首页 > 最新文献

Frontiers in cell death最新文献

英文 中文
Development of a cell-based model system for the investigation of ferroptosis 基于细胞的铁下垂研究模型系统的建立
Pub Date : 2023-11-14 DOI: 10.3389/fceld.2023.1182239
Bjarne Goebel, Laura Carpanedo, Susanne Reif, Tamara Göbel, Svenja Simonyi, Nils Helge Schebb, Dieter Steinhilber, Ann-Kathrin Häfner
Since 2005, the original three cell death mechanisms apoptosis, autophagy and necrosis are accompanied by several new forms. The most recent member, ferroptosis, was first described in 2012 and is characterized by the accumulation of iron and increased lipid peroxidation. In this study, we present a model system to study ferroptotic states in stably transfected HEK293T cells, using acyl-CoA synthetase long chain family member 4 (ACSL4), a biomarker of ferroptosis, and/or lysophosphatidylcholine acyltransferase 2 (LPCAT2), a transferase responsible for the lipid remodeling process. In addition, we introduced an inducible expression system for 5-lipoxygenase (LO), 15-LO1 and 15-LO2, to trigger enzymatic lipid peroxidation. We characterized the system in terms of ACSL4, LPCAT2 and LO expression both on Western blot level and by laser scanning confocal microscopy as well as the intracellular localization of all enzymes. Furthermore, we verified inducibility and activity of our LOs and, in addition, analyzed non-esterified (free) and total amounts of oxylipins. When cells were incubated with the ferroptosis-inducing agents GPX4 inhibitor RSL3 or GSH reducing erastin, we observed a decrease in cell viability that was strongly enhanced in the presence of ACSL4 and LPCAT2. Interestingly, additional expression of LPCAT2 resulted in altered localization of 15-LO1, which shifted from the cytosol to the nuclear membrane. A similar localization occurred after treatment with RSL3. Therefore, on one hand, we propose that LPCAT2 is an acyltransferase that promotes ferroptotic conditions, and on the other hand, we introduce a new cell-based model system suitable for studying ferroptosis.
2005年以来,细胞凋亡、自噬和坏死这三种原有的细胞死亡机制出现了几种新的死亡形式。最近的成员,铁下垂,于2012年首次被描述,其特征是铁积累和脂质过氧化增加。在这项研究中,我们提出了一个模型系统来研究稳定转染HEK293T细胞的铁死亡状态,使用酰基辅酶a合成酶长链家族成员4 (ACSL4),铁死亡的生物标志物,和/或溶血磷脂酰choline酰基转移酶2 (LPCAT2),一种负责脂质重塑过程的转移酶。此外,我们还引入了5-脂氧合酶(LO), 15-LO1和15-LO2的诱导表达系统,以触发酶促脂质过氧化。我们通过Western blot和激光扫描共聚焦显微镜检测ACSL4、LPCAT2和LO的表达以及所有酶的细胞内定位来表征该系统。此外,我们验证了我们的LOs的诱导性和活性,并分析了未酯化(游离)和总氧脂质的含量。当细胞与诱导铁凋亡的GPX4抑制剂RSL3或GSH还原erastin一起孵育时,我们观察到细胞活力下降,在ACSL4和LPCAT2的存在下,细胞活力明显增强。有趣的是,LPCAT2的额外表达导致15-LO1的定位改变,从细胞质转移到核膜。RSL3治疗后出现类似的定位。因此,我们一方面提出LPCAT2是一种促进铁死亡条件的酰基转移酶,另一方面,我们引入了一种新的适合研究铁死亡的基于细胞的模型系统。
{"title":"Development of a cell-based model system for the investigation of ferroptosis","authors":"Bjarne Goebel, Laura Carpanedo, Susanne Reif, Tamara Göbel, Svenja Simonyi, Nils Helge Schebb, Dieter Steinhilber, Ann-Kathrin Häfner","doi":"10.3389/fceld.2023.1182239","DOIUrl":"https://doi.org/10.3389/fceld.2023.1182239","url":null,"abstract":"Since 2005, the original three cell death mechanisms apoptosis, autophagy and necrosis are accompanied by several new forms. The most recent member, ferroptosis, was first described in 2012 and is characterized by the accumulation of iron and increased lipid peroxidation. In this study, we present a model system to study ferroptotic states in stably transfected HEK293T cells, using acyl-CoA synthetase long chain family member 4 (ACSL4), a biomarker of ferroptosis, and/or lysophosphatidylcholine acyltransferase 2 (LPCAT2), a transferase responsible for the lipid remodeling process. In addition, we introduced an inducible expression system for 5-lipoxygenase (LO), 15-LO1 and 15-LO2, to trigger enzymatic lipid peroxidation. We characterized the system in terms of ACSL4, LPCAT2 and LO expression both on Western blot level and by laser scanning confocal microscopy as well as the intracellular localization of all enzymes. Furthermore, we verified inducibility and activity of our LOs and, in addition, analyzed non-esterified (free) and total amounts of oxylipins. When cells were incubated with the ferroptosis-inducing agents GPX4 inhibitor RSL3 or GSH reducing erastin, we observed a decrease in cell viability that was strongly enhanced in the presence of ACSL4 and LPCAT2. Interestingly, additional expression of LPCAT2 resulted in altered localization of 15-LO1, which shifted from the cytosol to the nuclear membrane. A similar localization occurred after treatment with RSL3. Therefore, on one hand, we propose that LPCAT2 is an acyltransferase that promotes ferroptotic conditions, and on the other hand, we introduce a new cell-based model system suitable for studying ferroptosis.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"46 27","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and temporal control of restimulation-induced cell death (RICD) in T lymphocytes T淋巴细胞再刺激诱导细胞死亡(RICD)的分子和时间控制
