Designing a high-performance cathode is essential for the development of proton-conducting solid oxide fuel cells (H-SOFCs), and nanocomposite cathodes have proven to be an effective means of achieving this. However, the mechanism behind the nanocomposite cathodes' remarkable performance remains unknown. Doping the Co element into BaZrO3 can result in the development of BaCoO3 and BaZr0.7Co0.3O3 nanocomposites when the doping concentration exceeds 30%, according to the present study. The construction of the BaCoO3/BaZr0.7Co0.3O3 interface is essential for the enhancement of the cathode catalytic activity, as demonstrated by thin-film studies using pulsed laser deposition to simulate the interface of the BCO and BZCO individual particles and first-principles calculations to predict the oxygen reduction reaction steps. Eventually, the H-SOFC with a BaZr0.4Co0.6O3 cathode produces a record-breaking power density of 2253 mW cm−2 at 700°C.
{"title":"Unveiling the importance of the interface in nanocomposite cathodes for proton-conducting solid oxide fuel cells","authors":"Yanru Yin, Yifan Wang, Nan Yang, Lei Bi","doi":"10.1002/EXP.20230082","DOIUrl":"10.1002/EXP.20230082","url":null,"abstract":"<p>Designing a high-performance cathode is essential for the development of proton-conducting solid oxide fuel cells (H-SOFCs), and nanocomposite cathodes have proven to be an effective means of achieving this. However, the mechanism behind the nanocomposite cathodes' remarkable performance remains unknown. Doping the Co element into BaZrO<sub>3</sub> can result in the development of BaCoO<sub>3</sub> and BaZr<sub>0.7</sub>Co<sub>0.3</sub>O<sub>3</sub> nanocomposites when the doping concentration exceeds 30%, according to the present study. The construction of the BaCoO<sub>3</sub>/BaZr<sub>0.7</sub>Co<sub>0.3</sub>O<sub>3</sub> interface is essential for the enhancement of the cathode catalytic activity, as demonstrated by thin-film studies using pulsed laser deposition to simulate the interface of the BCO and BZCO individual particles and first-principles calculations to predict the oxygen reduction reaction steps. Eventually, the H-SOFC with a BaZr<sub>0.4</sub>Co<sub>0.6</sub>O<sub>3</sub> cathode produces a record-breaking power density of 2253 mW cm<sup>−2</sup> at 700°C.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139826949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dechao Feng, Xu Shi, Jie Wang, Liying Zhang, Yuhan Xiao, Dengxiong Li, Ruicheng Wu, Wuran Wei, Akira Miyamoto, Koo Han Yoo, Xing Ye, Chi Zhang, Ping Han
Telemedicine has gained tremendous development during the COVID-19 pandemic. With deblocking and opening, telemedicine accelerates the evolvution of the medical “snack community” and undermines the perception of medical students and staff, which promotes the incidence of psychosocial-related disorders. Moreover, the inconsistent telemedicine adaptability between medical workers and patients aggravates the doctor–patient conflict due to the aging population and COVID-19 squeal. Telemedicine is colliding with the national healthcare system, whose synchronization with conventional medical service is crucial to coordinate the relationship among medical payment, patient privacy and qualifications of clinicians. This study puts more emphasis on the double-edged sword role of telemedicine in clinical practice and medical education during the COVID-19 pandemic and beyond. Overall, while telemedicine has demonstrated its utility in health care throughout the COVID pandemic, it is pretty critical to continue evaluating the efficacy and limitations of telemedicine in order to maintain equal access to medical service and high-quality medical education. A new concept as telemedicine-medical “snack community”-PHS ecosystem, where the psychological health education system and partners healthcare system with enough bandwidth, especially 5G technology, could optimize the effect of telemedicine on medical practice and education, is proposed.
{"title":"Telemedicine-medical “snack community”-PHS ecosystem: Insights into the double-edged sword role of telemedicine in clinical practice and medical education during the COVID-19 pandemic and beyond","authors":"Dechao Feng, Xu Shi, Jie Wang, Liying Zhang, Yuhan Xiao, Dengxiong Li, Ruicheng Wu, Wuran Wei, Akira Miyamoto, Koo Han Yoo, Xing Ye, Chi Zhang, Ping Han","doi":"10.1002/EXP.20230111","DOIUrl":"10.1002/EXP.20230111","url":null,"abstract":"<p>Telemedicine has gained tremendous development during the COVID-19 pandemic. With deblocking and opening, telemedicine accelerates the evolvution of the medical “snack community” and undermines the perception of medical students and staff, which promotes the incidence of psychosocial-related disorders. Moreover, the inconsistent telemedicine adaptability between medical workers and patients aggravates the doctor–patient conflict due to the aging population and COVID-19 squeal. Telemedicine is colliding with the national healthcare system, whose synchronization with conventional medical service is crucial to coordinate the relationship among medical payment, patient privacy and qualifications of clinicians. This study puts more emphasis on the double-edged sword role of telemedicine in clinical practice and medical education during the COVID-19 pandemic and beyond. Overall, while telemedicine has demonstrated its utility in health care throughout the COVID pandemic, it is pretty critical to continue evaluating the efficacy and limitations of telemedicine in order to maintain equal access to medical service and high-quality medical education. A new concept as telemedicine-medical “snack community”-PHS ecosystem, where the psychological health education system and partners healthcare system with enough bandwidth, especially 5G technology, could optimize the effect of telemedicine on medical practice and education, is proposed.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139602817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
{"title":"Recent progress in quantitative analysis of self-assembled peptides","authors":"Xiaoyao Cai, Wei Xu, Chunhua Ren, Liping Zhang, Congrou Zhang, Jianfeng Liu, Cuihong Yang","doi":"10.1002/EXP.20230064","DOIUrl":"10.1002/EXP.20230064","url":null,"abstract":"<p>Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139605221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.
