Pub Date : 2023-08-21eCollection Date: 2023-01-01DOI: 10.3389/ffunb.2023.1241539
Ravinder Kumar, Vartika Srivastava
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
{"title":"Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance.","authors":"Ravinder Kumar, Vartika Srivastava","doi":"10.3389/ffunb.2023.1241539","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1241539","url":null,"abstract":"<p><p>After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1241539"},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Climatic conditions such as drought, high temperatures, and pre-harvest rainfalls promote the occurrence of mycotoxins in grains. Contamination of staple food sources such as maize and sorghum means that many populations are at risk of being poisoned by mycotoxins. Hence the need for sensitive methods for their simultaneous analysis. Herein, a quick, easy, cheap, effective, rugged, and safe liquid chromatography tandem mass spectrometry (QuEChERS-LC-MS/MS) method for the simultaneous determination of ten mycotoxins in maize and sorghum is presented. The QuEChERS extraction procedure was optimized to maximize extraction recovery and minimize matrix effects while using relatively small quantities of organic solvents and acids. This method was validated according to Commission Implementing Regulation (EU) 2021/808, Commission Regulation (EC) No 1881/2006, and Regulation (EC) no. 401/2006. The developed method met the specified requirements. Recoveries of 80.77% to 109.83% and CVs below 15% were obtained. The correlation coefficient values (R2) were all above 0.98, and low limits of quantification ranging from 0.53 to 89.28 µg/Kg were recorded. The method was applied to 10 maize and 10 sorghum samples collected from markets in Botswana. Half of the samples had detectable mycotoxins, Aflatoxins, Fumonisins, T2-toxin, HT2-toxin, and Zearalenone. Two maize samples had levels of aflatoxin B1 above the maximum permitted level (2.55, 4.07 µg/Kg). These findings point to the necessity of more stringent monitoring of mycotoxins, particularly AFB1 in maize, as well as the value of regular assessment using LC-MS/MS.
{"title":"Development and validation of a QuEChERS-LC-MS/MS method for determination of multiple mycotoxins in maize and sorghum from Botswana.","authors":"Mesha Mbisana, Tshepho Rebagamang, Dikabo Mogopodi, Inonge Chibua","doi":"10.3389/ffunb.2023.1141427","DOIUrl":"10.3389/ffunb.2023.1141427","url":null,"abstract":"<p><p>Climatic conditions such as drought, high temperatures, and pre-harvest rainfalls promote the occurrence of mycotoxins in grains. Contamination of staple food sources such as maize and sorghum means that many populations are at risk of being poisoned by mycotoxins. Hence the need for sensitive methods for their simultaneous analysis. Herein, a quick, easy, cheap, effective, rugged, and safe liquid chromatography tandem mass spectrometry (QuEChERS-LC-MS/MS) method for the simultaneous determination of ten mycotoxins in maize and sorghum is presented. The QuEChERS extraction procedure was optimized to maximize extraction recovery and minimize matrix effects while using relatively small quantities of organic solvents and acids. This method was validated according to Commission Implementing Regulation (EU) 2021/808, Commission Regulation (EC) No 1881/2006, and Regulation (EC) no. 401/2006. The developed method met the specified requirements. Recoveries of 80.77% to 109.83% and CVs below 15% were obtained. The correlation coefficient values (R<sup>2</sup>) were all above 0.98, and low limits of quantification ranging from 0.53 to 89.28 µg/Kg were recorded. The method was applied to 10 maize and 10 sorghum samples collected from markets in Botswana. Half of the samples had detectable mycotoxins, Aflatoxins, Fumonisins, T2-toxin, HT2-toxin, and Zearalenone. Two maize samples had levels of aflatoxin B<sub>1</sub> above the maximum permitted level (2.55, 4.07 µg/Kg). These findings point to the necessity of more stringent monitoring of mycotoxins, particularly AFB1 in maize, as well as the value of regular assessment using LC-MS/MS.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1141427"},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41166985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01eCollection Date: 2023-01-01DOI: 10.3389/ffunb.2023.1141963
Shabana Hoosein, Lena Neuenkamp, Pankaj Trivedi, Mark W Paschke
Considering our growing population and our continuous degradation of soil environments, understanding the fundamental ecology of soil biota and plant microbiomes will be imperative to sustaining soil systems. Arbuscular mycorrhizal (AM) fungi extend their hyphae beyond plant root zones, creating microhabitats with bacterial symbionts for nutrient acquisition through a tripartite symbiotic relationship along with plants. Nonetheless, it is unclear what drives these AM fungal-bacterial relationships and how AM fungal functional traits contribute to these relationships. By delving into the literature, we look at the drivers and complexity behind AM fungal-bacterial relationships, describe the shift needed in AM fungal research towards the inclusion of interdisciplinary tools, and discuss the utilization of bacterial datasets to provide contextual evidence behind these complex relationships, bringing insights and new hypotheses to AM fungal functional traits. From this synthesis, we gather that interdependent microbial relationships are at the foundation of understanding microbiome functionality and deciphering microbial functional traits. We suggest using pattern-based inference tools along with machine learning to elucidate AM fungal-bacterial relationship trends, along with the utilization of synthetic communities, functional gene analyses, and metabolomics to understand how AM fungal and bacterial communities facilitate communication for the survival of host plant communities. These suggestions could result in improving microbial inocula and products, as well as a better understanding of complex relationships in terrestrial ecosystems that contribute to plant-soil feedbacks.