Pub Date : 2023-10-30 DOI: 10.3389/fceld.2023.1281137
Katherine P. Lee, Benjamin Epstein, Camille M. Lake, Andrew L. Snow
For effective adaptive immunity, T lymphocytes must rapidly expand and contract in an antigen-specific manner to effectively control invading pathogens and preserve immunological memory, without sustaining excessive collateral damage to host tissues. Starting from initial antigen encounter, carefully calibrated programmed cell death pathways are critical for maintaining homeostasis over distinct phases of the T cell response. Restimulation-induced cell death (RICD), a self-regulatory apoptosis pathway triggered by re-engagement of the T cell receptor (TCR), is particularly important for constraining effector T cell expansion to preclude overt immunopathology; indeed, genetic disorders affecting key molecules involved in RICD execution can manifest in excessive lymphoproliferation, malignancy, and autoimmunity. Herein we review our current knowledge of how RICD sensitivity is ultimately regulated over the course of an immune response, including recent revelations on molecules that tune RICD by enforcing resistance or promoting susceptibility in expanding versus mature effector T cells, respectively. Detailed dissection of the molecular and temporal control of RICD also illuminates novel therapeutic strategies for correcting abnormal T cell responses noted in various immune disorders by ultimately tuning RICD sensitivity.
为了获得有效的适应性免疫,T淋巴细胞必须以抗原特异性的方式快速扩张和收缩,以有效地控制入侵的病原体并保持免疫记忆,而不会对宿主组织造成过多的附带损伤。从初始抗原遭遇开始,精心校准的程序性细胞死亡途径对于维持T细胞反应不同阶段的稳态至关重要。再刺激诱导细胞死亡(RICD)是一种由T细胞受体(TCR)重新接合触发的自我调节细胞凋亡途径,对于抑制效应T细胞扩增以排除明显的免疫病理尤为重要;事实上,影响RICD执行关键分子的遗传疾病可表现为淋巴细胞过度增生、恶性肿瘤和自身免疫。在此,我们回顾了目前关于RICD敏感性如何在免疫反应过程中最终被调节的知识,包括最近发现的通过在扩增和成熟效应T细胞中增强抗性或促进易感性来调节RICD的分子。详细解剖RICD的分子和时间控制也阐明了通过最终调节RICD敏感性来纠正各种免疫疾病中注意到的异常T细胞反应的新治疗策略。
{"title":"Molecular and temporal control of restimulation-induced cell death (RICD) in T lymphocytes","authors":"Katherine P. Lee, Benjamin Epstein, Camille M. Lake, Andrew L. Snow","doi":"10.3389/fceld.2023.1281137","DOIUrl":"https://doi.org/10.3389/fceld.2023.1281137","url":null,"abstract":"For effective adaptive immunity, T lymphocytes must rapidly expand and contract in an antigen-specific manner to effectively control invading pathogens and preserve immunological memory, without sustaining excessive collateral damage to host tissues. Starting from initial antigen encounter, carefully calibrated programmed cell death pathways are critical for maintaining homeostasis over distinct phases of the T cell response. Restimulation-induced cell death (RICD), a self-regulatory apoptosis pathway triggered by re-engagement of the T cell receptor (TCR), is particularly important for constraining effector T cell expansion to preclude overt immunopathology; indeed, genetic disorders affecting key molecules involved in RICD execution can manifest in excessive lymphoproliferation, malignancy, and autoimmunity. Herein we review our current knowledge of how RICD sensitivity is ultimately regulated over the course of an immune response, including recent revelations on molecules that tune RICD by enforcing resistance or promoting susceptibility in expanding versus mature effector T cells, respectively. Detailed dissection of the molecular and temporal control of RICD also illuminates novel therapeutic strategies for correcting abnormal T cell responses noted in various immune disorders by ultimately tuning RICD sensitivity.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"21 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance to CLnA-induced ferroptosis is acquired in Caco-2 cells upon differentiation Caco-2细胞在分化过程中获得了对clna诱导的铁下垂的抗性
Pub Date : 2023-08-29 DOI: 10.3389/fceld.2023.1219672
Géraldine Cuvelier, Perrine Vermonden, J. Rousseau, O. Féron, R. Rezsohazy, Y. Larondelle
