Henri Hakkarainen, Anssi Järvinen, Teemu Lepistö, Niina Kuittinen, Lassi Markkula, Tuukka Ihantola, Mo Yang, Maria-Viola Martikainen, Santtu Mikkonen, Hilkka Timonen, Minna Aurela, Luis Barreira, Mika Ihalainen, Sanna Saarikoski, Topi Rönkkö, Päivi Aakko-Saksa and Pasi Jalava
Traffic as an important part of the energy sector significantly contributes to global air pollution. To mitigate the hazardous components of traffic emissions regulations have been implemented resulting in technological solutions such as exhaust after-treatment systems. However, fuels also play a crucial role in emissions and components such as the aromatic compounds in fuel have been linked to increased exhaust emissions. Several current emissions regulations neglect environmental factors, such as cold operating temperatures, that can significantly increase emissions. Moreover, the effect of fuel aromatics and cold temperature on emissions toxicity has not been adequately studied. This study evaluates the impact of after-treatment systems, aromatic fuel content, and cold operating temperature on emission toxicity. To achieve this, four different light-duty vehicles were used in a temperature-controlled dynamometer room, with a co-culture of A549 and THP-1 cell lines exposed to online exhaust emissions using a thermophoresis-based air–liquid interface (ALI) system. The results demonstrate that the aromatic content of both diesel and gasoline fuels increases exhaust toxicity. The study additionally emphasises the potential of particulate filters as after-treatment systems to reduce the toxicity of emissions and highlights how cold running temperatures result in higher exhaust toxicity. The study also assessed the diesel particulate filter (DPF) active regeneration event, which leads to multi-fold emissions and higher toxicological responses. Overall, the study provides crucial novel results on how various factors affect the toxicity of exhaust emissions from modern light-duty vehicles, providing insights into decreasing the emissions from this energy sector.
{"title":"Effects of fuel composition and vehicle operating temperature on in vitro toxicity of exhaust emissions†","authors":"Henri Hakkarainen, Anssi Järvinen, Teemu Lepistö, Niina Kuittinen, Lassi Markkula, Tuukka Ihantola, Mo Yang, Maria-Viola Martikainen, Santtu Mikkonen, Hilkka Timonen, Minna Aurela, Luis Barreira, Mika Ihalainen, Sanna Saarikoski, Topi Rönkkö, Päivi Aakko-Saksa and Pasi Jalava","doi":"10.1039/D3EA00136A","DOIUrl":"https://doi.org/10.1039/D3EA00136A","url":null,"abstract":"<p >Traffic as an important part of the energy sector significantly contributes to global air pollution. To mitigate the hazardous components of traffic emissions regulations have been implemented resulting in technological solutions such as exhaust after-treatment systems. However, fuels also play a crucial role in emissions and components such as the aromatic compounds in fuel have been linked to increased exhaust emissions. Several current emissions regulations neglect environmental factors, such as cold operating temperatures, that can significantly increase emissions. Moreover, the effect of fuel aromatics and cold temperature on emissions toxicity has not been adequately studied. This study evaluates the impact of after-treatment systems, aromatic fuel content, and cold operating temperature on emission toxicity. To achieve this, four different light-duty vehicles were used in a temperature-controlled dynamometer room, with a co-culture of A549 and THP-1 cell lines exposed to online exhaust emissions using a thermophoresis-based air–liquid interface (ALI) system. The results demonstrate that the aromatic content of both diesel and gasoline fuels increases exhaust toxicity. The study additionally emphasises the potential of particulate filters as after-treatment systems to reduce the toxicity of emissions and highlights how cold running temperatures result in higher exhaust toxicity. The study also assessed the diesel particulate filter (DPF) active regeneration event, which leads to multi-fold emissions and higher toxicological responses. Overall, the study provides crucial novel results on how various factors affect the toxicity of exhaust emissions from modern light-duty vehicles, providing insights into decreasing the emissions from this energy sector.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 4","pages":" 455-467"},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00136a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140606220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Greg T. Drozd, Tate Weltzin, Samuel Skiffington, Dong Lee, Rashid Valiev, Theo Kurtén, Lindsey R. Madison, Yiheng He and Lydia Gargano
The light absorbing component of organic aerosols, brown carbon (BrC), directly affects climate and can play a role in the oxidative aging of organic aerosols. Recent estimates suggest that globally BrC may have a warming potential that is approximately 20% that of black carbon, and photochemistry from BrC compounds can increase or transform aqueous SOA. Photobleaching of BrC is estimated to occur with a timescale of hours to days, a range that complicates estimates of the effects of BrC on climate and aerosol chemistry. The chemical environment (e.g. pH, ionic strength, and non-BrC organic content) of aqueous aerosols can also affect the reactivity of BrC, potentially altering absorption spectra and reactions of excited states formed upon irradiation. A range of solar illumination sources have been used in studying the photochemistry of BrC compounds, making direct comparisons between results difficult. Higher energy, single wavelength studies (e.g. 308 nm) show much larger quantum yields than broadband studies, indicating wavelength dependent quantum yields for a wide range of atmospherically relevant substituted aromatics. In this work we investigate the wavelength dependence of the quantum yield for loss of a prototypical BrC compound found in wildfire emissions, vanillin, using several narrow band UV-LEDs that span the 295–400 nm range. These wavelength dependent quantum yields will allow a more direct comparison between photochemical experiments with laboratory irradiation sources and actual actinic fluxes. Vanillin photochemical loss rates are concentration-dependent due to direct reaction between triplet excited state and ground state vanillin molecules. The quantum yield for photochemical loss of vanillin can be approximated by a Gaussian decay from 295 nm to ∼365 nm. This function is used to directly calculate the solar zenith angle (SZA) dependence for photochemical loss. Computational results show the presence of two π → π* transitions responsible for the observed UV-vis spectrum and that the rate of intersystem crossing has a wavelength dependence remarkably similar to that of the quantum yield for loss. A strong kinetic salt effect is observed, showing a doubling of the loss rate at high ionic strength.