{"title":"AM fungal-bacterial relationships: what can they tell us about ecosystem sustainability and soil functioning?","authors":"Shabana Hoosein, Lena Neuenkamp, Pankaj Trivedi, Mark W Paschke","doi":"10.3389/ffunb.2023.1141963","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1141963","url":null,"abstract":"<p><p>Considering our growing population and our continuous degradation of soil environments, understanding the fundamental ecology of soil biota and plant microbiomes will be imperative to sustaining soil systems. Arbuscular mycorrhizal (AM) fungi extend their hyphae beyond plant root zones, creating microhabitats with bacterial symbionts for nutrient acquisition through a tripartite symbiotic relationship along with plants. Nonetheless, it is unclear what drives these AM fungal-bacterial relationships and how AM fungal functional traits contribute to these relationships. By delving into the literature, we look at the drivers and complexity behind AM fungal-bacterial relationships, describe the shift needed in AM fungal research towards the inclusion of interdisciplinary tools, and discuss the utilization of bacterial datasets to provide contextual evidence behind these complex relationships, bringing insights and new hypotheses to AM fungal functional traits. From this synthesis, we gather that interdependent microbial relationships are at the foundation of understanding microbiome functionality and deciphering microbial functional traits. We suggest using pattern-based inference tools along with machine learning to elucidate AM fungal-bacterial relationship trends, along with the utilization of synthetic communities, functional gene analyses, and metabolomics to understand how AM fungal and bacterial communities facilitate communication for the survival of host plant communities. These suggestions could result in improving microbial inocula and products, as well as a better understanding of complex relationships in terrestrial ecosystems that contribute to plant-soil feedbacks.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1141963"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28eCollection Date: 2023-01-01DOI: 10.3389/ffunb.2023.1172893
Jong H Kim, Kathleen L Chan, William M Hart-Cooper, Jeffrey D Palumbo, William J Orts
Control of food-contaminating fungi, especially pathogens that produce mycotoxins, is problematic since effective method for intervening fungal infection on food crops is often limited. Generally Regarded As Safe (GRAS) chemicals, such as natural compounds or their structural derivatives, can be developed as antimicrobial agents for sustainable food/crop production. This study identified that long-chain alkyl gallates, i.e., octyl-, nonyl-, and decyl gallates (OG (octyl 3,4,5-trihydroxybenzoic acid), NG, DG), can function as heat-sensitizing agents that effectively prevent fungal contamination. Out of twenty-eight candidate compounds and six conventional antifungal agents examined, the heat-sensitizing capacity was unique to the long-chain alkyl gallates, where OG exhibited the highest activity, followed by DG and NG. Since OG is a GRAS compound classified by the United States Food and Drug Administration (FDA), further in vitro antifungal studies were performed using OG. When OG and mild heat (57.5°C) were co-administered for 90 seconds, the treatment achieved > 99.999% fungal death (> 5 log reduction). Application of either treatment alone was significantly less effective at reducing fungal survival. Of note, co-application of OG (3 mM) and mild heat (50°C) for 20 minutes completely prevented the survival of aflatoxigenic Aspergillus flavus contaminating crop seeds (Brassica rapa Pekinensis), while seed germination rate was unaffected. Heat-sensitization was also determined in selected bacterial strains (Escherichia coli, Agrobacterium tumefaciens). Altogether, OG is an effective heat-sensitizing agent for control of microbial pathogens. OG-mediated heat sensitization will improve the efficacy of antimicrobial practices, achieving safe, rapid, and cost-effective pathogen control in agriculture/food industry settings.