In contrast to canonical ferroptosis inducers, highly peroxidable conjugated linolenic acids (CLnA) directly fuel the lipid peroxidation cascade upon their incorporation into membrane phospholipids. Little is known, however, about the cytotoxicity level of CLnAs to normal epithelial cells. Caco-2 cells, derived from colorectal adenocarcinoma, spontaneously differentiate into enterocyte-like cells over a period of 21 days of cell culturing, allowing for graduated phenotypic shift from proliferative, undifferentiated cells to a functional intestinal barrier. We exploited this property to assess the sensitivity of Caco-2 cells to CLnAs at different stages of differentiation. Our results show a significant decrease in CLnA-induced ferroptotic cell death over time. The acquired resistance aligned with decreases in cell proliferation and in the extent of lipid peroxidation, as well as with an increase in the expression of GPX4 upon differentiation. These results highlight that while CLnAs are highly toxic for proliferating cancer cells, differentiated epithelial cells are resistant to CLnA-induced ferroptosis. Therefore, this study gives credential to the therapeutic use of CLnAs as an anticancer strategy and offers a new model study to further investigate the safety of peroxidable fatty acids in differentiated cells.
与典型的铁下垂诱导剂不同,高过氧化共轭亚麻酸(CLnA)在与膜磷脂结合后直接促进脂质过氧化级联反应。然而,关于clna对正常上皮细胞的细胞毒性水平知之甚少。Caco-2细胞来源于结直肠腺癌,经过21天的细胞培养,可自发分化为肠细胞样细胞,允许从增殖性未分化细胞到功能性肠屏障的逐渐表型转变。我们利用这一特性来评估Caco-2细胞在不同分化阶段对clna的敏感性。我们的研究结果显示,clna诱导的铁致细胞死亡随着时间的推移而显著减少。获得性耐药与细胞增殖减少、脂质过氧化程度降低以及分化时GPX4表达增加一致。这些结果强调,虽然clna对增殖癌细胞具有高毒性,但分化的上皮细胞对clna诱导的铁下垂具有抗性。因此,本研究为clna作为一种抗癌策略的治疗用途提供了证据,并为进一步研究过氧化物脂肪酸在分化细胞中的安全性提供了新的模型研究。
{"title":"Resistance to CLnA-induced ferroptosis is acquired in Caco-2 cells upon differentiation","authors":"Géraldine Cuvelier, Perrine Vermonden, J. Rousseau, O. Féron, R. Rezsohazy, Y. Larondelle","doi":"10.3389/fceld.2023.1219672","DOIUrl":"https://doi.org/10.3389/fceld.2023.1219672","url":null,"abstract":"In contrast to canonical ferroptosis inducers, highly peroxidable conjugated linolenic acids (CLnA) directly fuel the lipid peroxidation cascade upon their incorporation into membrane phospholipids. Little is known, however, about the cytotoxicity level of CLnAs to normal epithelial cells. Caco-2 cells, derived from colorectal adenocarcinoma, spontaneously differentiate into enterocyte-like cells over a period of 21 days of cell culturing, allowing for graduated phenotypic shift from proliferative, undifferentiated cells to a functional intestinal barrier. We exploited this property to assess the sensitivity of Caco-2 cells to CLnAs at different stages of differentiation. Our results show a significant decrease in CLnA-induced ferroptotic cell death over time. The acquired resistance aligned with decreases in cell proliferation and in the extent of lipid peroxidation, as well as with an increase in the expression of GPX4 upon differentiation. These results highlight that while CLnAs are highly toxic for proliferating cancer cells, differentiated epithelial cells are resistant to CLnA-induced ferroptosis. Therefore, this study gives credential to the therapeutic use of CLnAs as an anticancer strategy and offers a new model study to further investigate the safety of peroxidable fatty acids in differentiated cells.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91081004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting the mechanism of regulation of a ferroptosis-like form of cell death in Drosophila melanogaster 解剖黑腹果蝇细胞凋亡样形式的调控机制
Pub Date : 2023-06-20 DOI: 10.3389/fceld.2023.1209641
Sanjay Saini, Edward Owusu-Ansah
Ferroptosis is a specific form of non-apoptotic cell death that is driven by iron-dependent phospholipid peroxidation. Research over the past decade has contributed to our understanding of how this important cell death process is regulated in mammalian systems, especially with regard to the distinct modes of induction, the role of metabolic signals, the organelles involved, implications of ferroptosis for development and aging, and how our improved understanding of the process can be exploited for therapeutic purposes. Other studies have described variants of this ancient cell death process in cyanobacteria, plants and protozoans. Emerging evidence indicates that a ferroptosis-like form of cell death exists in fruit flies (Drosophila melanogaster). Due to the extensive homology of genes in Drosophila melanogaster and Drosophila suzukii, unique aspects of ferroptosis in Drosophila melanogaster may be of particular relevance for developing targeted pesticides against Drosophila suzukii—a major invasive agricultural pest of the berry and wine industry in Southeast Asia, Europe and America. Further, aspects of ferroptosis in Drosophila melanogaster that are conserved in insects in general may provide the basis for identifying new insecticides for controlling the spread of vector-borne diseases such as malaria. In this perspective, we highlight some of the studies in Drosophila melanogaster that have sought to improve our understanding of the ferroptosis-like form of cell death that operates in this organism and conclude with a discussion of the opportunities and challenges for studying this phenomenon in fruit flies.
