Objective: There is no head-to-head comparison of the safety and efficacy of virtual versus in-office insulin pump initiation for youth with type 1 diabetes in the US. The study's aim was to determine the safety and efficacy of virtual versus in-office pump initiation in pediatric type 1 diabetes.
Research design and methods: A longitudinal retrospective study of 112 subjects: 65% (n=73), ages 11.2 ± 3.8 years(y), received in-office training; and 35% (n=39), ages 12.0 ± 4.0y, received virtual training. The number of White subjects was 40 (55%) in the in-office group, and 25 (66%) in the remote group; while Black subjects were 11 (15%) in the in-office group and 4 (10%) in the virtual group. Data were collected at pump initiation, 3 and 6 months.
Results: There were no significant differences in sex, race, height, weight, BMI, and the duration of diabetes between the groups at baseline. There was no significant difference in A1c between the groups at 0, 3, and 6 months. A1c correlated significantly with the glucose management indicator at 0, 3, and 6 months: baseline: r=0.49, p<0.0001; 3 months: r=0.77, p<0.0001; and 6 months: r=0.71, p<0.0001. There was no relationship between A1c or TIR and pubertal status, BMI, sex, or race. A1c was significantly elevated in the non-White individuals at 6 months only: 57.9 mmol/mol (50.8-69.4) versus 51.9 mmol/mol (46.5-59.6)], p=0.007.
Conclusion: Virtual insulin pump initiation is safe and effective in children with type 1 diabetes. This approach could accelerate the adoption of the use of diabetes technology in minority populations in the US.
Background: People with type 2 diabetes (T2D) have lower rates of physical activity (PA) than the general population. This is significant because insufficient PA is linked to cardiovascular morbidity and mortality, particularly in individuals with T2D. Previously, we identified a novel barrier to physical activity: greater perceived effort during exercise in women. Specifically, women with T2D experienced exercise at low-intensity as greater effort than women without T2D at the same low-intensity - based on self-report and objective lactate measurements. A gap in the literature is whether T2D confers greater exercise effort in both sexes and across a range of work rates.
Objectives: Our overarching objective was to address these gaps regarding the influence of T2D and relative work intensity on exercise effort. We hypothesized that T2D status would confer greater effort during exercise across a range of work rates below the aerobic threshold.
Methods: This cross-sectional study enrolled males and post-menopausal females aged 50-75 years. Measures of exercise effort included: 1) heart rate, 2) lactate and 3) self-report of Rating of Perceived Exertion (RPE); each assessment was during the final minute of a 5-minute bout of treadmill exercise. Treadmill exercise was performed at 3 work rates: 1.5 mph, 2.0 mph, and 2.5 mph, respectively. To determine factors influencing effort, separate linear mixed effect models assessed the influence of T2D on each outcome of exercise effort, controlling for work rate intensity relative to peak oxygen consumption (%VO2peak). Models were adjusted for any significant demographic associations between effort and age (years), sex (male/female), baseline physical activity, or average blood glucose levels.
Results: We enrolled n=19 people with T2D (47.4% female) and n=18 people (55.6% female) with no T2D. In the models adjusted for %VO2peak, T2D status was significantly associated with higher heart rate (p = 0.02) and lactate (p = 0.01), without a significant association with RPE (p = 0.58).
Discussions: Across a range of low-to-moderate intensity work rates in older, sedentary males and females, a diagnosis of T2D conferred higher objective markers of effort but did not affect RPE. Greater objective effort cannot be fully attributed to impaired fitness, as it persisted despite adjustment for %VO2peak. In order to promote regular exercise and reduce cardiovascular risk for people with T2D, 1) further efforts to understand the mechanistic targets that influence physiologic exercise effort should be sought, and 2) comparison of the effort and tolerability of alternative exercise training prescriptions is warranted.
[This corrects the article DOI: 10.3389/fcdhc.2023.1121128.].
Introduction: Kidney transplantation is associated with an increased risk of posttransplant diabetes mellitus (PTDM), impacting recipient and graft survivals. The incidence of PTDM ranges from 15% to 30%, with most cases occurring in the first year post-transplant. Some clinical and laboratory characteristics pre- and post-transplant may be associated with a higher PTDM incidence in a more extended follow-up period. This study aimed to analyze the prevalence of PTDM among renal transplant recipients without previous DM diagnosis during a five-year post-transplant follow-up, as well as clinical and laboratory characteristics associated with a higher incidence of PTDM during this period.
Material and methods: Single-center retrospective cohort including kidney transplant recipients older than 18 years with a functioning graft over six months of follow-up between January and December 2018. Exclusion criteria were recipients younger than 18 years at kidney transplantation, previous diabetes mellitus diagnosis, and death with a functioning graft or graft failure within six months post-transplant.
Results: From 117 kidney transplants performed during the period, 71 (60.7%) fulfilled the inclusion criteria, 18 (25.3%) had PTDM diagnosis, and most (n=16, 88.9%) during the 1st year post-transplant. The need for insulin therapy during the hospital stay was significantly higher in the PTDM group (n=11, 61.1% vs. n=14, 26.4%, PTDM vs. non-PTDM). Other PTDM risk factors, such as older age, high body mass index, HLA mismatches, and cytomegalovirus or hepatitis C virus infections, were not associated with PTDM occurrence in this series. During 5-year post-transplant follow-up, the graft function remained stable in both groups.
Conclusion: The accumulated incidence of PTDM in this series was similar to the reported in other studies. The perioperative hyperglycemia with the need for treatment with insulin before hospital discharge was associated with PTDM.
Background: While there is increasing evidence for an altered clinical phenotype of Type 1 diabetes in several low-and middle-income countries, little is known about urban-rural differences and how the greater poverty of rural environments may alter the pattern of disease.
Objective: Investigation of urban-rural differences in demographic and anthropometric characteristics of type 1 diabetes in a resource-poor setting.
Research design and methods: Analysis of a unique case register, comprising all patients (rural and urban) presenting with Type 1 diabetes over a 20 yr. period in a poor, geographically defined area in northwest Ethiopia. The records included age, sex, place of residence, together with height and weight at the clinical onset.
Results: A total of 1682 new cases of Type 1 diabetes were registered with a mean age of onset of 31.2 (SD 13.4) yr. The patients were thin with 1/3 presenting with a body mass index (BMI) <17kg/m2. There was a striking male predominance of cases when clinical onset was between 20 and 35 yr., this was more marked in the very poor rural dwellers compared to the urban population. While most patients with Type 1 diabetes presented with low BMIs and reduced height, stunting preferentially affected rural men.
Conclusions: These data have led to the hypothesis that complex interactions among poor socioeconomic conditions in early life affect both pancreatic function and the development of autoimmunity and provide a possible explanation of the unusual phenotype of Type 1 diabetes in this very poor community.