{"title":"High-efficiency fungal pathogen intervention for seed protection: new utility of long-chain alkyl gallates as heat-sensitizing agents.","authors":"Jong H Kim, Kathleen L Chan, William M Hart-Cooper, Jeffrey D Palumbo, William J Orts","doi":"10.3389/ffunb.2023.1172893","DOIUrl":"10.3389/ffunb.2023.1172893","url":null,"abstract":"<p><p>Control of food-contaminating fungi, especially pathogens that produce mycotoxins, is problematic since effective method for intervening fungal infection on food crops is often limited. Generally Regarded As Safe (GRAS) chemicals, such as natural compounds or their structural derivatives, can be developed as antimicrobial agents for sustainable food/crop production. This study identified that long-chain alkyl gallates, i.e., octyl-, nonyl-, and decyl gallates (OG (octyl 3,4,5-trihydroxybenzoic acid), NG, DG), can function as heat-sensitizing agents that effectively prevent fungal contamination. Out of twenty-eight candidate compounds and six conventional antifungal agents examined, the heat-sensitizing capacity was unique to the long-chain alkyl gallates, where OG exhibited the highest activity, followed by DG and NG. Since OG is a GRAS compound classified by the United States Food and Drug Administration (FDA), further <i>in vitro</i> antifungal studies were performed using OG. When OG and mild heat (57.5°C) were co-administered for 90 seconds, the treatment achieved > 99.999% fungal death (> 5 log reduction). Application of either treatment alone was significantly less effective at reducing fungal survival. Of note, co-application of OG (3 mM) and mild heat (50°C) for 20 minutes completely prevented the survival of aflatoxigenic <i>Aspergillus flavus</i> contaminating crop seeds (<i>Brassica rapa</i> Pekinensis), while seed germination rate was unaffected. Heat-sensitization was also determined in selected bacterial strains (<i>Escherichia coli</i>, <i>Agrobacterium tumefaciens</i>). Altogether, OG is an effective heat-sensitizing agent for control of microbial pathogens. OG-mediated heat sensitization will improve the efficacy of antimicrobial practices, achieving safe, rapid, and cost-effective pathogen control in agriculture/food industry settings.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1172893"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-17eCollection Date: 2023-01-01DOI: 10.3389/ffunb.2023.1171100
Jennifer L Brown, Taylor Gierke, Lazarina V Butkovich, Candice L Swift, Vasanth Singan, Christopher Daum, Kerrie Barry, Igor V Grigoriev, Michelle A O'Malley
Anaerobic fungi produce biomass-degrading enzymes and natural products that are important to harness for several biotechnology applications. Although progress has been made in the development of methods for extracting nucleic acids for genomic and transcriptomic sequencing of these fungi, most studies are limited in that they do not sample multiple fungal growth phases in batch culture. In this study, we establish a method to harvest RNA from fungal monocultures and fungal-methanogen co-cultures, and also determine an optimal time frame for high-quality RNA extraction from anaerobic fungi. Based on RNA quality and quantity targets, the optimal time frame in which to harvest anaerobic fungal monocultures and fungal-methanogen co-cultures for RNA extraction was 2-5 days of growth post-inoculation. When grown on cellulose, the fungal strain Anaeromyces robustus cocultivated with the methanogen Methanobacterium bryantii upregulated genes encoding fungal carbohydrate-active enzymes and other cellulosome components relative to fungal monocultures during this time frame, but expression patterns changed at 24-hour intervals throughout the fungal growth phase. These results demonstrate the importance of establishing methods to extract high-quality RNA from anaerobic fungi at multiple time points during batch cultivation.