铁下垂是一种特殊形式的非凋亡细胞死亡,由铁依赖性磷脂过氧化作用驱动。过去十年的研究使我们了解了哺乳动物系统中重要的细胞死亡过程是如何调控的,特别是关于不同的诱导模式、代谢信号的作用、所涉及的细胞器、铁死亡对发育和衰老的影响,以及我们对这一过程的改进理解如何被用于治疗目的。其他研究描述了蓝藻、植物和原生动物中这种古老细胞死亡过程的变体。新出现的证据表明,在果蝇(黑腹果蝇)中存在一种类似铁中毒的细胞死亡形式。由于黑腹果蝇(Drosophila melanogaster)和铃木果蝇(Drosophila suzuki)基因的广泛同源性,黑腹果蝇(Drosophila melanogaster)上铁病的独特方面可能与开发针对铃木果蝇(Drosophila suzuki)的靶向农药特别相关。铃木果蝇是东南亚、欧洲和美洲浆果和葡萄酒行业的主要入侵农业害虫。此外,在一般昆虫中保守的黑腹果蝇的铁下垂方面可能为确定控制媒介传播疾病(如疟疾)传播的新杀虫剂提供基础。从这个角度来看,我们强调了一些在黑腹果蝇中进行的研究,这些研究试图提高我们对这种生物体中发生的嗜铁作用样细胞死亡形式的理解,并讨论了在果蝇中研究这种现象的机遇和挑战。
{"title":"Dissecting the mechanism of regulation of a ferroptosis-like form of cell death in Drosophila melanogaster","authors":"Sanjay Saini, Edward Owusu-Ansah","doi":"10.3389/fceld.2023.1209641","DOIUrl":"https://doi.org/10.3389/fceld.2023.1209641","url":null,"abstract":"Ferroptosis is a specific form of non-apoptotic cell death that is driven by iron-dependent phospholipid peroxidation. Research over the past decade has contributed to our understanding of how this important cell death process is regulated in mammalian systems, especially with regard to the distinct modes of induction, the role of metabolic signals, the organelles involved, implications of ferroptosis for development and aging, and how our improved understanding of the process can be exploited for therapeutic purposes. Other studies have described variants of this ancient cell death process in cyanobacteria, plants and protozoans. Emerging evidence indicates that a ferroptosis-like form of cell death exists in fruit flies (Drosophila melanogaster). Due to the extensive homology of genes in Drosophila melanogaster and Drosophila suzukii, unique aspects of ferroptosis in Drosophila melanogaster may be of particular relevance for developing targeted pesticides against Drosophila suzukii—a major invasive agricultural pest of the berry and wine industry in Southeast Asia, Europe and America. Further, aspects of ferroptosis in Drosophila melanogaster that are conserved in insects in general may provide the basis for identifying new insecticides for controlling the spread of vector-borne diseases such as malaria. In this perspective, we highlight some of the studies in Drosophila melanogaster that have sought to improve our understanding of the ferroptosis-like form of cell death that operates in this organism and conclude with a discussion of the opportunities and challenges for studying this phenomenon in fruit flies.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76954015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-half century (or more) of study of cell death: origins, present, and perhaps future 半个世纪(或更久)的细胞死亡研究:起源,现在,也许还有未来
Pub Date : 2023-06-16 DOI: 10.3389/fceld.2023.1197400
R. Lockshin
The concept of biological cell death—that is, cell death that is neither accidental nor chaotic—has existed and has been obvious since at least the beginning of the 20th C, but it was noticed by other than specialists apt choices of words that caught the spirit of the time, “programmed cell death” and “apoptosis” caught the attention of a wider range of scientists. Then, by the early 1990s the recognition of at least two genes that were important to cancer and other diseases by controlling cell death (p53, Bcl-2, and Fas); recognition that cell death could be controlled by a highly conserved family of proteases; and the development of rapid and easy means of measuring cell death, led to the explosion of the field as a subject of research. Today we recognize many variations on the theme of biological cell death, but many mysteries remain. The most important of these remaining mysteries is that we recognize many of the penultimate and ultimate steps to kill cells, but it is rarely clear how and why these steps are activated. Most likely they are activated by an interaction of several metabolic steps, but we will need more high-powered analysis to determine how this interaction functions.
