The period of adolescence is not only marked by important growth and pubertal events, but is also characterized by important psychosocial changes driven by a search for autonomy and the construction of one's identity. It can thus be easily understood that puberty disorders interfere heavily with these process, requiring from the endocrinologist not only medical knowledge, but also a great deal of emotional and psychological skills. They must progressively move from an educational approach that heavily involves the parents to one of shared information and decision making that places the young patient at the center of the therapeutic process. This can be achieved in several ways: respecting the affective and cognitive development of the adolescent; securing his privacy and (if requested by him) confidentiality; exploring his self-image and self-esteem and adapting the therapeutic process to the patient's expectations; reviewing the teenager's lifestyle, including the issue of sexuality and sexual behavior, and involving him in any therapeutic choice that has to be made, even if it does not match with the parents' expectations. The skills required for this respectful and holistic follow-up often exceed the abilities of any physician; it is thus suggested that a team approach involving a clinical nurse and/or a psychologist and/or social worker(s) be set up whenever possible.
{"title":"Consultation for Disordered Puberty: What Do Adolescent Medicine Patients Teach Us?","authors":"P. Michaud, A. Ambresin","doi":"10.1159/000438896","DOIUrl":"https://doi.org/10.1159/000438896","url":null,"abstract":"The period of adolescence is not only marked by important growth and pubertal events, but is also characterized by important psychosocial changes driven by a search for autonomy and the construction of one's identity. It can thus be easily understood that puberty disorders interfere heavily with these process, requiring from the endocrinologist not only medical knowledge, but also a great deal of emotional and psychological skills. They must progressively move from an educational approach that heavily involves the parents to one of shared information and decision making that places the young patient at the center of the therapeutic process. This can be achieved in several ways: respecting the affective and cognitive development of the adolescent; securing his privacy and (if requested by him) confidentiality; exploring his self-image and self-esteem and adapting the therapeutic process to the patient's expectations; reviewing the teenager's lifestyle, including the issue of sexuality and sexual behavior, and involving him in any therapeutic choice that has to be made, even if it does not match with the parents' expectations. The skills required for this respectful and holistic follow-up often exceed the abilities of any physician; it is thus suggested that a team approach involving a clinical nurse and/or a psychologist and/or social worker(s) be set up whenever possible.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"29 1","pages":"240-55"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000438896","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64899357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Macedo, L. Silveira, D. Bessa, V. Brito, A. Latronico
Precocious puberty has been classically defined as the onset of sexual secondary characteristics in girls younger than 8 years and in boys younger than 9 years. The discovery of potential factors which trigger human puberty is one of the central mysteries of reproductive biology. Several approaches, including mutational analysis of candidate genes, large-scale genome-wide association studies, and (more recently) whole-exome sequencing, have been performed in attempt to identify novel genetic factors that modulate the human hypothalamic-pituitary-gonadal axis, resulting in premature sexual development. In the last two decades, it has been well established that autonomous gonadal activation can be caused by somatic (GNAS) or germline (LHCGR)-activating mutations of genes that encode essential elements for signal transduction of G protein-coupled receptors, resulting in peripheral precocious puberty in McCune-Albright syndrome and testotoxicosis, respectively. More recently, dominant activating and inactivating mutations of excitatory (KISS1/KISS1R) and inhibitory (MKRN3) modulators of gonadotropin-releasing hormone secretion, respectively, were associated with central precocious puberty phenotype. Indeed, loss-of-function mutations of MKRN3, a maternal imprinted gene located at chromosome 15q, currently represent a frequent cause of central precocious puberty diagnosed in families from distinct geographic origins. Here, we review the known genetic defects in central and peripheral precocious puberty.