{"title":"High-quality RNA extraction and the regulation of genes encoding cellulosomes are correlated with growth stage in anaerobic fungi.","authors":"Jennifer L Brown, Taylor Gierke, Lazarina V Butkovich, Candice L Swift, Vasanth Singan, Christopher Daum, Kerrie Barry, Igor V Grigoriev, Michelle A O'Malley","doi":"10.3389/ffunb.2023.1171100","DOIUrl":"10.3389/ffunb.2023.1171100","url":null,"abstract":"<p><p>Anaerobic fungi produce biomass-degrading enzymes and natural products that are important to harness for several biotechnology applications. Although progress has been made in the development of methods for extracting nucleic acids for genomic and transcriptomic sequencing of these fungi, most studies are limited in that they do not sample multiple fungal growth phases in batch culture. In this study, we establish a method to harvest RNA from fungal monocultures and fungal-methanogen co-cultures, and also determine an optimal time frame for high-quality RNA extraction from anaerobic fungi. Based on RNA quality and quantity targets, the optimal time frame in which to harvest anaerobic fungal monocultures and fungal-methanogen co-cultures for RNA extraction was 2-5 days of growth post-inoculation. When grown on cellulose, the fungal strain <i>Anaeromyces robustus</i> cocultivated with the methanogen <i>Methanobacterium bryantii</i> upregulated genes encoding fungal carbohydrate-active enzymes and other cellulosome components relative to fungal monocultures during this time frame, but expression patterns changed at 24-hour intervals throughout the fungal growth phase. These results demonstrate the importance of establishing methods to extract high-quality RNA from anaerobic fungi at multiple time points during batch cultivation.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1171100"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30eCollection Date: 2023-01-01DOI: 10.3389/ffunb.2023.1214537
Zheng Wang, Wonyong Kim, Yen-Wen Wang, Elizabeta Yakubovich, Caihong Dong, Frances Trail, Jeffrey P Townsend, Oded Yarden
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
{"title":"The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics.","authors":"Zheng Wang, Wonyong Kim, Yen-Wen Wang, Elizabeta Yakubovich, Caihong Dong, Frances Trail, Jeffrey P Townsend, Oded Yarden","doi":"10.3389/ffunb.2023.1214537","DOIUrl":"10.3389/ffunb.2023.1214537","url":null,"abstract":"<p><p>Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera <i>Fusarium</i>, <i>Neurospora</i>, and <i>Trichoderma</i> are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution <i>via</i> integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1214537"},"PeriodicalIF":2.1,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41170341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biohydrogen is mainly produced by anaerobic bacteria, anaerobic fungi, and algae under anaerobic conditions. In higher eukaryotes, it is thought that molecular hydrogen (H2) functions as a signaling molecule for physiological processes such as stress responses. Here, it is demonstrated that white-rot fungi produce H2 during wood decay. The white-rot fungus Trametes versicolor produces H2 from wood under aerobic conditions, and H2 production is completely suppressed under hypoxic conditions. Additionally, oxalate and formate supplementation of the wood culture increased the level of H2 evolution. RNA-seq analyses revealed that T. versicolor oxalate production from the TCA/glyoxylate cycle was down-regulated, and conversely, genes encoding oxalate and formate metabolism enzymes were up-regulated. Although the involvement in H2 production of a gene annotated as an iron hydrogenase was uncertain, the results of organic acid supplementation, gene expression, and self-recombination experiments strongly suggest that formate metabolism plays a role in the mechanism of H2 production by this fungus. It is expected that this novel finding of aerobic H2 production from wood biomass by a white-rot fungus will open new fields in biohydrogen research.
{"title":"Aerobic H<sub>2</sub> production related to formate metabolism in white-rot fungi.","authors":"Toshio Mori, Saaya Takahashi, Ayumi Soga, Misa Arimoto, Rintaro Kishikawa, Yuhei Yama, Hideo Dohra, Hirokazu Kawagishi, Hirofumi Hirai","doi":"10.3389/ffunb.2023.1201889","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1201889","url":null,"abstract":"<p><p>Biohydrogen is mainly produced by anaerobic bacteria, anaerobic fungi, and algae under anaerobic conditions. In higher eukaryotes, it is thought that molecular hydrogen (H<sub>2</sub>) functions as a signaling molecule for physiological processes such as stress responses. Here, it is demonstrated that white-rot fungi produce H<sub>2</sub> during wood decay. The white-rot fungus <i>Trametes versicolor</i> produces H<sub>2</sub> from wood under aerobic conditions, and H<sub>2</sub> production is completely suppressed under hypoxic conditions. Additionally, oxalate and formate supplementation of the wood culture increased the level of H<sub>2</sub> evolution. RNA-seq analyses revealed that <i>T. versicolor</i> oxalate production from the TCA/glyoxylate cycle was down-regulated, and conversely, genes encoding oxalate and formate metabolism enzymes were up-regulated. Although the involvement in H<sub>2</sub> production of a gene annotated as an iron hydrogenase was uncertain, the results of organic acid supplementation, gene expression, and self-recombination experiments strongly suggest that formate metabolism plays a role in the mechanism of H<sub>2</sub> production by this fungus. It is expected that this novel finding of aerobic H<sub>2</sub> production from wood biomass by a white-rot fungus will open new fields in biohydrogen research.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1201889"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-21eCollection Date: 2023-01-01DOI: 10.3389/ffunb.2023.1178290