生物细胞死亡的概念——即细胞死亡既不是偶然的,也不是混乱的——至少从20世纪初就存在了,而且很明显,但除了专家之外,其他专家也注意到了这一点,他们恰当地选择了符合当时精神的词语,“程序性细胞死亡”和“细胞凋亡”引起了更广泛的科学家的注意。然后,到20世纪90年代初,人们认识到至少有两个基因通过控制细胞死亡对癌症和其他疾病很重要(p53、Bcl-2和Fas);认识到细胞死亡可以由一个高度保守的蛋白酶家族控制;而快速简便的细胞死亡测量方法的发展,导致了该领域作为一个研究课题的爆发。今天,我们认识到生物细胞死亡这一主题的许多变体,但仍有许多未解之谜。这些未解之谜中最重要的是,我们认识到杀死细胞的许多倒数第二步和最终步骤,但很少清楚这些步骤是如何以及为什么被激活的。最有可能的是,它们是由几个代谢步骤的相互作用激活的,但我们需要更高效的分析来确定这种相互作用是如何起作用的。
{"title":"One-half century (or more) of study of cell death: origins, present, and perhaps future","authors":"R. Lockshin","doi":"10.3389/fceld.2023.1197400","DOIUrl":"https://doi.org/10.3389/fceld.2023.1197400","url":null,"abstract":"The concept of biological cell death—that is, cell death that is neither accidental nor chaotic—has existed and has been obvious since at least the beginning of the 20th C, but it was noticed by other than specialists apt choices of words that caught the spirit of the time, “programmed cell death” and “apoptosis” caught the attention of a wider range of scientists. Then, by the early 1990s the recognition of at least two genes that were important to cancer and other diseases by controlling cell death (p53, Bcl-2, and Fas); recognition that cell death could be controlled by a highly conserved family of proteases; and the development of rapid and easy means of measuring cell death, led to the explosion of the field as a subject of research. Today we recognize many variations on the theme of biological cell death, but many mysteries remain. The most important of these remaining mysteries is that we recognize many of the penultimate and ultimate steps to kill cells, but it is rarely clear how and why these steps are activated. Most likely they are activated by an interaction of several metabolic steps, but we will need more high-powered analysis to determine how this interaction functions.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"14 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72557402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted promotion of apoptosis by acetylcholinesterase 乙酰胆碱酯酶多方面促进细胞凋亡
Pub Date : 2023-04-17 DOI: 10.3389/fceld.2023.1169966
Debbra Y. Knorr, D. Demirbas, R. Heinrich
Elevated expression of acetylcholinesterase (AChE) is a common characteristic of apoptotic cells in both invertebrate and vertebrate species. While increased levels of acetylcholinesterase sensitize cells to apoptogenic stimuli, its absence or pharmacological inactivation interferes with apoptotic cell death. acetylcholinesterase may exert its pro-apoptotic function directly as an integral component of the apoptotic molecular machinery or indirectly by limiting the availability of receptor ligands and structural binding partners that promote cell survival under non-apoptogenic conditions. acetylcholinesterase promotes formation of the apoptosome and degrades DNA after nuclear accumulation. Its esterase activity limits the availability of acetylcholine as ligand for cell membrane-located nicotinic and muscarinic ACh-receptors and mitochondrial nicotinic ACh-receptors that normally support vital physiological states. Studies on insects suggest, that cytokine-activated cell-protective pathways may suppress acetylcholinesterase overexpression under apoptogenic conditions to prevent apoptotic cell death. We provide an overview of studies on various organisms and cell types that summarizes the contribution of acetylcholinesterase to the progress of apoptosis via multiple mechanisms.