{"title":"Sexual Precocity--Genetic Bases of Central Precocious Puberty and Autonomous Gonadal Activation.","authors":"D. Macedo, L. Silveira, D. Bessa, V. Brito, A. Latronico","doi":"10.1159/000438874","DOIUrl":"https://doi.org/10.1159/000438874","url":null,"abstract":"Precocious puberty has been classically defined as the onset of sexual secondary characteristics in girls younger than 8 years and in boys younger than 9 years. The discovery of potential factors which trigger human puberty is one of the central mysteries of reproductive biology. Several approaches, including mutational analysis of candidate genes, large-scale genome-wide association studies, and (more recently) whole-exome sequencing, have been performed in attempt to identify novel genetic factors that modulate the human hypothalamic-pituitary-gonadal axis, resulting in premature sexual development. In the last two decades, it has been well established that autonomous gonadal activation can be caused by somatic (GNAS) or germline (LHCGR)-activating mutations of genes that encode essential elements for signal transduction of G protein-coupled receptors, resulting in peripheral precocious puberty in McCune-Albright syndrome and testotoxicosis, respectively. More recently, dominant activating and inactivating mutations of excitatory (KISS1/KISS1R) and inhibitory (MKRN3) modulators of gonadotropin-releasing hormone secretion, respectively, were associated with central precocious puberty phenotype. Indeed, loss-of-function mutations of MKRN3, a maternal imprinted gene located at chromosome 15q, currently represent a frequent cause of central precocious puberty diagnosed in families from distinct geographic origins. Here, we review the known genetic defects in central and peripheral precocious puberty.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"29 1","pages":"50-71"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000438874","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64898172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nonalcoholic fatty liver disease (NAFLD) is one of the most important causes of chronic liver disease in children and adults. Recently, therapeutic supplementation with docosahexaenoic acid (DHA) showed an anti-inflammatory and insulin-sensitizing effect in children with NAFLD. The anti-inflammatory effects of DHA depend on its ability to alter phospholipid composition of the cell membrane, to disrupt lipid rafts and to hamper the transcriptional activity of nuclear factor-x03BA;B that controls the expression of proinflammatory cytokines. These effects of DHA are due to the interaction with the G-protein-coupled receptor 120 (GRP120), a lipid-sensing receptor highly expressed in activated macrophages. In fact, DHA may activate GPR120 expression in macrophages causing anti-inflammatory effects, and insulin-sensitizing and antidiabetic effects in vivo. Recently, it has been shown that GPR120 is also expressed by the Kupffer cells of the liver. A diet low in n-3 polyunsaturated fatty acids, as well as the presence of genetic factors, may induce a reduction in the GRP120 signal and the activation of Kupffer cells and inflammation during NAFLD. Therefore, it is conceivable that DHA/GRP120 may play a key role in slowing the progression of liver damage in patients with NAFLD.
{"title":"Docosahexaenoic Acid and Its Role in G-Protein-Coupled Receptor 120 Activation in Children Affected by Nonalcoholic Fatty Liver Disease.","authors":"C. Della Corte, A. Mosca, A. Ionata, V. Nobili","doi":"10.1159/000439324","DOIUrl":"https://doi.org/10.1159/000439324","url":null,"abstract":"Nonalcoholic fatty liver disease (NAFLD) is one of the most important causes of chronic liver disease in children and adults. Recently, therapeutic supplementation with docosahexaenoic acid (DHA) showed an anti-inflammatory and insulin-sensitizing effect in children with NAFLD. The anti-inflammatory effects of DHA depend on its ability to alter phospholipid composition of the cell membrane, to disrupt lipid rafts and to hamper the transcriptional activity of nuclear factor-x03BA;B that controls the expression of proinflammatory cytokines. These effects of DHA are due to the interaction with the G-protein-coupled receptor 120 (GRP120), a lipid-sensing receptor highly expressed in activated macrophages. In fact, DHA may activate GPR120 expression in macrophages causing anti-inflammatory effects, and insulin-sensitizing and antidiabetic effects in vivo. Recently, it has been shown that GPR120 is also expressed by the Kupffer cells of the liver. A diet low in n-3 polyunsaturated fatty acids, as well as the presence of genetic factors, may induce a reduction in the GRP120 signal and the activation of Kupffer cells and inflammation during NAFLD. Therefore, it is conceivable that DHA/GRP120 may play a key role in slowing the progression of liver damage in patients with NAFLD.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"30 1","pages":"29-36"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000439324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64904520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the past decade, the field of type 1 diabetes was characterized by the efforts to integrate technology into the daily management of diabetes. Automated insulin delivery systems have emerged followed by the improvements in technology of pumps and sensors and automated close-loop systems that were developed around the world for overnight as well as for day and night use. Initially, these closed-loop systems were tested clinically in research centers, then at diabetes camps or hotels, and recently at patients' homes. The systems were tested in a wide range of populations of patients with type 1 diabetes: children, adolescents, adults, newly diagnosed, well and suboptimally controlled patients, the critically ill and pregnant women. The extensive clinical evaluation found these close-loop systems to be safe and efficient in controlling blood glucose levels. Now is the time to take these systems from research to industry and to get a regulatory approval of convenient devices for the use at home. Automated insulin delivery systems have the potential to change the way diabetes is treated and managed for the benefit of patients. This chapter summarizes the recent advances in this field.
