Digital finance is going to be heavily affected by the COVID-19 outbreak. We present a statistical model which can be employed to understand the contagion dynamics of the COVID-19, so that its impact on finance can possibly be anticipated, and digitally monitored. The model is a Poisson autoregression of the daily new observed cases, and considers both short-term and long-term dependence in the infections counts. Model results are presented for the observed time series of China, the first affected country, but can be easily reproduced for all countries.
The Chicago Board Options Exchange Volatility Index (VIX) is considered by many market participants as a common measure of market risk and investors' sentiment, representing the market's expectation of the 30-day-ahead looking implied volatility obtained from real-time prices of options on the S&P 500 index. While smaller deviations between implied and realized volatility are a well-known stylized fact of financial markets, large, time-varying differences are also frequently observed throughout the day. Furthermore, substantial deviations between the VIX and its futures might lead to arbitrage opportunities on the VIX market. Arbitrage is hard to exploit as the potential strategy to exploit it requires buying several hundred, mostly illiquid, out-of-the-money (put and call) options on the S&P 500 index. This paper discusses a novel approach to predicting the VIX on an intraday scale by using just a subset of the most liquid options. To the best of the authors' knowledge, this the first paper, that describes a new methodology on how to predict the VIX (to potentially exploit arbitrage opportunities using VIX futures) using most recently developed machine learning models to intraday data of S&P 500 options and the VIX. The presented results are supposed to shed more light on the underlying dynamics in the options markets, help other investors to better understand the market and support regulators to investigate market inefficiencies.