首页 > 最新文献

Advanced Materials Proceedings最新文献

英文 中文
Sol-gel synthesis of mixed ferrites for biomedical applications 生物医学用混合铁氧体的溶胶-凝胶合成
Pub Date : 2018-06-01 DOI: 10.5185/amp.2018.906
Joel Espino-Portillo
{"title":"Sol-gel synthesis of mixed ferrites for biomedical applications","authors":"Joel Espino-Portillo","doi":"10.5185/amp.2018.906","DOIUrl":"https://doi.org/10.5185/amp.2018.906","url":null,"abstract":"","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"abs/1910.11497 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83091128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
­­­Local electronic structure investigation of the sol-gel processed calcium hydroxide material ——溶胶-凝胶法制备氢氧化钙材料的局部电子结构研究
Pub Date : 2018-06-01 DOI: 10.5185/amp.2018/887
J. Singh
{"title":"­­­Local electronic structure investigation of the sol-gel processed calcium hydroxide material","authors":"J. Singh","doi":"10.5185/amp.2018/887","DOIUrl":"https://doi.org/10.5185/amp.2018/887","url":null,"abstract":"","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84647464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Zn2+ Substitution by Pb2+ in Alkaline-boro-aluminosilicate Glass-ceramics: Microstructural Aspects Pb2+取代Zn2+在碱硼铝硅酸盐微晶玻璃中的应用:微观结构方面
Pub Date : 2018-04-10 DOI: 10.5185/AMP.2018/042
Mrinmoy Garai, B. Karmakar
This study exemplifies the effects of 5 wt.% Pb 2+ addition replacing the same Zn 2+ content on crystallization and microstructure of 10B 2 O 3 -16Al 2 O 3 -39SiO 2 -12MgO-12MgF 2 -4K 2 O-1Li 2 O-1AlPO 4 (wt.%) glass-ceramic composite. Increase of linear thermal-expansion (6.93 to 7.18×10 -6 /K at 50-600°C) in substituting Zn 2+ by Pb 2+ is attributed to the field-strength of cations. Opaque crystalline glass-ceramics are derived from the transparent glasses (synthesized by single-step melt-quenching at 1500 O C) by controlled heat-treatment at 1050°C and the predominant crystalline-phase was identified as fluorophlogopite mica, KMg 3 AlSi 3 O 10 F 2 . FFESEM of the ZnO containing glass-ceramics revealed that 100-200 µm sized plate-like crystals are in ‘well-packed interlocked arrangement’; which changed to ‘nanocrystalline microstructure’ combined of ‘spherical droplet like’ nanocrystals (crystal size = 10-50 nm) in attendance of PbO. Decrease in linear thermal-expansion (11.03 to 7.93 × 10 -6 /K at 50-700°C) due to the substitution of ZnO is ascribed to the crystallization inhibiting tendency of PbO towards boroaluminosilicate system. Thermal-expansion of ZnO containing glass-ceramic is large (> 11 × 10 -6 /K at 50-700 and 50-800°C) which can exhibit their enough thermal shock resistivity to be suitable for high-temperature sealing application. Copyright © 2017 VBRI Press.