{"title":"Wavelength-resolved quantum yields for vanillin photochemistry: self-reaction and ionic-strength implications for wildfire brown carbon lifetime†","authors":"Greg T. Drozd, Tate Weltzin, Samuel Skiffington, Dong Lee, Rashid Valiev, Theo Kurtén, Lindsey R. Madison, Yiheng He and Lydia Gargano","doi":"10.1039/D4EA00002A","DOIUrl":"https://doi.org/10.1039/D4EA00002A","url":null,"abstract":"<p >The light absorbing component of organic aerosols, brown carbon (BrC), directly affects climate and can play a role in the oxidative aging of organic aerosols. Recent estimates suggest that globally BrC may have a warming potential that is approximately 20% that of black carbon, and photochemistry from BrC compounds can increase or transform aqueous SOA. Photobleaching of BrC is estimated to occur with a timescale of hours to days, a range that complicates estimates of the effects of BrC on climate and aerosol chemistry. The chemical environment (<em>e.g.</em> pH, ionic strength, and non-BrC organic content) of aqueous aerosols can also affect the reactivity of BrC, potentially altering absorption spectra and reactions of excited states formed upon irradiation. A range of solar illumination sources have been used in studying the photochemistry of BrC compounds, making direct comparisons between results difficult. Higher energy, single wavelength studies (<em>e.g.</em> 308 nm) show much larger quantum yields than broadband studies, indicating wavelength dependent quantum yields for a wide range of atmospherically relevant substituted aromatics. In this work we investigate the wavelength dependence of the quantum yield for loss of a prototypical BrC compound found in wildfire emissions, vanillin, using several narrow band UV-LEDs that span the 295–400 nm range. These wavelength dependent quantum yields will allow a more direct comparison between photochemical experiments with laboratory irradiation sources and actual actinic fluxes. Vanillin photochemical loss rates are concentration-dependent due to direct reaction between triplet excited state and ground state vanillin molecules. The quantum yield for photochemical loss of vanillin can be approximated by a Gaussian decay from 295 nm to ∼365 nm. This function is used to directly calculate the solar zenith angle (SZA) dependence for photochemical loss. Computational results show the presence of two π → π* transitions responsible for the observed UV-vis spectrum and that the rate of intersystem crossing has a wavelength dependence remarkably similar to that of the quantum yield for loss. A strong kinetic salt effect is observed, showing a doubling of the loss rate at high ionic strength.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 5","pages":" 509-518"},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00002a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adil Shah, Olivier Laurent, Grégoire Broquet, Carole Philippon, Pramod Kumar, Elisa Allegrini and Philippe Ciais
Top-down (atmospheric measurement-based) methane fluxes from individual emitting facilities are needed to reduce uncertainties in the global methane budget. This typically requires in situ methane mole fraction ([CH4]), traditionally measured using high-precision optical sensors. We show that the semiconductor-based Figaro Taguchi Gas Sensor (TGS) is a cheaper alternative. Two TGS loggers were deployed near a landfill site. Logger-1 uses a pumped cell, containing one TGS 2602, two TGS 2611-C00 and one TGS 2611-E00; laboratory testing showed methane, ethane, carbon monoxide and hydrogen sulphide sensitivity for each TGS. Logger-2 uses an external fan, containing one TGS 2611-C00. The tested TGS 2611-C00 and TGS 2611-E00 units could yield [CH4] during landfill deployment, by first modelling a reference baseline resistance in field conditions, representative of background (reference) [CH4] sampling. Background sampling was identified using wind direction from a designated background segment, which yielded a baseline resistance model as a function of time (incorporating long-term background effects), water mole fraction and temperature. The ratio between measured TGS resistance and modelled baseline resistance was converted into [CH4], using a two-term modified power fit. Logger-1 methane fitting coefficients were derived during laboratory testing, while Logger-2 coefficients used a 1.49% field sampling subset, alongside a high-precision reference (HPR) instrument. Reconstructed minute-averaged Logger-2 [CH4] for TGS 2611-C00 was compared to the HPR up to 31.5 ppm [CH4] (excluding [CH4] fitting data), resulting in a ±0.55 ppm [CH4] root-mean squared error (RMSE), for 295.2 overall sampling days (excluding data gaps). Reconstructed Logger-1 [CH4] RMSE compared to the HPR was ±0.67 ppm and ±0.77 ppm for the two TGS 2611-C00 and ±1.17 ppm for the TGS 2611-E00, up to 29.3 ppm [CH4], for 147.9 overall sampling days. Field TGS 2611-C00 superiority above other Logger-1 sensors is supported by laboratory tests, which showed TGS 2611-C00 to be most methane-sensitive. In summary, we show that the TGS 2611-C00 is an ideal low-cost sensor to measure [CH4] from facility-scale sources, with a field RMSE below ±1 ppm. This work represents the first application of TGS resistance ratios to yield parts-per-million level [CH4] field measurements, using a dynamic baseline resistance model.