{"title":"Toward Automation of Insulin Delivery - Management Solutions for Type 1 Diabetes.","authors":"R. Nimri, M. Phillip","doi":"10.1159/000439321","DOIUrl":"https://doi.org/10.1159/000439321","url":null,"abstract":"In the past decade, the field of type 1 diabetes was characterized by the efforts to integrate technology into the daily management of diabetes. Automated insulin delivery systems have emerged followed by the improvements in technology of pumps and sensors and automated close-loop systems that were developed around the world for overnight as well as for day and night use. Initially, these closed-loop systems were tested clinically in research centers, then at diabetes camps or hotels, and recently at patients' homes. The systems were tested in a wide range of populations of patients with type 1 diabetes: children, adolescents, adults, newly diagnosed, well and suboptimally controlled patients, the critically ill and pregnant women. The extensive clinical evaluation found these close-loop systems to be safe and efficient in controlling blood glucose levels. Now is the time to take these systems from research to industry and to get a regulatory approval of convenient devices for the use at home. Automated insulin delivery systems have the potential to change the way diabetes is treated and managed for the benefit of patients. This chapter summarizes the recent advances in this field.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"30 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000439321","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64904602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Bertuzzi, B. Antonioli, M. C. Tosca, M. Galuzzi, M. Bonomo, M. Marazzi, G. Colussi
The first islet transplantation in diabetes mellitus was performed more than 20 years ago. Since then, clinical results have progressively improved. Nowadays, islet transplantation can be considered a real therapeutic option after pancreatectomy for painful chronic pancreatitis (autotransplantation) and in selected adult patients affected by type 1 diabetes mellitus (allotransplantation). Better results are mainly due to the advances in the standardization of islet isolation and purification procedures as well as in the pharmacological treatment of recipients. Anti-inflammatory treatments facilitate islet engraftment and prevent metabolic exhaustion and functional β-cell apoptosis; new strategies better control islet graft rejection. As a consequence, islet transplantation activities are no longer confined to few centers only, rather thousands of transplants are now performed all over the world. Many attempts are actually undertaken to find solutions to current problems of islets transplantation, from toxicity of immunosuppressive therapy to the limited engraftment, function and duration. There is general hope that these procedures will offer a safe and feasible therapeutic option for an increasing number of patients suffering from diabetes mellitus, including pediatric patients.