本研究考察了添加5 wt.% Pb 2+取代相同Zn 2+含量对10b2o3 -16Al 2o3 - 39sio2 -12MgO-12MgF -4K 2o - 1li 2o - 1alpo4 (wt.%)玻璃陶瓷复合材料结晶和微观结构的影响。Pb - 2+取代Zn - 2+的线性热膨胀(在50-600℃时为6.93 ~ 7.18×10 -6 /K)的增加归因于阳离子的场强。不透明晶玻璃是由透明玻璃(在1500℃下一步熔融淬火合成)在1050℃下受控热处理而成,主要晶相为氟云母kmg3alsi3o10f2。含ZnO微晶玻璃的FFESEM显示,100-200µm大小的片状晶体呈“良好的连锁排列”;在PbO的作用下,形成了由“球形液滴状”纳米晶(晶粒尺寸为10 ~ 50 nm)组成的“纳米晶结构”。在50 ~ 700℃时,ZnO取代导致线性热膨胀率(11.03 ~ 7.93 × 10 -6 /K)降低,这主要归因于PbO对硼铝硅酸盐体系的结晶抑制倾向。含氧化锌玻璃陶瓷在50-700℃和50-800℃时热膨胀大(> 11 × 10 -6 /K),可以表现出足够的抗热震性,适合高温密封应用。版权所有©2017 VBRI出版社。
{"title":"Zn2+ Substitution by Pb2+ in Alkaline-boro-aluminosilicate Glass-ceramics: Microstructural Aspects","authors":"Mrinmoy Garai, B. Karmakar","doi":"10.5185/AMP.2018/042","DOIUrl":"https://doi.org/10.5185/AMP.2018/042","url":null,"abstract":"This study exemplifies the effects of 5 wt.% Pb 2+ addition replacing the same Zn 2+ content on crystallization and microstructure of 10B 2 O 3 -16Al 2 O 3 -39SiO 2 -12MgO-12MgF 2 -4K 2 O-1Li 2 O-1AlPO 4 (wt.%) glass-ceramic composite. Increase of linear thermal-expansion (6.93 to 7.18×10 -6 /K at 50-600°C) in substituting Zn 2+ by Pb 2+ is attributed to the field-strength of cations. Opaque crystalline glass-ceramics are derived from the transparent glasses (synthesized by single-step melt-quenching at 1500 O C) by controlled heat-treatment at 1050°C and the predominant crystalline-phase was identified as fluorophlogopite mica, KMg 3 AlSi 3 O 10 F 2 . FFESEM of the ZnO containing glass-ceramics revealed that 100-200 µm sized plate-like crystals are in ‘well-packed interlocked arrangement’; which changed to ‘nanocrystalline microstructure’ combined of ‘spherical droplet like’ nanocrystals (crystal size = 10-50 nm) in attendance of PbO. Decrease in linear thermal-expansion (11.03 to 7.93 × 10 -6 /K at 50-700°C) due to the substitution of ZnO is ascribed to the crystallization inhibiting tendency of PbO towards boroaluminosilicate system. Thermal-expansion of ZnO containing glass-ceramic is large (> 11 × 10 -6 /K at 50-700 and 50-800°C) which can exhibit their enough thermal shock resistivity to be suitable for high-temperature sealing application. Copyright © 2017 VBRI Press.","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"3 1","pages":"206-212"},"PeriodicalIF":0.0,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74193834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of precursor concentration on zinc sulphide nanomaterial prepared by co-precipitation method 前驱体浓度对共沉淀法制备的硫化锌纳米材料的影响
Pub Date : 2017-10-10 DOI: 10.5185/AMP.2017/781
V. Choudapur, Butchi Raju Akondi, A. Bennal
The studies on luminescent II-VI semiconducting nanomaterials have attracted widespread attention, due to their potential applications in optoelectronic and biophotonic devices. Amongst II-VI group semiconductor nanoparticles, ZnS Nano Particles with large exciton binding energy and wide direct bandgap at room temperature have drawn considerable attention for exploring its interesting optoelectronic properties. In this paper, high band gap Zinc Sulphide nanocrystals are prepared by simple Co-precipitation method at different concentrations of precursors, and the role of sulphur concentration on structural and optical properties is studied. The Zinc Sulphide nanomaterial was prepared using low cost precursors and de ionised water as solvent without using any capping agents. As synthesized Zinc Sulphide nanocrystals were characterized by using X-ray diffraction (XRD), Energy Dispersive Spectroscopy analysis, UV-Visible Spectrophotometry, Photoluminescence, Scanning electron Microscopy (SEM) and Ellipsometry. X-ray diffraction studies revealed that as prepared of ZnS nanocrystals are Polycrystalline with Cubic phase with preferential orientation along (111) direction. The crystallite size of the order of 5-11nm were obtained. EDAX pattern confirms the presence of Zinc and Sulfur. From optical absorption measurements, it has been observed that the direct optical band gap energy increases from 4.4 to 5.2eV with decrease in sulphur concentration in ZnS and exhibit large quantum confinement effect. Ellipsometry was carried out to measure optical constants of ZnS thin film. The electrical conductivity of the film is measured for the film coated on ITO glass by two probe methods. Copyright © 2017 VBRI Press.