{"title":"Determining methane mole fraction at a landfill site using the Figaro Taguchi gas sensor 2611-C00 and wind direction measurements†","authors":"Adil Shah, Olivier Laurent, Grégoire Broquet, Carole Philippon, Pramod Kumar, Elisa Allegrini and Philippe Ciais","doi":"10.1039/D3EA00138E","DOIUrl":"https://doi.org/10.1039/D3EA00138E","url":null,"abstract":"<p >Top-down (atmospheric measurement-based) methane fluxes from individual emitting facilities are needed to reduce uncertainties in the global methane budget. This typically requires <em>in situ</em> methane mole fraction ([CH<small><sub>4</sub></small>]), traditionally measured using high-precision optical sensors. We show that the semiconductor-based Figaro Taguchi Gas Sensor (TGS) is a cheaper alternative. Two TGS loggers were deployed near a landfill site. Logger-1 uses a pumped cell, containing one TGS 2602, two TGS 2611-C00 and one TGS 2611-E00; laboratory testing showed methane, ethane, carbon monoxide and hydrogen sulphide sensitivity for each TGS. Logger-2 uses an external fan, containing one TGS 2611-C00. The tested TGS 2611-C00 and TGS 2611-E00 units could yield [CH<small><sub>4</sub></small>] during landfill deployment, by first modelling a reference baseline resistance in field conditions, representative of background (reference) [CH<small><sub>4</sub></small>] sampling. Background sampling was identified using wind direction from a designated background segment, which yielded a baseline resistance model as a function of time (incorporating long-term background effects), water mole fraction and temperature. The ratio between measured TGS resistance and modelled baseline resistance was converted into [CH<small><sub>4</sub></small>], using a two-term modified power fit. Logger-1 methane fitting coefficients were derived during laboratory testing, while Logger-2 coefficients used a 1.49% field sampling subset, alongside a high-precision reference (HPR) instrument. Reconstructed minute-averaged Logger-2 [CH<small><sub>4</sub></small>] for TGS 2611-C00 was compared to the HPR up to 31.5 ppm [CH<small><sub>4</sub></small>] (excluding [CH<small><sub>4</sub></small>] fitting data), resulting in a ±0.55 ppm [CH<small><sub>4</sub></small>] root-mean squared error (RMSE), for 295.2 overall sampling days (excluding data gaps). Reconstructed Logger-1 [CH<small><sub>4</sub></small>] RMSE compared to the HPR was ±0.67 ppm and ±0.77 ppm for the two TGS 2611-C00 and ±1.17 ppm for the TGS 2611-E00, up to 29.3 ppm [CH<small><sub>4</sub></small>], for 147.9 overall sampling days. Field TGS 2611-C00 superiority above other Logger-1 sensors is supported by laboratory tests, which showed TGS 2611-C00 to be most methane-sensitive. In summary, we show that the TGS 2611-C00 is an ideal low-cost sensor to measure [CH<small><sub>4</sub></small>] from facility-scale sources, with a field RMSE below ±1 ppm. This work represents the first application of TGS resistance ratios to yield parts-per-million level [CH<small><sub>4</sub></small>] field measurements, using a dynamic baseline resistance model.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 362-386"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00138e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashley S. Bittner, Amara L. Holder, Andrew P. Grieshop, Gayle S. W. Hagler and William Mitchell
Fine particulate matter (PM2.5) resulting from wildland fire is a significant public health risk in the United States (U.S.). The existing stationary monitoring network and the tools used to alert the public of smoke conditions, such as the Air Quality Index or NowCast, are not optimized to capture actual exposure concentrations in impacted communities given that wildland fire smoke plumes have characteristically steep exposure concentration gradients that can vary over fine spatiotemporal scales. In response, we developed and evaluated a lightweight, universally attachable mobile PM2.5 monitoring system to provide supplemental, real-time air quality information during wildfire incidents and prescribed burning activities. We retroactively assessed the performance of the mobile monitor compared to nearby (100–1500 m) stationary low-cost sensors and regulatory monitors using 1 minute averaged data collected during two large wildfires in the western U.S. and during one small, prescribed burn in the Midwest. The mobile measurements were highly correlated (R2 > 0.85) with the stationary network during the large wildfires. Further, 1 minute averaged mobile measurements differed from three collocated stationary instruments by <25% on average for fourteen out of fifteen total passages. For the small, prescribed burn, rapidly changing conditions near the fire border complicated the comparison of mobile and stationary measurements but the spatial maximum concentrations measured by both instruments were consistent. In general, this work highlights the value of using portable sensor technologies to address the monitoring challenges presented by dynamic wildland fire conditions and demonstrates the value in combining mobile monitoring with stationary data where possible.