{"title":"Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics","authors":"Ruipu Shang, Feifei Yang, Ge Gao, Yu Luo, Hongpeng You, Lile Dong","doi":"10.1002/EXP.20230124","DOIUrl":"10.1002/EXP.20230124","url":null,"abstract":"<p>Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139604332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
{"title":"Stimuli-responsive linkers and their application in molecular imaging","authors":"Jing Wang, Meng Liu, Xinyue Zhang, Xinning Wang, Menghua Xiong, Dong Luo","doi":"10.1002/EXP.20230027","DOIUrl":"10.1002/EXP.20230027","url":null,"abstract":"<p>Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139616048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reactive oxygen species play a crucial role in cell signaling pathways during wound healing phases. Treatment strategies to balance the redox level in the deep wound tissue are emerging for wound management. In recent years, reactive oxygen species scavenging agents including natural antioxidants, reactive oxygen species (ROS) scavenging nanozymes, and antioxidant delivery systems have been widely employed to inhibit oxidative stress and promote skin regeneration. Here, the importance of reactive oxygen species in different wound healing phases is critically analyzed. Various cutting-edge bioactive ROS nanoscavengers and antioxidant delivery platforms are discussed. This review also highlights the future directions for wound therapies via reactive oxygen species scavenging. This comprehensive review offers a map of the research on ROS scavengers with redox balancing mechanisms of action in the wound healing process, which benefits development and clinical applications of next-generation ROS scavenging-based nanomaterials in skin regeneration.
{"title":"Recent advances in reactive oxygen species scavenging nanomaterials for wound healing","authors":"Alireza Joorabloo, Tianqing Liu","doi":"10.1002/EXP.20230066","DOIUrl":"10.1002/EXP.20230066","url":null,"abstract":"<p>Reactive oxygen species play a crucial role in cell signaling pathways during wound healing phases. Treatment strategies to balance the redox level in the deep wound tissue are emerging for wound management. In recent years, reactive oxygen species scavenging agents including natural antioxidants, reactive oxygen species (ROS) scavenging nanozymes, and antioxidant delivery systems have been widely employed to inhibit oxidative stress and promote skin regeneration. Here, the importance of reactive oxygen species in different wound healing phases is critically analyzed. Various cutting-edge bioactive ROS nanoscavengers and antioxidant delivery platforms are discussed. This review also highlights the future directions for wound therapies via reactive oxygen species scavenging. This comprehensive review offers a map of the research on ROS scavengers with redox balancing mechanisms of action in the wound healing process, which benefits development and clinical applications of next-generation ROS scavenging-based nanomaterials in skin regeneration.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139527374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.
{"title":"Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction","authors":"Joyjit Kundu, Taehyun Kwon, Kwangyeol Lee, Sang-Il Choi","doi":"10.1002/EXP.20220174","DOIUrl":"10.1002/EXP.20220174","url":null,"abstract":"<p>The advancement of economical and readily available electrocatalysts for the oxygen reduction reaction (ORR) holds paramount importance in the advancement of fuel cells and metal-air batteries. Recently, 2D non-metallic materials have obtained substantial attention as viable alternatives for ORR catalysts due to their manifold advantages, encompassing low cost, ample availability, substantial surface-to-volume ratio, high conductivity, exceptional durability, and competitive activity. The augmented ORR performances observed in metal-free 2D materials typically arise from heteroatom doping, defects, or the formation of heterostructures. Here, the authors delve into the realm of electrocatalysts for the ORR, pivoting around metal-free 2D materials. Initially, the merits of metal-free 2D materials are explored and the reaction mechanism of the ORR is dissected. Subsequently, a comprehensive survey of diverse metal-free 2D materials is presented, tracing their evolutionary journey from fundamental concepts to pragmatic applications in the context of ORR. Substantial importance is given on the exploration of various strategies for enhancing metal-free 2D materials and assessing their impact on inherent material performance, including electronic properties. Finally, the challenges and future prospects that lie ahead for metal-free 2D materials are underscored, as they aspire to serve as efficient ORR electrocatalysts.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20220174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139617065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial nanofluidic networks are emerging systems for blue energy conversion that leverages surface charge-derived permselectivity to induce voltage from diffusive ion transport under salinity difference. Here the pivotal significance of electrostatic inter-channel couplings in multi-nanopore membranes, which impose constraints on porosity and subsequently influence the generation of large osmotic power outputs, is illustrated. Constructive interference is observed between two 20 nm nanopores of 30 nm spacing that renders enhanced permselectivity to osmotic power output via the recovered electroneutrality. On contrary, the interference is revealed as destructive in two-dimensional arrays causing significant deteriorations of the ion selectivity even for the nanopores sparsely distributed at an order of magnitude larger spacing than the Dukhin length. Most importantly, a scaling law is provided for deducing the maximal membrane area and porosity to avoid the selectivity loss via the inter-pore electrostatic coupling. As the electric crosstalk is inevitable in any fluidic network, the present findings can be a useful guide to design nanoporous membranes for scalable osmotic power generations.