乙酰胆碱酯酶(AChE)的表达升高是脊椎动物和无脊椎动物中凋亡细胞的共同特征。虽然乙酰胆碱酯酶水平升高使细胞对凋亡刺激敏感,但其缺乏或药理学失活会干扰凋亡细胞的死亡。乙酰胆碱酯酶可能作为凋亡分子机制的一个组成部分直接发挥其促凋亡功能,也可能通过限制非凋亡条件下促进细胞存活的受体配体和结构结合伙伴的可用性间接发挥其促凋亡功能。乙酰胆碱酯酶促进凋亡小体的形成,并在细胞核积累后降解DNA。乙酰胆碱的酯酶活性限制了乙酰胆碱作为配体用于细胞膜上烟碱和毒蕈碱乙酰胆碱受体和线粒体烟碱乙酰胆碱受体的可用性,而这些受体通常支持重要的生理状态。对昆虫的研究表明,细胞因子激活的细胞保护途径可能抑制凋亡条件下乙酰胆碱酯酶的过度表达,从而防止凋亡细胞死亡。我们概述了各种生物和细胞类型的研究,总结了乙酰胆碱酯酶通过多种机制对细胞凋亡进程的贡献。
{"title":"Multifaceted promotion of apoptosis by acetylcholinesterase","authors":"Debbra Y. Knorr, D. Demirbas, R. Heinrich","doi":"10.3389/fceld.2023.1169966","DOIUrl":"https://doi.org/10.3389/fceld.2023.1169966","url":null,"abstract":"Elevated expression of acetylcholinesterase (AChE) is a common characteristic of apoptotic cells in both invertebrate and vertebrate species. While increased levels of acetylcholinesterase sensitize cells to apoptogenic stimuli, its absence or pharmacological inactivation interferes with apoptotic cell death. acetylcholinesterase may exert its pro-apoptotic function directly as an integral component of the apoptotic molecular machinery or indirectly by limiting the availability of receptor ligands and structural binding partners that promote cell survival under non-apoptogenic conditions. acetylcholinesterase promotes formation of the apoptosome and degrades DNA after nuclear accumulation. Its esterase activity limits the availability of acetylcholine as ligand for cell membrane-located nicotinic and muscarinic ACh-receptors and mitochondrial nicotinic ACh-receptors that normally support vital physiological states. Studies on insects suggest, that cytokine-activated cell-protective pathways may suppress acetylcholinesterase overexpression under apoptogenic conditions to prevent apoptotic cell death. We provide an overview of studies on various organisms and cell types that summarizes the contribution of acetylcholinesterase to the progress of apoptosis via multiple mechanisms.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77340781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-lethal roles of the initiator caspase Dronc in Drosophila caspase Dronc在果蝇中的非致死性作用
Pub Date : 2023-04-06 DOI: 10.3389/fceld.2023.1184041
Daniel Domínguez, Yun Fan
The role of caspases, or cysteine-aspartic proteases, in apoptosis has been well-studied across multiple organisms. These apoptotic caspases can be divided into initiator and effector caspases, with the former cleaving and activating the latter to trigger cell death. However, emerging evidence is supporting non-lethal roles of caspases in development, tissue homeostasis and disease. In comparison to effector caspases, less is known about the non-apoptotic functions of initiator caspases because of their more restricted activities and fewer known substrates. This review focuses on some recent findings in Drosophila on non-lethal roles of the initiator caspase Dronc. We discuss their biological importance, underlying regulatory mechanisms, and implications for our understanding of their mammalian counterparts. Deciphering the non-apoptotic functions of Dronc will provide valuable insights into the multifaceted functions of caspases during development and in diseases including cancer.