{"title":"Performance of Vehicle Add-on Mobile Monitoring System PM2.5 measurements during wildland fire episodes†","authors":"Ashley S. Bittner, Amara L. Holder, Andrew P. Grieshop, Gayle S. W. Hagler and William Mitchell","doi":"10.1039/D3EA00170A","DOIUrl":"https://doi.org/10.1039/D3EA00170A","url":null,"abstract":"<p >Fine particulate matter (PM<small><sub>2.5</sub></small>) resulting from wildland fire is a significant public health risk in the United States (U.S.). The existing stationary monitoring network and the tools used to alert the public of smoke conditions, such as the Air Quality Index or NowCast, are not optimized to capture actual exposure concentrations in impacted communities given that wildland fire smoke plumes have characteristically steep exposure concentration gradients that can vary over fine spatiotemporal scales. In response, we developed and evaluated a lightweight, universally attachable mobile PM<small><sub>2.5</sub></small> monitoring system to provide supplemental, real-time air quality information during wildfire incidents and prescribed burning activities. We retroactively assessed the performance of the mobile monitor compared to nearby (100–1500 m) stationary low-cost sensors and regulatory monitors using 1 minute averaged data collected during two large wildfires in the western U.S. and during one small, prescribed burn in the Midwest. The mobile measurements were highly correlated (<em>R</em><small><sup>2</sup></small> > 0.85) with the stationary network during the large wildfires. Further, 1 minute averaged mobile measurements differed from three collocated stationary instruments by <25% on average for fourteen out of fifteen total passages. For the small, prescribed burn, rapidly changing conditions near the fire border complicated the comparison of mobile and stationary measurements but the spatial maximum concentrations measured by both instruments were consistent. In general, this work highlights the value of using portable sensor technologies to address the monitoring challenges presented by dynamic wildland fire conditions and demonstrates the value in combining mobile monitoring with stationary data where possible.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 306-320"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00170a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Na Chen, Fiorella Barraza, René J. Belland, Muhammad B. Javed, Iain Grant-Weaver, Chad W. Cuss and William Shotyk
Airborne trace elements (TEs) from the development of the Athabasca bituminous sands (ABS) in northern Alberta, occur in coarse and fine aerosols. Here, TEs in Sphagnum moss and acid soluble ash (ASA, obtained by leaching ash for 15 min using 2% HNO3) are used to estimate the distribution of TEs between these two aerosol fractions. Total concentrations of all elements increase toward industry, but chemical reactivity of the ash varies. Most of the Al is acid soluble, but most of the Th is not; the former is assumed to reflect the abundance and reactivity of light minerals, and the latter is a surrogate for heavy minerals. In the ASA, the trends in Ni and V, the dominant metals in bitumen, resemble Al. In contrast, Mo (also enriched in bitumen), plus Pb, Sb and Tl, are more like Th in exhibiting limited reactivity. Trace element enrichments in both the total and ASA fractions, relative to crustal abundance, are restricted to plant micronutrients (e.g., Cu, Mn, Mo, Zn), or elements that are passively taken up by plants (e.g., Cd and Rb, but apparently also Ag and Re). The greatest enrichments of TEs occur at the reference site, even though it is located 264 km from the centre of industrial activities. The ash of moss collected nearest industry is dominated by quartz (67%) which explains the low concentrations of TEs, absence of enrichment relative to crustal abundance, and limited chemical reactivity of Pb, Sb and Tl. In this region, total concentrations of TEs in moss are a poor guide to their bioaccessibility in the environment.
