Introduction: Wound complications can cause considerable morbidity in kidney transplantation. Closed-incision negative pressure wound therapy (ciNPWT) systems have been efficacious in reducing wound complications across surgical specialties. The aims of this study were to evaluate the use of ciNPWT, Prevena™, in kidney transplant recipients and to determine any association with wound complications.
Material and methods: A single-center, prospective observational cohort study was performed in 2018. A total of 30 consecutive kidney transplant recipients deemed at high risk for wound complications received ciNPWT, and the results were compared to those of a historical cohort of subjects who received conventional dressings. Analysis for recipients with obesity and propensity score matching were performed.
Results: In total, 127 subjects were included in the analysis. Of these, 30 received a ciNPWT dressing and were compared with 97 subjects from a non-study historical control group who had conventional dressing. The overall wound complication rate was 21.3% (27/127). There was no reduction in the rate of wound complications with ciNPWT when compared with conventional dressing [23.3% (7/30) and 20.6% (20/97), respectively, p = 0.75]. In the obese subset (BMI ≥30 kg/m2), there was no significant reduction in wound complications [31.1% (5/16) and 36.8% (7/19), respectively, p = 0.73]. Propensity score matching yielded 26 matched pairs with equivalent rates of wound complications (23.1%, 6/26).
Conclusion: This is the first reported cohort study evaluating the use of ciNPWT in kidney transplantation. While ciNPWT is safe and well tolerated, it is not associated with a statistically significant reduction in wound complications when compared to conventional dressing. The findings from this study will be used to inform future studies associated with ciNPWT in kidney transplantation.
[This corrects the article DOI: 10.3389/fneph.2023.1194989.].
Introduction: Systemic congestion and pulmonary congestion (PC) are common in hemodialysis (HD) patients. However, the relationship between these two entities is not quite clear. We study this relationship and attempt to uncover the factors that may affect it considering different inter-dialytic intervals.
Methods: A prospective pilot observational and interventional study including 18 HD patients was conducted. The following were obtained: i) B-line score (BLS) by lung ultrasound (LUS) (reflecting significant pulmonary congestion if BLS > 5), ii) echocardiography, iii) bioelectrical impedance analysis (BIA) (reflecting global volume status), and iv) inferior vena cava (IVC) dynamics (reflecting systemic congestion) before and after the first two consecutive HD sessions of the week, with different inter-dialytic intervals (68 hours and 44 hours). Serum N-terminal pro-brain natriuretic peptide type B (NT-proBNP) levels were obtained before each session. Then, patients were randomized into two groups: the active group, where dry weight was reduced according to BLS + standard of care, and the control group, where dry weight was modified according to standard of care. All the measures were repeated on day 30.
Results: We found no correlation between pulmonary congestion represented by BLS and IVC dimensions and dynamics reflecting systemic congestion, independent of different inter-dialytic intervals. Pulmonary congestion was quite prevalent, as mean pre- and post-dialysis BLSs were quite elevated (16 ± 5.53 and 15.3 ± 6.63, respectively) in the first session compared with the second session (16.3 ± 5.26 and 13.6 ± 5.83, respectively). Systolic (left ventricular ejection fraction) and diastolic cardiac function (e/è ratio) parameters from one side and pulmonary congestion (BLS) from the other were not always correlated. BLS was correlated to e/è ratio before HD (session 1) (R 2 = 0.476, p = 0.002) and after HD (session 2) (R 2 = 0.193, p = 0.034). Pulmonary congestion reflected by BLS was correlated to the global volume state reflected by BIA only in the second HD session (HD2) (R 2 = 0.374, p = 0.007). NT-proBNP levels and BLS were correlated before both sessions (R 2 = 0.421, p = 0.004, and R 2 = 0.505, p = 0.001, respectively). Systemic congestion was quite prevalent, as mean pre- and post-dialysis IVC dimensions and dynamics were quite elevated in both sessions, with a higher level of systemic congestion in the first HD session (diameter and collapsibility of 2.1 cm and 23%, and 2.01 cm and 19%, respectively) compared with the second session (1.98 cm and 17.5%, and 1.9 cm and 22%, respectively) without reaching statistical significance. IVC dimensions and global volume status measured by BIA were correlated in the second dialysis session (R 2