{"title":"Scalability of nanopore osmotic energy conversion","authors":"Makusu Tsutsui, Wei-Lun Hsu, Kazumichi Yokota, Iat Wai Leong, Hirofumi Daiguji, Tomoji Kawai","doi":"10.1002/EXP.20220110","DOIUrl":"10.1002/EXP.20220110","url":null,"abstract":"<p>Artificial nanofluidic networks are emerging systems for blue energy conversion that leverages surface charge-derived permselectivity to induce voltage from diffusive ion transport under salinity difference. Here the pivotal significance of electrostatic inter-channel couplings in multi-nanopore membranes, which impose constraints on porosity and subsequently influence the generation of large osmotic power outputs, is illustrated. Constructive interference is observed between two 20 nm nanopores of 30 nm spacing that renders enhanced permselectivity to osmotic power output via the recovered electroneutrality. On contrary, the interference is revealed as destructive in two-dimensional arrays causing significant deteriorations of the ion selectivity even for the nanopores sparsely distributed at an order of magnitude larger spacing than the Dukhin length. Most importantly, a scaling law is provided for deducing the maximal membrane area and porosity to avoid the selectivity loss via the inter-pore electrostatic coupling. As the electric crosstalk is inevitable in any fluidic network, the present findings can be a useful guide to design nanoporous membranes for scalable osmotic power generations.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20220110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139446813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To overcome the overheating phenomena of electronic devices and energy components, developing advanced energy-free cooling coatings with promising radiative property seem an effective and energy-saving way. However, the further application of these coatings is greatly limited by their sustainability because of their fragile and easy contamination. Herein, it is reported that a bioinspired radiative cooling coating (BRCC) displayed sustainably efficient heat dissipation by the combination of high emittance and robust self-cleaning property. With the hierarchical porous structure constructed by multiwalled carbon nanotubes (MWCNTs), modified SiO2 and fluorosilicone (FSi) resin, the involvement of the BRCC improves the cooling performance by increasing ≈25% total heat transfer coefficient. During the abrasion and soiling tests, the BRCC-coated Al alloy heat sink always displays stable radiative cooling performance. Moreover, the simulation and experimental results both revealed that reducing surface coverage of BRCC (≈80.9%) can still keep highly cooling efficiency, leading to a cost-effective avenue. Therefore, this study may guide the design and fabrication of advanced radiative cooling coating.
{"title":"Bioinspired radiative cooling coating with high emittance and robust self-cleaning for sustainably efficient heat dissipation","authors":"Yong Li, Yingnan Song, Hongye Zu, Feilong Zhang, Hui Yang, Wei Dai, Jingxin Meng, Lei Jiang","doi":"10.1002/EXP.20230085","DOIUrl":"10.1002/EXP.20230085","url":null,"abstract":"<p>To overcome the overheating phenomena of electronic devices and energy components, developing advanced energy-free cooling coatings with promising radiative property seem an effective and energy-saving way. However, the further application of these coatings is greatly limited by their sustainability because of their fragile and easy contamination. Herein, it is reported that a bioinspired radiative cooling coating (BRCC) displayed sustainably efficient heat dissipation by the combination of high emittance and robust self-cleaning property. With the hierarchical porous structure constructed by multiwalled carbon nanotubes (MWCNTs), modified SiO<sub>2</sub> and fluorosilicone (FSi) resin, the involvement of the BRCC improves the cooling performance by increasing ≈25% total heat transfer coefficient. During the abrasion and soiling tests, the BRCC-coated Al alloy heat sink always displays stable radiative cooling performance. Moreover, the simulation and experimental results both revealed that reducing surface coverage of BRCC (≈80.9%) can still keep highly cooling efficiency, leading to a cost-effective avenue. Therefore, this study may guide the design and fabrication of advanced radiative cooling coating.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
{"title":"Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges","authors":"Hongyu Liu, Yunjian Yu, Alideertu Dong, Mahmoud Elsabahy, Ying-Wei Yang, Hui Gao","doi":"10.1002/EXP.20230092","DOIUrl":"10.1002/EXP.20230092","url":null,"abstract":"<p>Colorectal cancer (CRC) is generally characterized by a high prevalence of <i>Fusobacterium nucleatum</i> (<i>F. nucleatum</i>), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, <i>F. nucleatum</i> can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate <i>F. nucleatum</i> and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat <i>F. nucleatum</i> and <i>F. nucleatum</i> biofilms. This review summarizes the latest advancements in anti-<i>F. nucleatum</i> research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139165473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}