阿尔伯塔省北部阿萨巴斯卡沥青砂(ABS)开发过程中产生的空气痕量元素(TEs)存在于粗粒和细粒气溶胶中。这里,斯帕格尼姆苔藓和酸溶灰分(ASA,通过使用 2% HNO3 将灰分浸出 15 分钟获得)中的微量元素被用来估算微量元素在这两种气溶胶组分之间的分布情况。所有元素的总浓度都会随着工业的发展而增加,但灰烬的化学反应性却各不相同。前者被认为反映了轻矿物的丰度和反应性,后者则是重矿物的替代物。在 ASA 中,沥青中主要金属 Ni 和 V 的变化趋势与 Al 相似。相比之下,钼(也富集于沥青中)以及铅、锑和钛则更像钍,表现出有限的反应性。相对于地壳丰度而言,微量元素在总量和 ASA 部分的富集仅限于植物微量营养元素(如铜、锰、钼、锌)或植物被动吸收的元素(如镉和铷,但显然也包括银和铼)。尽管参考点距离工业活动中心有 264 公里,但 TE 的富集程度却最高。在离工业区最近的地方采集的苔藓灰分主要是石英(67%),这就解释了为什么 TEs 的浓度较低,与地壳丰度相比没有富集,而且铅、锑和钛的化学反应能力有限。在该地区,苔藓中 TEs 的总浓度并不能很好地反映其在环境中的生物可及性。
{"title":"Estimating the bioaccessibility of atmospheric trace elements within the Athabasca bituminous sands region using the acid soluble ash fraction of Sphagnum moss†","authors":"Na Chen, Fiorella Barraza, René J. Belland, Muhammad B. Javed, Iain Grant-Weaver, Chad W. Cuss and William Shotyk","doi":"10.1039/D3EA00071K","DOIUrl":"https://doi.org/10.1039/D3EA00071K","url":null,"abstract":"<p >Airborne trace elements (TEs) from the development of the Athabasca bituminous sands (ABS) in northern Alberta, occur in coarse and fine aerosols. Here, TEs in <em>Sphagnum</em> moss and acid soluble ash (ASA, obtained by leaching ash for 15 min using 2% HNO<small><sub>3</sub></small>) are used to estimate the distribution of TEs between these two aerosol fractions. Total concentrations of all elements increase toward industry, but chemical reactivity of the ash varies. Most of the Al is acid soluble, but most of the Th is not; the former is assumed to reflect the abundance and reactivity of light minerals, and the latter is a surrogate for heavy minerals. In the ASA, the trends in Ni and V, the dominant metals in bitumen, resemble Al. In contrast, Mo (also enriched in bitumen), plus Pb, Sb and Tl, are more like Th in exhibiting limited reactivity. Trace element enrichments in both the total and ASA fractions, relative to crustal abundance, are restricted to plant micronutrients (<em>e.g.</em>, Cu, Mn, Mo, Zn), or elements that are passively taken up by plants (<em>e.g.</em>, Cd and Rb, but apparently also Ag and Re). The greatest enrichments of TEs occur at the reference site, even though it is located 264 km from the centre of industrial activities. The ash of moss collected nearest industry is dominated by quartz (67%) which explains the low concentrations of TEs, absence of enrichment relative to crustal abundance, and limited chemical reactivity of Pb, Sb and Tl. In this region, total concentrations of TEs in moss are a poor guide to their bioaccessibility in the environment.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 408-424"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00071k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexia N. Moore, Lucia Cancelada, Ke'La A. Kimble and Kimberly A. Prather
Increasing recognition of the significant contributions secondary organic aerosols can make in marine environments has led to an increase in research focused on understanding the reactions controlling their formation. Most marine laboratory studies to date have focused on the oxidation of individual volatile organic compounds (VOCs), particularly dimethyl sulfide (DMS). Thus, a lack of understanding exists in how complex marine VOC mixtures affect secondary marine aerosol formation and composition. To address this gap, we conducted controlled lab experiments that compare the effects of oxidizing single common marine VOCs versus VOC mixtures on secondary marine aerosol production. We used a potential aerosol mass oxidative flow reactor to investigate marine-relevant VOCs, including DMS, dimethyl disulfide (DMDS), and isoprene. Ion chromatography, chemical ionization mass spectrometry, aerosol time-of-flight mass spectrometry, and particle sizing instruments were employed to study how these mixtures influence the overall composition of marine aerosols. Our findings reveal that mixtures significantly alter the production and composition of secondary marine aerosols. Specifically, we found that isoprene, when oxidized in the presence of DMS and DMDS, affects methanesulfonic acid (MSA) and sulfate ratios, as well as overall aerosol yields. These insights suggest further studies on realistic marine VOC mixtures will help understand and predict the dynamics of secondary marine aerosol formation, therefore improving air quality and climate models and enabling more accurate predictions of marine aerosol impacts on cloud formation and properties.