{"title":"Islet Transplantation in Pediatric Patients: Current Indications and Future Perspectives.","authors":"F. Bertuzzi, B. Antonioli, M. C. Tosca, M. Galuzzi, M. Bonomo, M. Marazzi, G. Colussi","doi":"10.1159/000439322","DOIUrl":"https://doi.org/10.1159/000439322","url":null,"abstract":"The first islet transplantation in diabetes mellitus was performed more than 20 years ago. Since then, clinical results have progressively improved. Nowadays, islet transplantation can be considered a real therapeutic option after pancreatectomy for painful chronic pancreatitis (autotransplantation) and in selected adult patients affected by type 1 diabetes mellitus (allotransplantation). Better results are mainly due to the advances in the standardization of islet isolation and purification procedures as well as in the pharmacological treatment of recipients. Anti-inflammatory treatments facilitate islet engraftment and prevent metabolic exhaustion and functional β-cell apoptosis; new strategies better control islet graft rejection. As a consequence, islet transplantation activities are no longer confined to few centers only, rather thousands of transplants are now performed all over the world. Many attempts are actually undertaken to find solutions to current problems of islets transplantation, from toxicity of immunosuppressive therapy to the limited engraftment, function and duration. There is general hope that these procedures will offer a safe and feasible therapeutic option for an increasing number of patients suffering from diabetes mellitus, including pediatric patients.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"30 1","pages":"14-22"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000439322","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64904692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since the first use of cortisone in patients around 65 years ago, the use of synthetic glucocorticoids has made a crucial impact on the treatment of several diseases in medicine. Although significant reductions in morbidity and mortality have occurred in patients suffering from cortisol deficiency, conventional hydrocortisone replacement treatment is still inadequate. A major limitation is that it fails to replace cortisol in a physiological manner. Cortisol has a distinct circadian rhythm and acts as a secondary messenger synchronizing the central to peripheral clocks, hence playing a key role in biological processes and the circadian timing system. Circadian misalignment has been associated with ill-health and so nonphysiological glucocorticoid treatment could explain the increased mortality rate, poor quality of life and metabolic complications in patients suffering from adrenal insufficiency. Attempts at replacing cortisol in a physiological manner have shown significant progress in the past decade with the development of modified-release formulations of hydrocortisone (Chronocort® and Plenadren®) and continuous subcutaneous hydrocortisone infusions. Initial studies investigating the use of these replacement regimens are promising, demonstrating both clinical and biochemical improvement. Larger studies are needed to determine whether this novel approach enhances long-term outcomes in both children and adults with cortisol deficiency. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. Published by S. Karger AG, Basel.
{"title":"Recent Advances in Hydrocortisone Replacement Treatment.","authors":"A. Mallappa, M. Debono","doi":"10.1159/000439329","DOIUrl":"https://doi.org/10.1159/000439329","url":null,"abstract":"Since the first use of cortisone in patients around 65 years ago, the use of synthetic glucocorticoids has made a crucial impact on the treatment of several diseases in medicine. Although significant reductions in morbidity and mortality have occurred in patients suffering from cortisol deficiency, conventional hydrocortisone replacement treatment is still inadequate. A major limitation is that it fails to replace cortisol in a physiological manner. Cortisol has a distinct circadian rhythm and acts as a secondary messenger synchronizing the central to peripheral clocks, hence playing a key role in biological processes and the circadian timing system. Circadian misalignment has been associated with ill-health and so nonphysiological glucocorticoid treatment could explain the increased mortality rate, poor quality of life and metabolic complications in patients suffering from adrenal insufficiency. Attempts at replacing cortisol in a physiological manner have shown significant progress in the past decade with the development of modified-release formulations of hydrocortisone (Chronocort® and Plenadren®) and continuous subcutaneous hydrocortisone infusions. Initial studies investigating the use of these replacement regimens are promising, demonstrating both clinical and biochemical improvement. Larger studies are needed to determine whether this novel approach enhances long-term outcomes in both children and adults with cortisol deficiency. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. Published by S. Karger AG, Basel.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"30 1","pages":"42-53"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000439329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64904714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X-linked adrenoleukodystrophy (X-ALD) is the most frequent inherited monogenic demyelinating disease. It is often lethal and currently lacks a satisfactory therapy. The disease is caused by loss of function of the ABCD1 gene, a peroxisomal ATP-binding cassette transporter, resulting in the accumulation of very-long-chain fatty acids (VLCFA) in organs and plasma. Recent findings on pathomechanisms of the peroxisomal neurometabolic disease X-ALD have provided important clues on therapeutic targets. Here we describe the impact of chronic redox imbalance caused by the excess VLCFA on mitochondrial biogenesis and respiration, and explore the consequences on the protein quality control systems essential for cell survival, such as the proteasome and autophagic flux. Defective proteostasis, together with mitochondrial malfunction, is a hallmark of the most prevalent neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and of the aging process. Thus, we discuss molecular targets and emerging treatment options that may be common to both multifactorial neurodegenerative disorders and X-ALD. New-generation antioxidants, some of them mitochondrial targeted, mitochondrial biogenesis boosters such as pioglitazone and resveratrol, and the mTOR inhibitor temsirolimus hold promise as disease-modifying therapies.