Background: Tacrolimus, a calcineurin inhibitor (CNI), is currently the first-line immunosuppressive agent in kidney transplantation. The therapeutic index of tacrolimus is narrow due to due to the substantial impact of minor variations in drug concentration or exposure on clinical outcomes (i.e., nephrotoxicity), and it has a highly variable intra- and inter-individual bioavailability. Non-adherence to immunosuppressants is associated with rejection after kidney transplantation, which is the main cause of long-term graft loss. Once-daily formulations have been shown to significantly improve adherence compared to twice-daily dosing. Envarsus®, the once-daily prolonged-release formulation of tacrolimus, offers the same therapeutic efficacy as the conventional twice-daily immediate-release tacrolimus formulation (Prograf®) with improved bioavailability, a more consistent pharmacokinetic profile, and a reduced peak to trough, which may reduce CNI-related toxicity. Envarsus® has been approved as an immunosuppressive therapy in adults following kidney or liver transplantation but has not yet been approved in children. The objective of this study is to evaluate the pharmacokinetic profile, efficacy, and tolerability of Envarsus® in children and adolescents aged ≥ 8 and ≤ 18 years to assess its potential role as an additional option for immunosuppressive therapy in children after kidney transplantation.
Methods/design: The study is designed as a randomized, prospective crossover trial. Each patient undergoes two treatment sequences: sequence 1 includes 4 weeks of Envarsus® and sequence 2 includes 4 weeks of Prograf®. Patients are randomized to either group A (sequence 1, followed by sequence 2) or group B (sequence 2, followed by sequence 1). The primary objective is to assess equivalency between total exposure (of tacrolimus area under the curve concentration (AUC0-24)), immediate-release tacrolimus (Prograf®) therapy, and prolonged-release tacrolimus (Envarsus®) using a daily dose conversion factor of 0.7 for prolonged- versus immediate-release tacrolimus. Secondary objectives are the assessment of pharmacodynamics, pharmacogenetics, adherence, gut microbiome analyses, adverse events (including tacrolimus toxicity and biopsy-proven rejections), biopsy-proven rejections, difference in estimated glomerular filtration rate (eGFR), and occurrence of donor-specific antibodies (DSAs).
Discussion: This study will test the hypothesis that once-daily prolonged-release tacrolimus (Envarsus®) is bioequivalent to twice-daily intermediate-release tacrolimus after pediatric kidney transplantation and may reduce toxicity and facilitate medication adherence. This novel concept may optimize immunosuppressive therapy for more stable graft function and increased graft survival by avoiding T-cell mediated and
Immunoglobulin A nephropathy (IgAN), characterized by mesangial deposition of galactose-deficient-IgA1 (Gd-IgA1), is the most common biopsy-proven primary glomerulonephritis worldwide. Recently, an improved understanding of its underlying pathogenesis and the substantial risk of progression to kidney failure has emerged. The "four-hit hypothesis" of IgAN pathogenesis outlines a process that begins with elevated circulating levels of Gd-IgA1 that trigger autoantibody production. This results in the formation and deposition of immune complexes in the mesangium, leading to inflammation and kidney injury. Key mediators of the production of Gd-IgA1 and its corresponding autoantibodies are B-cell activating factor (BAFF), and A proliferation-inducing ligand (APRIL), each playing essential roles in the survival and maintenance of B cells and humoral immunity. Elevated serum levels of both BAFF and APRIL are observed in patients with IgAN and correlate with disease severity. This review explores the complex pathogenesis of IgAN, highlighting the pivotal roles of BAFF and APRIL in the interplay between mucosal hyper-responsiveness, B-cell activation, and the consequent overproduction of Gd-IgA1 and its autoantibodies that are key features in this disease. Finally, the potential therapeutic benefits of inhibiting BAFF and APRIL in IgAN, and a summary of recent clinical trial data, will be discussed.