半胱天冬酶或半胱氨酸-天冬氨酸蛋白酶在细胞凋亡中的作用已经在多种生物中得到了很好的研究。这些凋亡的caspases可分为引发剂caspases和效应剂caspases,前者切割并激活后者触发细胞死亡。然而,新出现的证据支持半胱天冬酶在发育、组织稳态和疾病中的非致死作用。与效应caspases相比,引发caspases的非凋亡功能知之甚少,因为它们的活性更有限,已知的底物也更少。本文综述了近年来在果蝇中关于caspase Dronc的非致死性作用的研究进展。我们讨论了它们的生物学重要性,潜在的调节机制,以及对我们理解它们的哺乳动物对应物的影响。破译Dronc的非凋亡功能将为了解半胱天冬酶在发育和包括癌症在内的疾病中的多方面功能提供有价值的见解。
{"title":"Non-lethal roles of the initiator caspase Dronc in Drosophila","authors":"Daniel Domínguez, Yun Fan","doi":"10.3389/fceld.2023.1184041","DOIUrl":"https://doi.org/10.3389/fceld.2023.1184041","url":null,"abstract":"The role of caspases, or cysteine-aspartic proteases, in apoptosis has been well-studied across multiple organisms. These apoptotic caspases can be divided into initiator and effector caspases, with the former cleaving and activating the latter to trigger cell death. However, emerging evidence is supporting non-lethal roles of caspases in development, tissue homeostasis and disease. In comparison to effector caspases, less is known about the non-apoptotic functions of initiator caspases because of their more restricted activities and fewer known substrates. This review focuses on some recent findings in Drosophila on non-lethal roles of the initiator caspase Dronc. We discuss their biological importance, underlying regulatory mechanisms, and implications for our understanding of their mammalian counterparts. Deciphering the non-apoptotic functions of Dronc will provide valuable insights into the multifaceted functions of caspases during development and in diseases including cancer.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83205560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From TNF-induced signaling to NADPH oxidase enzyme activity: Methods to investigate protein complexes involved in regulated cell death modalities 从tnf诱导的信号传导到NADPH氧化酶活性:研究参与调节细胞死亡方式的蛋白质复合物的方法
Pub Date : 2023-04-05 DOI: 10.3389/fceld.2023.1127330
Maria Ladik, Hana Valenta, M. Erard, P. Vandenabeele, Franck B. Riquet
The formation of molecular complexes is a key feature of intracellular signaling pathways which governs to the initiation and execution of dedicated cellular processes. Tumor Necrosis Factor (TNF) and Reactive Oxygen Species (ROS) function as signaling molecules and are both involved in balancing cell fate decision between cell survival or cell demise. As master regulators of cell signaling, they are also instrumental in controlling various cellular processes towards tissue homeostasis, innate immunity and inflammation. Interestingly, TNF and ROS are interlinked and involved in regulating each other’s production via the engagement of molecular signaling complexes. This relationship calls for detailed reviewing of both TNF-induced and ROS-producing molecular complexes in the context of regulated cell death (RCD) modalities. Here, we outline biotechnological approaches that were used to investigate the TNF- and, concerning ROS, the NADPH oxidase-related molecular complexes with an emphasis on different regulated cell death modalities. This systematic review highlights how the cell death field has benefited from both biochemical and live-cell fluorescence imaging approaches. This knowledge and established workflows are highly generalizable, can be of a broader use for any protein-complex studies, and well suited for addressing new challenges in signaling dynamics. These will help understand molecular signaling complexes as ensembles organized into signaling platforms, most likely the key sites of signaling dynamics integration toward cell fate regulation.
分子复合物的形成是细胞内信号通路的一个关键特征,它控制着特定细胞过程的启动和执行。肿瘤坏死因子(Tumor Necrosis Factor, TNF)和活性氧(Reactive Oxygen Species, ROS)作为信号分子,参与细胞生存与死亡之间的命运平衡。作为细胞信号传导的主要调控因子,它们也在控制组织稳态、先天免疫和炎症的各种细胞过程中发挥重要作用。有趣的是,TNF和ROS是相互联系的,并通过分子信号复合物参与调节彼此的产生。这种关系需要在调节细胞死亡(RCD)模式的背景下详细审查tnf诱导和ros产生的分子复合物。在这里,我们概述了用于研究TNF-和关于ROS的NADPH氧化酶相关分子复合物的生物技术方法,重点是不同的受调节的细胞死亡方式。本系统综述强调了细胞死亡领域如何受益于生化和活细胞荧光成像方法。这些知识和已建立的工作流程具有高度的通用性,可以更广泛地用于任何蛋白质复合物的研究,并且非常适合解决信号动力学中的新挑战。这将有助于理解分子信号复合物作为被组织成信号平台的集合体,最有可能是信号动力学整合到细胞命运调节的关键位点。
{"title":"From TNF-induced signaling to NADPH oxidase enzyme activity: Methods to investigate protein complexes involved in regulated cell death modalities","authors":"Maria Ladik, Hana Valenta, M. Erard, P. Vandenabeele, Franck B. Riquet","doi":"10.3389/fceld.2023.1127330","DOIUrl":"https://doi.org/10.3389/fceld.2023.1127330","url":null,"abstract":"The formation of molecular complexes is a key feature of intracellular signaling pathways which governs to the initiation and execution of dedicated cellular processes. Tumor Necrosis Factor (TNF) and Reactive Oxygen Species (ROS) function as signaling molecules and are both involved in balancing cell fate decision between cell survival or cell demise. As master regulators of cell signaling, they are also instrumental in controlling various cellular processes towards tissue homeostasis, innate immunity and inflammation. Interestingly, TNF and ROS are interlinked and involved in regulating each other’s production via the engagement of molecular signaling complexes. This relationship calls for detailed reviewing of both TNF-induced and ROS-producing molecular complexes in the context of regulated cell death (RCD) modalities. Here, we outline biotechnological approaches that were used to investigate the TNF- and, concerning ROS, the NADPH oxidase-related molecular complexes with an emphasis on different regulated cell death modalities. This systematic review highlights how the cell death field has benefited from both biochemical and live-cell fluorescence imaging approaches. This knowledge and established workflows are highly generalizable, can be of a broader use for any protein-complex studies, and well suited for addressing new challenges in signaling dynamics. These will help understand molecular signaling complexes as ensembles organized into signaling platforms, most likely the key sites of signaling dynamics integration toward cell fate regulation.","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75368004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulators mount up: the metabolic roles of apoptotic proteins. 凋亡蛋白的新陈代谢作用。
Pub Date : 2023-01-01 Epub Date: 2023-07-03 DOI: 10.3389/fceld.2023.1223926
James H Schofield, Zachary T Schafer

The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.

