roles of PrPC in various cell types and tissues with a special emphasis on those involved in reproduction.
{"title":"Physiology of Cellular Prion Proteins in Reproduction.","authors":"Željko M Svedružić, Chongsuk Ryou, Donchan Choi, Sung-Ho Lee, Yong-Pil Cheon","doi":"10.12717/DR.2024.28.2.29","DOIUrl":"10.12717/DR.2024.28.2.29","url":null,"abstract":"<p><p>Cellular prion protein (PrP<sup>C</sup>) encoded at <i>Prnp</i> gene is well-known to form a misfolded isoform, termed scrapie PrP (PrP<sup>SC</sup>) that cause transmissible degenerative diseases in central nervous system. The physiological role of PrP<sup>C</sup> has been proposed by many studies, showing that PrP<sup>C</sup> interacts with various intracellular, membrane, and extracellular molecules including mitochondrial inner membrane as a scaffold. PrP<sup>C</sup> is expressed in most cell types including reproductive organs. Numerous studies using PrP<sup>C</sup> knockout rodent models found no obvious phenotypic changes, in particular the clear phenotypes in development and reproduction have not demonstrated in these knockout models. However, various roles of PrP<sup>C</sup> have been evaluated at the cellular levels. In this review, we summarized the known roles of PrP<sup>C</sup> in various cell types and tissues with a special emphasis on those involved in reproduction.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"29-36"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-30DOI: 10.12717/DR.2024.28.2.37
Seung-Yul Lee, Tae Jeong Oh, Sungwhan An, Seung-Hoon Lee
This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.
{"title":"Overexpression of Hypermethylated Homeobox A11 (HOXA11) Inhibits Tumor Cell Growth and Induces Apoptosis in Cervical Cancer.","authors":"Seung-Yul Lee, Tae Jeong Oh, Sungwhan An, Seung-Hoon Lee","doi":"10.12717/DR.2024.28.2.37","DOIUrl":"10.12717/DR.2024.28.2.37","url":null,"abstract":"<p><p>This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 2","pages":"37-45"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-03-31DOI: 10.12717/DR.2024.28.1.1
Soeun Moon, Bokyeong Yun, Minju Lee, Eunji Seok, Jinah Ha, Hyunwon Yang
{"title":"Gonadotropins Regulate the mRNA Expression of Gonadotropin-Releasing Hormone and Its Receptors in the Mouse Ovary and Uterus.","authors":"Soeun Moon, Bokyeong Yun, Minju Lee, Eunji Seok, Jinah Ha, Hyunwon Yang","doi":"10.12717/DR.2024.28.1.1","DOIUrl":"https://doi.org/10.12717/DR.2024.28.1.1","url":null,"abstract":"","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-03-31DOI: 10.12717/DR.2024.28.1.21
Si-On You, Han-Seo Yoon, Hye-Soo Kim, Jin-Soo Park, Sung-Ho Lee
{"title":"Temporal Changes in the Local Expression of Central Hormone-Regulating Factors in Rat Testis.","authors":"Si-On You, Han-Seo Yoon, Hye-Soo Kim, Jin-Soo Park, Sung-Ho Lee","doi":"10.12717/DR.2024.28.1.21","DOIUrl":"https://doi.org/10.12717/DR.2024.28.1.21","url":null,"abstract":"","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"28 1","pages":"21-28"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-12-31DOI: 10.12717/DR.2023.27.4.175
Yong-Seung Lee, Ki-Ho Lee
The epididymal fat is a type of gonadal adipose tissue, which is localized closely to the testis. Even though it has been suggested that the epididymal fat is necessary for maintenance of spermatogenesis in the testis, the influence of epididymal fat on expression of testicular steroidogenic enzymes has not been examined. In the present research, expressional changes of steroidogenic enzymes in the mouse testis after 2 weeks of the surgical partial lipectomy of epididymal fat at different postnatal ages were determined by real-time polymerase chain reaction analysis. The transcript levels of all molecules at 2 months of postnatal age were significantly increased by the lipectomy of epididymal fat. However, the lipectomy at 5 months of postnatal age resulted in decreases of expression levels of all molecules examined in the testis. Except a reduced transcript level of hydroxysteroid 17-beta dehydrogenase 3, there were no significant changes of expression levels of other steroidogenic enzymes by the lipectomy at 8 months of postnatal age. At 12 months of postnatal age, the lipectomy caused a significant increase of transcript level of steroidogenic acute regulatory protein and a significant decrease of transcript level of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1, without any expressional change of cytochrome P450 side chain cleavage, hydroxysteroid 17-beta dehydrogenase 3, and hydroxysteroid 17-beta dehydrogenase 3 in the testis. These findings suggest that the substances derived from epididymal fat could differentially influence on expression of steroidogenic enzymes in the testis during postnatal period.
{"title":"Partial Lipectomy of the Epididymal Fat Alters Expression of the Steroidogenic Enzymes in the Mouse Testis at Different Postnatal Ages.","authors":"Yong-Seung Lee, Ki-Ho Lee","doi":"10.12717/DR.2023.27.4.175","DOIUrl":"10.12717/DR.2023.27.4.175","url":null,"abstract":"<p><p>The epididymal fat is a type of gonadal adipose tissue, which is localized closely to the testis. Even though it has been suggested that the epididymal fat is necessary for maintenance of spermatogenesis in the testis, the influence of epididymal fat on expression of testicular steroidogenic enzymes has not been examined. In the present research, expressional changes of steroidogenic enzymes in the mouse testis after 2 weeks of the surgical partial lipectomy of epididymal fat at different postnatal ages were determined by real-time polymerase chain reaction analysis. The transcript levels of all molecules at 2 months of postnatal age were significantly increased by the lipectomy of epididymal fat. However, the lipectomy at 5 months of postnatal age resulted in decreases of expression levels of all molecules examined in the testis. Except a reduced transcript level of hydroxysteroid 17-beta dehydrogenase 3, there were no significant changes of expression levels of other steroidogenic enzymes by the lipectomy at 8 months of postnatal age. At 12 months of postnatal age, the lipectomy caused a significant increase of transcript level of steroidogenic acute regulatory protein and a significant decrease of transcript level of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1, without any expressional change of cytochrome P450 side chain cleavage, hydroxysteroid 17-beta dehydrogenase 3, and hydroxysteroid 17-beta dehydrogenase 3 in the testis. These findings suggest that the substances derived from epididymal fat could differentially influence on expression of steroidogenic enzymes in the testis during postnatal period.</p>","PeriodicalId":72791,"journal":{"name":"Development & reproduction","volume":"27 4","pages":"175-183"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}