{"title":"Secondary aerosol formation from mixtures of marine volatile organic compounds in a potential aerosol mass oxidative flow reactor†","authors":"Alexia N. Moore, Lucia Cancelada, Ke'La A. Kimble and Kimberly A. Prather","doi":"10.1039/D3EA00169E","DOIUrl":"https://doi.org/10.1039/D3EA00169E","url":null,"abstract":"<p >Increasing recognition of the significant contributions secondary organic aerosols can make in marine environments has led to an increase in research focused on understanding the reactions controlling their formation. Most marine laboratory studies to date have focused on the oxidation of individual volatile organic compounds (VOCs), particularly dimethyl sulfide (DMS). Thus, a lack of understanding exists in how complex marine VOC mixtures affect secondary marine aerosol formation and composition. To address this gap, we conducted controlled lab experiments that compare the effects of oxidizing single common marine VOCs <em>versus</em> VOC mixtures on secondary marine aerosol production. We used a potential aerosol mass oxidative flow reactor to investigate marine-relevant VOCs, including DMS, dimethyl disulfide (DMDS), and isoprene. Ion chromatography, chemical ionization mass spectrometry, aerosol time-of-flight mass spectrometry, and particle sizing instruments were employed to study how these mixtures influence the overall composition of marine aerosols. Our findings reveal that mixtures significantly alter the production and composition of secondary marine aerosols. Specifically, we found that isoprene, when oxidized in the presence of DMS and DMDS, affects methanesulfonic acid (MSA) and sulfate ratios, as well as overall aerosol yields. These insights suggest further studies on realistic marine VOC mixtures will help understand and predict the dynamics of secondary marine aerosol formation, therefore improving air quality and climate models and enabling more accurate predictions of marine aerosol impacts on cloud formation and properties.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 351-361"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00169e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Zhao, Hong Wang, Xiaoqi Xu, Wenjie Zhang, Chen Han, Yue Peng and Chunsong Lu
Entrainment-mixing processes of fog with the surrounding ambient air are extremely intricate and impose significant effects on the microphysical and radiative properties of fog. However, it is difficult to utilize the default Thompson scheme of the atmospheric chemistry model GRAPES_Meso5.1/CUACE to examine the effects of different entrainment-mixing mechanisms on the microphysical and radiative properties of fog. To address this issue, this scheme is modified to include homogeneous mixing degree to investigate the effects of various entrainment-mixing processes on typical regional fog simultaneously occurring in the Northeast China and Yangtze River Delta regions from December 31, 2016, to January 2, 2017, and from January 6 to 8, 2017. It is revealed that inhomogeneous entrainment-mixing processes can result in smaller fog droplet number concentration and lower liquid water path, and larger fog droplet size. These phenomena, in turn, can lead to a decreased fog optical thickness and increased visibility. Furthermore, the effects of inhomogeneous entrainment-mixing processes depend on fog thickness, i.e., the effects in thin fog in the Northeast China region are more significant than those in thick fog in the Yangtze River Delta region. This primarily occurs because the proportion of evaporated grids in thin fog is higher than that in thick fog by 16% and 6%, respectively. These findings enhance the theoretical understanding of entrainment-mixing processes and lay the foundation for improving model parameterization.
{"title":"Modeling study of the effects of entrainment-mixing on fog simulation in the chemistry–weather coupling model GRAPES_Meso5.1/CUACE CW","authors":"Yang Zhao, Hong Wang, Xiaoqi Xu, Wenjie Zhang, Chen Han, Yue Peng and Chunsong Lu","doi":"10.1039/D4EA00003J","DOIUrl":"https://doi.org/10.1039/D4EA00003J","url":null,"abstract":"<p >Entrainment-mixing processes of fog with the surrounding ambient air are extremely intricate and impose significant effects on the microphysical and radiative properties of fog. However, it is difficult to utilize the default Thompson scheme of the atmospheric chemistry model GRAPES_Meso5.1/CUACE to examine the effects of different entrainment-mixing mechanisms on the microphysical and radiative properties of fog. To address this issue, this scheme is modified to include homogeneous mixing degree to investigate the effects of various entrainment-mixing processes on typical regional fog simultaneously occurring in the Northeast China and Yangtze River Delta regions from December 31, 2016, to January 2, 2017, and from January 6 to 8, 2017. It is revealed that inhomogeneous entrainment-mixing processes can result in smaller fog droplet number concentration and lower liquid water path, and larger fog droplet size. These phenomena, in turn, can lead to a decreased fog optical thickness and increased visibility. Furthermore, the effects of inhomogeneous entrainment-mixing processes depend on fog thickness, <em>i.e.</em>, the effects in thin fog in the Northeast China region are more significant than those in thick fog in the Yangtze River Delta region. This primarily occurs because the proportion of evaporated grids in thin fog is higher than that in thick fog by 16% and 6%, respectively. These findings enhance the theoretical understanding of entrainment-mixing processes and lay the foundation for improving model parameterization.