细胞凋亡是一种由 Caspases 激活控制的程序性细胞死亡途径,诱导细胞凋亡会导致新陈代谢发生根本性变化,从而促进或限制细胞死亡的执行。此外,新陈代谢的适应性也会对细胞是否真的启动凋亡级联产生重大影响。在这篇微型综述中,我们将重点讨论细胞凋亡调控与新陈代谢改变之间的相互联系。
{"title":"Regulators mount up: the metabolic roles of apoptotic proteins.","authors":"James H Schofield, Zachary T Schafer","doi":"10.3389/fceld.2023.1223926","DOIUrl":"10.3389/fceld.2023.1223926","url":null,"abstract":"<p><p>The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.</p>","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9916139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysics at the edge of life and death: radical control of apoptotic mechanisms. 生与死边缘的生物物理学:细胞凋亡机制的根本控制。
Pub Date : 2023-01-01 Epub Date: 2023-02-26 DOI: 10.3389/fceld.2023.1147605
Samantha J Hack, Wendy S Beane, Kelly Ai-Sun Tseng

Recent studies have furthered our understanding of how dying and living cells interact in different physiological contexts, however the signaling that initiates and mediates apoptosis and apoptosis-induced proliferation are more complex than previously thought. One increasingly important area of study is the biophysical control of apoptosis. In addition to biochemical regulation, biophysical signals (including redox chemistry, bioelectric gradients, acoustic and magnetic stimuli) are also known yet understudied regulators of both cell death and apoptosis-induced proliferation. Mounting evidence suggests biophysical signals may be key targets for therapeutic interventions. This review highlights what is known about the role of biophysical signals in controlling cell death mechanisms during development, regeneration, and carcinogenesis. Since biophysical signals can be controlled spatiotemporally, bypassing the need for genetic manipulation, further investigation may lead to fine-tuned modulation of apoptotic pathways to direct desired therapeutic outcomes.

最近的研究进一步加深了我们对死亡细胞和活细胞在不同生理环境下如何相互作用的理解,然而,启动和介导细胞凋亡和细胞凋亡诱导增殖的信号传导比以前认为的要复杂得多。一个日益重要的研究领域是细胞凋亡的生物物理控制。除了生化调节外,生物物理信号(包括氧化还原化学、生物电梯度、声和磁刺激)也是已知的但尚未充分研究的细胞死亡和凋亡诱导增殖的调节因子。越来越多的证据表明,生物物理信号可能是治疗干预的关键目标。这篇综述强调了已知的生物物理信号在细胞发育、再生和癌变过程中控制细胞死亡机制中的作用。由于生物物理信号可以在时空上控制,而无需基因操作,因此进一步的研究可能会导致对凋亡途径的微调调节,从而指导所需的治疗结果。
{"title":"Biophysics at the edge of life and death: radical control of apoptotic mechanisms.","authors":"Samantha J Hack, Wendy S Beane, Kelly Ai-Sun Tseng","doi":"10.3389/fceld.2023.1147605","DOIUrl":"10.3389/fceld.2023.1147605","url":null,"abstract":"<p><p>Recent studies have furthered our understanding of how dying and living cells interact in different physiological contexts, however the signaling that initiates and mediates apoptosis and apoptosis-induced proliferation are more complex than previously thought. One increasingly important area of study is the biophysical control of apoptosis. In addition to biochemical regulation, biophysical signals (including redox chemistry, bioelectric gradients, acoustic and magnetic stimuli) are also known yet understudied regulators of both cell death and apoptosis-induced proliferation. Mounting evidence suggests biophysical signals may be key targets for therapeutic interventions. This review highlights what is known about the role of biophysical signals in controlling cell death mechanisms during development, regeneration, and carcinogenesis. Since biophysical signals can be controlled spatiotemporally, bypassing the need for genetic manipulation, further investigation may lead to fine-tuned modulation of apoptotic pathways to direct desired therapeutic outcomes.</p>","PeriodicalId":73072,"journal":{"name":"Frontiers in cell death","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86599346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in cell death
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1