Koichi Tamano, Daren W Brown, Akira Yoshimi
{"title":"Editorial: The use of metabolic engineering techniques to increase the productivity of primary and secondary metabolites within filamentous fungi.","authors":"Koichi Tamano, Daren W Brown, Akira Yoshimi","doi":"10.3389/ffunb.2023.1178290","DOIUrl":"10.3389/ffunb.2023.1178290","url":null,"abstract":"","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1178290"},"PeriodicalIF":2.1,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-19eCollection Date: 2023-01-01DOI: 10.3389/ffunb.2023.1088966
Hooman Norouzi, Mohammad Sohrabi, Masoud Yousefi, Joel Boustie
Tridepsides, as fully oxidized polyketides, have been known to exist in lichens for more than a century. Recent studies have showed that these possible defensive lichenochemicals possess various biological activities. Also, a candidate biosynthetic gene cluster was recently reported for gyrophoric acid (GA), an important tridepside. The present study focused on biosynthesis, natural sources, biological activities, and bioanalytical methods of tridepside molecules. Our survey shows that, so far, lichenic tridepsides have been reported from 37 families, 111 genera, and 526 species of lichen. Because many of their species contain tridepsides, the families Parmeliaceae, Lobariaceae, and Peltigeraceae can be considered critical lichenic sources of tridepsides. Furthermore, several species of Hypotrachyna in Parmeliaceae family showed lichenic tridepsides, suggesting that this genus is a viable source of tridepsides. This research also explored tridepsides from non-lichenic sources, such as non-lichenized fungi, lichenicolous fungi, endophytes, parasites, and liverworts, which offer substantial potential as biotechnological sources to produce tridepsides, which are produced in small amounts in lichen thalli. Two lichenic tridepsides have also been detected in non-lichenic sources: GA and tenuiorin (TE). Additionally, no significant correlation was found between tridepside biosynthesis and geographical distribution patterns for several potentially tridepside-producing lichens. We further showed that GA is the most studied tridepside with various reported biological activities, including anticancer, wound healing, photoprotection, anti-aging, antioxidant, cardiovascular effect, DNA interaction, anti-diabetes, anti-Alzheimer’s, anti-bacterial, and antifungal. Last but not least, this study provides an overview of some bioanalytical methods used to analyze tridepsides over the past few years.
{"title":"Tridepsides as potential bioactives: a review on their chemistry and the global distribution of their lichenic and non-lichenic natural sources.","authors":"Hooman Norouzi, Mohammad Sohrabi, Masoud Yousefi, Joel Boustie","doi":"10.3389/ffunb.2023.1088966","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1088966","url":null,"abstract":"Tridepsides, as fully oxidized polyketides, have been known to exist in lichens for more than a century. Recent studies have showed that these possible defensive lichenochemicals possess various biological activities. Also, a candidate biosynthetic gene cluster was recently reported for gyrophoric acid (GA), an important tridepside. The present study focused on biosynthesis, natural sources, biological activities, and bioanalytical methods of tridepside molecules. Our survey shows that, so far, lichenic tridepsides have been reported from 37 families, 111 genera, and 526 species of lichen. Because many of their species contain tridepsides, the families Parmeliaceae, Lobariaceae, and Peltigeraceae can be considered critical lichenic sources of tridepsides. Furthermore, several species of Hypotrachyna in Parmeliaceae family showed lichenic tridepsides, suggesting that this genus is a viable source of tridepsides. This research also explored tridepsides from non-lichenic sources, such as non-lichenized fungi, lichenicolous fungi, endophytes, parasites, and liverworts, which offer substantial potential as biotechnological sources to produce tridepsides, which are produced in small amounts in lichen thalli. Two lichenic tridepsides have also been detected in non-lichenic sources: GA and tenuiorin (TE). Additionally, no significant correlation was found between tridepside biosynthesis and geographical distribution patterns for several potentially tridepside-producing lichens. We further showed that GA is the most studied tridepside with various reported biological activities, including anticancer, wound healing, photoprotection, anti-aging, antioxidant, cardiovascular effect, DNA interaction, anti-diabetes, anti-Alzheimer’s, anti-bacterial, and antifungal. Last but not least, this study provides an overview of some bioanalytical methods used to analyze tridepsides over the past few years.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"4 ","pages":"1088966"},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41142039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}