Optimization on an industrial scale is a complex task that involves fine-tuning the performance of large-scale systems and applications to make them more efficient and effective. This process can be challenging due to the increasing volume of work, growing system complexity, and the need to maintain optimal performance. Due to the significant power required for compression and the high costs of reactant materials, optimizing low-density polyethylene (LDPE) production to provide maximum productivity with a reduction of energy cost is required. However, it is not a simple process because the optimization problem of the LDPE tubular reactor consists of conflicting objective functions. Multi-objective neural network algorithm (MONNA) is a metaheuristic optimization method that provides a versatile and robust approach for solving complex, contradictory targets and diverse optimization problems that do not rely on specific mathematical properties of the problem. It is inspired by the structure and information-processing capabilities of biological neural networks. MONNA iteratively proposes solutions, evaluates its performance, and adjusts its approach based on feedback, which avoids complex mathematical formulations. In this work, we implement Multi-objective optimization neural network algorithm (MONNA) in LDPE tubular reactor for maximising productivity, conversion and minimising energy costs with three scenario of problem optimization, i.e. maximising productivity and reducing energy cost for the first problem (P1); increasing conversion and reducing energy costs for the second problem (P2); and increasing productivity and reducing by-products for the third problem (P3). The results show that the highest productivity, highest conversion, and lowest energy are 545.1 mil. RM/year, 0.314, and 0.672 mil. RM/year. The extreme points in the Pareto Front (PF) for various bi-objective situations provide practitioners with helpful information for selecting the best trade-off for the operational strategy. According to their preferences, decision-makers can use the resulting Pareto to decide on the most acceptable alternative. The decision variable plots show that both initiators in the reacting zone highly affected the optimal solution with the opposite action.
This paper introduces BibMon, a Python package that provides predictive models for data-driven fault detection and diagnosis, soft sensing, and process condition monitoring. Key features include regression and reconstruction models, preprocessing pipelines, alarms, and visualization through control charts and diagnostic maps. BibMon also includes real and simulated datasets for benchmarking, comparative performance analysis of different models, and hyperparameter tuning. The package is designed to be highly extensible, allowing for easy integration of new models and methodologies through its object-oriented implementation. Currently, BibMon is in production at Petrobras, a major player in the energy industry, monitoring numerous industrial assets and enabling real-time detection and diagnosis of equipment and process faults. The software is open source and available at: https://github.com/petrobras/bibmon.
The incomplete combustion of fossil fuels results in the emission of soot, a carbonaceous, solid fine powder that causes harm to human health and the environment. This study compares multiple linear regression (MLR) with three different machine learning (ML) models for predicting the threshold sooting index (TSI), a commonly employed index for measuring the sooting propensity of fuels. The dataset used for model development consists of experimental TSI data for 342 fuels, including various chemical classes, including oxygenated components like ethers and alcohols. Ten input features were employed, comprising eight functionalities, molecular weight, and the branching index (BI). These parameters used as input features have been demonstrated to affect fuels' physical and thermochemical properties. The ML models employed in this study are support vector regression with Nu parameter (NuSVR), extra trees regression (ETR), and extreme gradient boosting regression (XGBR). The models were trained, validated, and tested using randomly split datasets, with 56 % for training, 14 % for validation, and 30 % for testing. The accuracy of the MLR, NuSVR, ETR, and XGBR models for the entire dataset was 91 %, 96 %, 98 %, and 96 %, respectively. The mean absolute errors (MAE) of prediction were 3.4, 0.022, 0.011, and 0.028 for MLR, NuSVR, ETR, and XGBR respectively. These results highlight the effectiveness of the ML models in making predictions, with error levels similar to the uncertainties observed in experimental measurements. The developed ML models have been validated to ensure generalizability and can be used to predict petroleum fuels' TSI.
Whey is a very perishable food and a potent source of protein. It might be more commercialized through the process of spray drying, which would enhance its shelf life. No CFD computational models applied to the drying of fresh sweet whey have been reported in the literature to investigate transport phenomena in spray dryers and to predict crucial design parameters such as deposition, powder recovery, and drying efficiency. Using an Eulerian-Langragean technique, the behavior of multiphase flow as well as heat and mass transfer were investigated. The influence of the inlet air temperature was evaluated in relation to the velocity profiles of the continuous and discrete phases, the residence time distribution, the particle diameter formed, the air temperature near the injection zone, the particle temperature, and the mass fraction of evaporated water. Furthermore, performance parameters such as powder recovery, particle deposition, and drying efficiency were projected for varied air inlet temperatures. The velocity, residence time, and particle size distribution patterns were similar for the different air inlet temperatures. Greater variations might be noticed in the injection zone, especially in the temperature and mass fraction profiles. The lowest drying temperature resulted in the lowest particle deposition and the best thermal efficiency, making it the optimal process condition. This investigation can serve as a benchmark for the design of optimized spray dryers with greater thermal efficiency and yield to produce powdered whey.