{"title":"Novel Therapeutic Targets and Drug Candidates for Modifying Disease Progression in Adrenoleukodystrophy.","authors":"A. Pujol","doi":"10.1159/000439340","DOIUrl":"https://doi.org/10.1159/000439340","url":null,"abstract":"X-linked adrenoleukodystrophy (X-ALD) is the most frequent inherited monogenic demyelinating disease. It is often lethal and currently lacks a satisfactory therapy. The disease is caused by loss of function of the ABCD1 gene, a peroxisomal ATP-binding cassette transporter, resulting in the accumulation of very-long-chain fatty acids (VLCFA) in organs and plasma. Recent findings on pathomechanisms of the peroxisomal neurometabolic disease X-ALD have provided important clues on therapeutic targets. Here we describe the impact of chronic redox imbalance caused by the excess VLCFA on mitochondrial biogenesis and respiration, and explore the consequences on the protein quality control systems essential for cell survival, such as the proteasome and autophagic flux. Defective proteostasis, together with mitochondrial malfunction, is a hallmark of the most prevalent neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and of the aging process. Thus, we discuss molecular targets and emerging treatment options that may be common to both multifactorial neurodegenerative disorders and X-ALD. New-generation antioxidants, some of them mitochondrial targeted, mitochondrial biogenesis boosters such as pioglitazone and resveratrol, and the mTOR inhibitor temsirolimus hold promise as disease-modifying therapies.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"30 1","pages":"147-60"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000439340","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64904795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on the Hyperglycemia and Adverse Pregnancy Outcome study, new universal screening recommendations and cut-offs for gestational diabetes mellitus (GDM) have been proposed. In addition to the immediate perinatal risk, GDM carries an increased risk of metabolic disease in the mother and child. Maternal obesity has even been shown to be associated with increased all-cause mortality in offspring. In addition to known risk factors, excessive gestational weight gain, increased fat consumption, a low vitamin D level, psychological stress and negative mood are risk factors for GDM. Regarding therapy, the US Preventive Task Force concluded in 2013 that GDM treatment significantly reduces the risks of pre-eclampsia, macrosomia and shoulder dystocia (relative risks of 0.62, 0.5 and 0.42, respectively). Although nutrition therapy represents a cornerstone in GDM management, the results of studies are not clear regarding which types of dietary advice are the most suitable. Most physical activity interventions improve glucose control and/or reduce insulin use. Recent studies have evaluated and provided more information about treatment with metformin or glyburide. Postpartum management is essential and should focus on long-term screening and diabetes prevention strategies.
{"title":"Gestational Diabetes Mellitus.","authors":"C. Spaight, Justine Gross, A. Horsch, J. Puder","doi":"10.1159/000439413","DOIUrl":"https://doi.org/10.1159/000439413","url":null,"abstract":"Based on the Hyperglycemia and Adverse Pregnancy Outcome study, new universal screening recommendations and cut-offs for gestational diabetes mellitus (GDM) have been proposed. In addition to the immediate perinatal risk, GDM carries an increased risk of metabolic disease in the mother and child. Maternal obesity has even been shown to be associated with increased all-cause mortality in offspring. In addition to known risk factors, excessive gestational weight gain, increased fat consumption, a low vitamin D level, psychological stress and negative mood are risk factors for GDM. Regarding therapy, the US Preventive Task Force concluded in 2013 that GDM treatment significantly reduces the risks of pre-eclampsia, macrosomia and shoulder dystocia (relative risks of 0.62, 0.5 and 0.42, respectively). Although nutrition therapy represents a cornerstone in GDM management, the results of studies are not clear regarding which types of dietary advice are the most suitable. Most physical activity interventions improve glucose control and/or reduce insulin use. Recent studies have evaluated and provided more information about treatment with metformin or glyburide. Postpartum management is essential and should focus on long-term screening and diabetes prevention strategies.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"31 1","pages":"163-78"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000439413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64906438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years the pace of discovering the molecular and genetic underpinnings of the pubertal process has accelerated considerably. Genes required for human puberty to occur have been identified and evidence has been provided suggesting that the initiation of puberty requires coordinated changes in the output of a multiplicity of genes organized into functional networks. Recent evidence suggests that a dual mechanism of epigenetic regulation affecting the transcriptional activity of neurons involved in stimulating gonadotropin-releasing hormone release plays a fundamental role in the timing of puberty. The Polycomb group (PcG) of transcriptional silencers appears to be a major component of the repressive arm of this mechanism. PcG proteins prevent the premature initiation of female puberty by silencing the Kiss1 gene in kisspeptin neurons of the arcuate nucleus (ARC) of the hypothalamus. Because the abundance of histone marks either catalyzed by--or associated with--the Trithorax group (TrxG) of transcriptional activators increases at the time when PcG control subsides, it appears that the TrxG complex is the counteracting partner of PcG-mediated gene silencing. In this chapter, we discuss the concept that a switch from epigenetic repression to activation within ARC kisspeptin neurons is a core mechanism underlying the initiation of female puberty.