发光II-VI半导体纳米材料的研究因其在光电和生物光子器件中的潜在应用而受到广泛关注。在II-VI族半导体纳米粒子中,ZnS纳米粒子在室温下具有大的激子结合能和宽的直接带隙,因其有趣的光电特性而受到人们的广泛关注。本文采用简单共沉淀法在不同浓度的前驱体下制备了高带隙硫化锌纳米晶体,并研究了硫浓度对其结构和光学性质的影响。采用低成本的前驱体和去离子水作为溶剂制备了硫化锌纳米材料,不使用任何封盖剂。采用x射线衍射(XRD)、能谱分析、紫外可见分光光度法、光致发光、扫描电镜(SEM)和椭偏仪对合成的硫化锌纳米晶体进行了表征。x射线衍射研究表明,制备的ZnS纳米晶是沿(111)方向优先取向的立方相多晶。晶体尺寸为5 ~ 11nm。EDAX模式证实了锌和硫的存在。光学吸收测量发现,随着ZnS中硫浓度的降低,直接光学带隙能量从4.4 ev增加到5.2eV,并表现出较大的量子约束效应。采用椭偏法测量了ZnS薄膜的光学常数。用两种探针方法测量了涂覆在ITO玻璃上的薄膜的电导率。版权所有©2017 VBRI出版社。
{"title":"Effect of precursor concentration on zinc sulphide nanomaterial prepared by co-precipitation method","authors":"V. Choudapur, Butchi Raju Akondi, A. Bennal","doi":"10.5185/AMP.2017/781","DOIUrl":"https://doi.org/10.5185/AMP.2017/781","url":null,"abstract":"The studies on luminescent II-VI semiconducting nanomaterials have attracted widespread attention, due to their potential applications in optoelectronic and biophotonic devices. Amongst II-VI group semiconductor nanoparticles, ZnS Nano Particles with large exciton binding energy and wide direct bandgap at room temperature have drawn considerable attention for exploring its interesting optoelectronic properties. In this paper, high band gap Zinc Sulphide nanocrystals are prepared by simple Co-precipitation method at different concentrations of precursors, and the role of sulphur concentration on structural and optical properties is studied. The Zinc Sulphide nanomaterial was prepared using low cost precursors and de ionised water as solvent without using any capping agents. As synthesized Zinc Sulphide nanocrystals were characterized by using X-ray diffraction (XRD), Energy Dispersive Spectroscopy analysis, UV-Visible Spectrophotometry, Photoluminescence, Scanning electron Microscopy (SEM) and Ellipsometry. X-ray diffraction studies revealed that as prepared of ZnS nanocrystals are Polycrystalline with Cubic phase with preferential orientation along (111) direction. The crystallite size of the order of 5-11nm were obtained. EDAX pattern confirms the presence of Zinc and Sulfur. From optical absorption measurements, it has been observed that the direct optical band gap energy increases from 4.4 to 5.2eV with decrease in sulphur concentration in ZnS and exhibit large quantum confinement effect. Ellipsometry was carried out to measure optical constants of ZnS thin film. The electrical conductivity of the film is measured for the film coated on ITO glass by two probe methods. Copyright © 2017 VBRI Press.","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"32 1","pages":"654-661"},"PeriodicalIF":0.0,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86579979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The synthesis of silver, zinc oxide and titanium dioxide nanoparticles and their antimicrobial activity 银、氧化锌和二氧化钛纳米粒子的合成及其抗菌活性
Pub Date : 2017-08-10 DOI: 10.5185/AMP.2017/803
Kate Kotlhao, Moloko D.T. Madiseng, F. Mtunzi, V. Pakade, S. J. Modise, N. Laloo, M. Klink
Three different types of nanoparticles were synthesised in this study, viz silver (Ag), zinc oxide (ZnO) and titanium dioxide (TiO 2 ) using different chemical methods. These materials were then characterised using Transmission Electron Microscopy (TEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Ultraviolet Visible Spectroscopy (UV-Vis) and Thermal Gravimetric Analysis (TGA). The materials were also tested for anti-bacterial activity. TEM showed that the particles were in the nano-size range (1 – 100 nm). FTIR and UV-Vis Spectroscopy showed the different absorption bands of the synthesised nanoparticles, respectively. Silver nanoparticles showed greater antibacterial activity against several bacteria than titanium dioxide and zinc oxide nanoparticles. The highest inhibition was observed for Klebsiella pneumoniae . The results showed that antimicrobial activity of nanoparticles increases with increasing concentration of the nanoparticles. Copyright © 2017 VBRI Press.