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 387-407"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00003j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon monoxide has long been known as an indoor air pollutant, but has rarely been in the focus of scientific interest. This circumstance is certainly disadvantageous for the health-related assessment of indoor air quality, because exposure to carbon monoxide is often associated with serious or fatal poisoning. From an analytical perspective, the problem is that increased carbon monoxide concentrations often occur unexpectedly and within a short period of time, usually in connection with incomplete combustion processes. Therefore, the exposure of the general population to carbon monoxide cannot be determined using environmental surveys. In recent years, however, carbon monoxide has again received significantly greater attention. A number of studies have been carried out on carbon monoxide exposure under certain conditions, for example when using candles, gas stoves or in waterpipe cafés. In addition, the World Health Organization has derived guideline values for different exposure times. Due to its molecular properties, carbon monoxide is very suitable for selective and sensitive measurement with high time resolution using infrared techniques. In addition, sensor technology has made significant progress, so that robust devices are now available for online monitoring. Carbon monoxide can definitely be considered a priority pollutant for indoor air. Actually, increased concentrations are always associated with health risk. It is therefore recommended to use carbon monoxide as an indicator of indoor air quality. This can be realized in a variety of ways and preferably in combination with other parameters.
{"title":"Carbon monoxide as an indicator of indoor air quality","authors":"Tunga Salthammer","doi":"10.1039/D4EA00006D","DOIUrl":"https://doi.org/10.1039/D4EA00006D","url":null,"abstract":"<p >Carbon monoxide has long been known as an indoor air pollutant, but has rarely been in the focus of scientific interest. This circumstance is certainly disadvantageous for the health-related assessment of indoor air quality, because exposure to carbon monoxide is often associated with serious or fatal poisoning. From an analytical perspective, the problem is that increased carbon monoxide concentrations often occur unexpectedly and within a short period of time, usually in connection with incomplete combustion processes. Therefore, the exposure of the general population to carbon monoxide cannot be determined using environmental surveys. In recent years, however, carbon monoxide has again received significantly greater attention. A number of studies have been carried out on carbon monoxide exposure under certain conditions, for example when using candles, gas stoves or in waterpipe cafés. In addition, the World Health Organization has derived guideline values for different exposure times. Due to its molecular properties, carbon monoxide is very suitable for selective and sensitive measurement with high time resolution using infrared techniques. In addition, sensor technology has made significant progress, so that robust devices are now available for online monitoring. Carbon monoxide can definitely be considered a priority pollutant for indoor air. Actually, increased concentrations are always associated with health risk. It is therefore recommended to use carbon monoxide as an indicator of indoor air quality. This can be realized in a variety of ways and preferably in combination with other parameters.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 291-305"},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00006d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The composition of air-exposed surfaces can have a strong impact on air quality and chemical exposure in the indoor environment. Third hand smoke (THS), which includes surface-deposited cigarette smoke residue along with the collection of gases evolved from such residues, is becoming increasingly recognized as an important source of long-term tobacco smoke exposure. While studies have described gas/surface partitioning behaviour and some multiphase reaction systems involving THS, the possibility of time-dependent changes in chemical composition due to chemical reactivity that is endogenous to the deposited film has yet to be investigated. In this study, sidestream cigarette smoke was allowed to deposit on glass surfaces that were either clean or pre-coated with chemicals that may be oxidized by reactive oxygen species found in the smoke. Surface films included a low volatility antioxidant, tris(2-carboxyethyl)phosphine (TCEP), and two compounds relevant to surface films found within buildings, oleic acid (OA) and squalene (SQ). Upon deposition, oxidation products of nicotine, TCEP, OA, and SQ were formed over time periods of hours to weeks. The inherent oxidative potential of cigarette smoke deposited as a THS film can therefore initiate and sustain oxidation chemistry, transforming the chemical composition of surface films over long periods of time after initial smoke deposition. An interpretation of the THS oxidation results is provided in the context of other types of deposited particulate air pollutants with known oxidative potential that may be introduced to indoor environments. Continued study of THS and deposited surface films found indoors should consider the concept that chemical reservoirs found on surfaces may be reactive, that the chemical composition of indoor surface films may be time-dependent, and that the deposition of aerosol particles can act as a mechanism to initiate oxidation in surface films.