{"title":"The Emerging Role of Epigenetics in the Regulation of Female Puberty.","authors":"A. Lomniczi, S. Ojeda","doi":"10.1159/000438840","DOIUrl":"https://doi.org/10.1159/000438840","url":null,"abstract":"In recent years the pace of discovering the molecular and genetic underpinnings of the pubertal process has accelerated considerably. Genes required for human puberty to occur have been identified and evidence has been provided suggesting that the initiation of puberty requires coordinated changes in the output of a multiplicity of genes organized into functional networks. Recent evidence suggests that a dual mechanism of epigenetic regulation affecting the transcriptional activity of neurons involved in stimulating gonadotropin-releasing hormone release plays a fundamental role in the timing of puberty. The Polycomb group (PcG) of transcriptional silencers appears to be a major component of the repressive arm of this mechanism. PcG proteins prevent the premature initiation of female puberty by silencing the Kiss1 gene in kisspeptin neurons of the arcuate nucleus (ARC) of the hypothalamus. Because the abundance of histone marks either catalyzed by--or associated with--the Trithorax group (TrxG) of transcriptional activators increases at the time when PcG control subsides, it appears that the TrxG complex is the counteracting partner of PcG-mediated gene silencing. In this chapter, we discuss the concept that a switch from epigenetic repression to activation within ARC kisspeptin neurons is a core mechanism underlying the initiation of female puberty.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"29 1","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000438840","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64897763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent studies have documented earlier pubertal maturation in both girls and boys. Several factors have been proposed to account for earlier maturation. Epidemiologic studies have indicated that genetic factors are the most important influence contributing to the variability in the onset of puberty. Studies have also noted the association of elevated BMI with earlier puberty in girls, although the relationship between BMI and onset of puberty in boys is less consistent. The relationship of BMI and onset of puberty may be mediated by several factors, including leptin and kisspeptin, changes in bioavailable sex hormones, and environmental exposures. Recently, there have been genome-wide meta-analyses examining onset of puberty and anthropometric traits that may provide insight into the relationships of BMI, height velocity, and pubertal timing. Newer fields of investigation include examination of epigenetic modification.
{"title":"Contemporary Trends in Onset and Completion of Puberty, Gain in Height and Adiposity.","authors":"F. Biro, W. Kiess","doi":"10.1159/000438881","DOIUrl":"https://doi.org/10.1159/000438881","url":null,"abstract":"Recent studies have documented earlier pubertal maturation in both girls and boys. Several factors have been proposed to account for earlier maturation. Epidemiologic studies have indicated that genetic factors are the most important influence contributing to the variability in the onset of puberty. Studies have also noted the association of elevated BMI with earlier puberty in girls, although the relationship between BMI and onset of puberty in boys is less consistent. The relationship of BMI and onset of puberty may be mediated by several factors, including leptin and kisspeptin, changes in bioavailable sex hormones, and environmental exposures. Recently, there have been genome-wide meta-analyses examining onset of puberty and anthropometric traits that may provide insight into the relationships of BMI, height velocity, and pubertal timing. Newer fields of investigation include examination of epigenetic modification.","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"29 1","pages":"122-33"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000438881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64898508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}