本研究采用不同的化学方法合成了三种不同类型的纳米颗粒,即银(Ag)、氧化锌(ZnO)和二氧化钛(tio2)。然后使用透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、紫外可见光谱(UV-Vis)和热重分析(TGA)对这些材料进行了表征。还测试了这些材料的抗菌活性。透射电镜显示,所制备的颗粒尺寸在1 ~ 100 nm的纳米范围内。红外光谱(FTIR)和紫外可见光谱(UV-Vis)分别显示了合成的纳米颗粒的不同吸收带。与二氧化钛和氧化锌纳米粒子相比,银纳米粒子对几种细菌的抗菌活性更强。对肺炎克雷伯菌的抑制作用最高。结果表明,纳米颗粒的抑菌活性随纳米颗粒浓度的增加而增强。版权所有©2017 VBRI出版社。
{"title":"The synthesis of silver, zinc oxide and titanium dioxide nanoparticles and their antimicrobial activity","authors":"Kate Kotlhao, Moloko D.T. Madiseng, F. Mtunzi, V. Pakade, S. J. Modise, N. Laloo, M. Klink","doi":"10.5185/AMP.2017/803","DOIUrl":"https://doi.org/10.5185/AMP.2017/803","url":null,"abstract":"Three different types of nanoparticles were synthesised in this study, viz silver (Ag), zinc oxide (ZnO) and titanium dioxide (TiO 2 ) using different chemical methods. These materials were then characterised using Transmission Electron Microscopy (TEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Ultraviolet Visible Spectroscopy (UV-Vis) and Thermal Gravimetric Analysis (TGA). The materials were also tested for anti-bacterial activity. TEM showed that the particles were in the nano-size range (1 – 100 nm). FTIR and UV-Vis Spectroscopy showed the different absorption bands of the synthesised nanoparticles, respectively. Silver nanoparticles showed greater antibacterial activity against several bacteria than titanium dioxide and zinc oxide nanoparticles. The highest inhibition was observed for Klebsiella pneumoniae . The results showed that antimicrobial activity of nanoparticles increases with increasing concentration of the nanoparticles. Copyright © 2017 VBRI Press.","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"261 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74519407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Multiferroic based microwave devices 多铁性微波器件
Pub Date : 2016-08-01 DOI: 10.5185/AMP.2016/112
Vinay Sharma, P. Rani, Bijoy K. Kunar
Recently, there has been significant interest on the fundamental science and technological applications of complex oxides and multiferroics. Low-power multiferroic have potential to fabricate and characterize frequency tunable, compatible with MMIC Technology, small light-weight for hand-held operation, cost-effective, high-frequency (>10GHz), devices for next generation communication devices and military applications. Multiferroic materials consists of both magnetic and ferroelectric phase and they offer the possibility of magneto-electric (ME) coupling. The purpose of this research is to show strong magnetic field dependent frequency tuning of multiferroics (Nickel doped BFO – BiFe1-xNixO3) based devices over a broad frequency band. We have shown here the magnetic field control of ferromagnetic resonance (FMR) field/frequency from C to Ku band frequencies. Nanoparticles of BiFe1xNixO3 (x=0.025 & 0.05) were prepared by auto combustion method. The XRD study confirms