{"title":"Temporal changes in thirdhand cigarette smoke film composition and oxidation of co-existing surface film chemicals†","authors":"April M. Hurlock and Douglas B. Collins","doi":"10.1039/D3EA00142C","DOIUrl":"https://doi.org/10.1039/D3EA00142C","url":null,"abstract":"<p >The composition of air-exposed surfaces can have a strong impact on air quality and chemical exposure in the indoor environment. Third hand smoke (THS), which includes surface-deposited cigarette smoke residue along with the collection of gases evolved from such residues, is becoming increasingly recognized as an important source of long-term tobacco smoke exposure. While studies have described gas/surface partitioning behaviour and some multiphase reaction systems involving THS, the possibility of time-dependent changes in chemical composition due to chemical reactivity that is endogenous to the deposited film has yet to be investigated. In this study, sidestream cigarette smoke was allowed to deposit on glass surfaces that were either clean or pre-coated with chemicals that may be oxidized by reactive oxygen species found in the smoke. Surface films included a low volatility antioxidant, tris(2-carboxyethyl)phosphine (TCEP), and two compounds relevant to surface films found within buildings, oleic acid (OA) and squalene (SQ). Upon deposition, oxidation products of nicotine, TCEP, OA, and SQ were formed over time periods of hours to weeks. The inherent oxidative potential of cigarette smoke deposited as a THS film can therefore initiate and sustain oxidation chemistry, transforming the chemical composition of surface films over long periods of time after initial smoke deposition. An interpretation of the THS oxidation results is provided in the context of other types of deposited particulate air pollutants with known oxidative potential that may be introduced to indoor environments. Continued study of THS and deposited surface films found indoors should consider the concept that chemical reservoirs found on surfaces may be reactive, that the chemical composition of indoor surface films may be time-dependent, and that the deposition of aerosol particles can act as a mechanism to initiate oxidation in surface films.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 330-341"},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00142c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Nash Skipper, Jennifer Kaiser, M. Talat Odman, Sina Hasheminassab and Armistead G. Russell
Increased throughput and container ship backlogs at the ports of Los Angeles and Long Beach due to supply chain disruptions related to the COVID-19 pandemic caused a significant increase in the number of ships near the California coast, leading to concerns about increased air pollution exposure of nearby communities. We use a combination of satellite-based observations from TROPOMI and ground-based observations from routine surface monitoring sites with chemical transport model results to analyze the changes in NO2 and PM2.5 in the Los Angeles Basin during a period in 2021 when the number of ships was at its peak. Using simulations to account for meteorological effects, changes are apportioned to emissions and meteorology. The largest emission-related changes in column NO2 occurred immediately east of the ports where emission-related NO2 increased by 28% compared to the baseline (2018–2019 average). In Central Los Angeles, emission reductions led to a 10% decrease in NO2 during the same period. Emission-related PM2.5 increased by 0.7 μg m−3 on average with a maximum increase of 4.5 μg m−3 in the eastern part of Basin. The emission/meteorology attribution method presented here provides a novel approach to quantify emission-influenced changes in air quality that are consistent with observations and suggests that both NO2 and PM2.5 were elevated in parts of the Los Angeles area during a period of increased port activity.
{"title":"Local scale air quality impacts in the Los Angeles Basin from increased port activity during 2021 supply chain disruptions†","authors":"T. Nash Skipper, Jennifer Kaiser, M. Talat Odman, Sina Hasheminassab and Armistead G. Russell","doi":"10.1039/D3EA00166K","DOIUrl":"https://doi.org/10.1039/D3EA00166K","url":null,"abstract":"<p >Increased throughput and container ship backlogs at the ports of Los Angeles and Long Beach due to supply chain disruptions related to the COVID-19 pandemic caused a significant increase in the number of ships near the California coast, leading to concerns about increased air pollution exposure of nearby communities. We use a combination of satellite-based observations from TROPOMI and ground-based observations from routine surface monitoring sites with chemical transport model results to analyze the changes in NO<small><sub>2</sub></small> and PM<small><sub>2.5</sub></small> in the Los Angeles Basin during a period in 2021 when the number of ships was at its peak. Using simulations to account for meteorological effects, changes are apportioned to emissions and meteorology. The largest emission-related changes in column NO<small><sub>2</sub></small> occurred immediately east of the ports where emission-related NO<small><sub>2</sub></small> increased by 28% compared to the baseline (2018–2019 average). In Central Los Angeles, emission reductions led to a 10% decrease in NO<small><sub>2</sub></small> during the same period. Emission-related PM<small><sub>2.5</sub></small> increased by 0.7 μg m<small><sup>−3</sup></small> on average with a maximum increase of 4.5 μg m<small><sup>−3</sup></small> in the eastern part of Basin. The emission/meteorology attribution method presented here provides a novel approach to quantify emission-influenced changes in air quality that are consistent with observations and suggests that both NO<small><sub>2</sub></small> and PM<small><sub>2.5</sub></small> were elevated in parts of the Los Angeles area during a period of increased port activity.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 321-329"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d3ea00166k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}