the formation of pure phase Bismuth Ferrite Nanoparticles. Ferromagnetism of un-doped BFO was enhanced by Ni substitution. Microwave characterization was done in co-planar waveguide (CPW) geometry both in field sweep and frequency sweep mode. BiFe1-xNixO3 nanoparticles were deposited using electrophoretic deposition method (EPD) on top of CPW to do the FMR experiments. The operating frequency of the device was tuned by application of magnetic field (H) over a wide range (5 to 20 GHz) with a field up to 8 kOe. Copyright © 2016 VBRI Press
近年来,人们对复合氧化物和多铁质的基础科学和技术应用产生了浓厚的兴趣。低功耗多铁体具有制造和表征频率可调的潜力,与MMIC技术兼容,手持式操作的小重量,经济高效,高频(>10GHz),用于下一代通信设备和军事应用的设备。多铁性材料由磁性相和铁电相组成,提供了磁电耦合的可能性。本研究的目的是展示在宽频带上基于多铁质(镍掺杂BFO - BiFe1-xNixO3)器件的强磁场依赖频率调谐。我们在这里展示了从C到Ku波段频率的铁磁共振(FMR)场/频率的磁场控制。采用自燃烧法制备了BiFe1xNixO3纳米粒子(x=0.025 & 0.05)。XRD研究证实了纯相铁酸铋纳米颗粒的形成。镍取代增强了未掺杂BFO的铁磁性。在共面波导(CPW)几何结构下进行了场扫描和频率扫描模式的微波表征。采用电泳沉积法(EPD)在CPW上沉积BiFe1-xNixO3纳米粒子,进行FMR实验。该器件的工作频率是通过应用磁场(H)在宽范围内(5至20 GHz),磁场高达8 kOe来调谐的。版权所有©2016 VBRI出版社
{"title":"Multiferroic based microwave devices","authors":"Vinay Sharma, P. Rani, Bijoy K. Kunar","doi":"10.5185/AMP.2016/112","DOIUrl":"https://doi.org/10.5185/AMP.2016/112","url":null,"abstract":"Recently, there has been significant interest on the fundamental science and technological applications of complex oxides and multiferroics. Low-power multiferroic have potential to fabricate and characterize frequency tunable, compatible with MMIC Technology, small light-weight for hand-held operation, cost-effective, high-frequency (>10GHz), devices for next generation communication devices and military applications. Multiferroic materials consists of both magnetic and ferroelectric phase and they offer the possibility of magneto-electric (ME) coupling. The purpose of this research is to show strong magnetic field dependent frequency tuning of multiferroics (Nickel doped BFO – BiFe1-xNixO3) based devices over a broad frequency band. We have shown here the magnetic field control of ferromagnetic resonance (FMR) field/frequency from C to Ku band frequencies. Nanoparticles of BiFe1xNixO3 (x=0.025 & 0.05) were prepared by auto combustion method. The XRD study confirms the formation of pure phase Bismuth Ferrite Nanoparticles. Ferromagnetism of un-doped BFO was enhanced by Ni substitution. Microwave characterization was done in co-planar waveguide (CPW) geometry both in field sweep and frequency sweep mode. BiFe1-xNixO3 nanoparticles were deposited using electrophoretic deposition method (EPD) on top of CPW to do the FMR experiments. The operating frequency of the device was tuned by application of magnetic field (H) over a wide range (5 to 20 GHz) with a field up to 8 kOe. Copyright © 2016 VBRI Press","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82270917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Advanced Materials Proceedings
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1