The diagnosis of medical conditions and subsequent treatment often involves radionuclide imaging techniques. To refine localisation accuracy and improve diagnostic confidence, compared with the use of a single scanning technique, a combination of two (or more) techniques can be used but with a higher risk of misalignment. For this to be reliable and accurate, recorded data undergo processing to suppress noise and enhance resolution. A step in image processing techniques for such inverse problems is the inclusion of smoothing. Standard approaches, however, are usually limited to applying identical models globally. In this study, we propose a novel Laplace and Gaussian mixture prior distribution that incorporates different smoothing strategies with the automatic model-based estimation of mixture component weightings creating a locally adaptive model. A fully Bayesian approach is presented using multi-level hierarchical modelling and Markov chain Monte Carlo (MCMC) estimation methods to sample from the posterior distribution and hence perform estimation. The proposed methods are assessed using simulated camera images and demonstrate greater noise reduction than existing methods but without compromising resolution. As well as image estimates, the MCMC methods also provide posterior variance estimates and hence uncertainty quantification takes into consideration any potential sources of variability. The use of mixture prior models, part Laplace random field and part Gaussian random field, within a Bayesian modelling approach is not limited to medical imaging applications but provides a more general framework for analysing other spatial inverse problems. Locally adaptive prior distributions provide a more realistic model, which leads to robust results and hence more reliable decision-making, especially in nuclear medicine. They can become a standard part of the toolkit of everyone working in image processing applications.
Peripheral neuropathy is a prevalent complication in plasma cell disorders, posing significant diagnostic and therapeutic challenges. This study presents three cases initially diagnosed with chronic inflammatory demyelinating polyneuropathy (CIDP). Despite initial symptom regression post-immunomodulatory treatment, the patients exhibited progressive neurological deficits. Advanced laboratory evaluation confirmed monoclonal protein presence, yet traditional diagnostic methods, including bone marrow biopsy and flow cytometry, yielded normal results. Utilizing 18F-FDG PET/CT, we identified multiple hypermetabolic vertebral lesions, which upon biopsy, confirmed the diagnosis of plasmacytoma. Our findings underscore the utility of PET/CT as a reliable diagnostic tool for monoclonal gammopathy associated neuropathy, advocating for its consideration in cases with equivocal diagnosis. When the diagnosis is in doubt, biopsy of a lesion may facilitate early and accurate diagnosis, potentially influencing treatment strategies and patient outcomes.
Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) is an imaging technique that has demonstrated high sensitivity and specificity in detecting prostate cancer and its metastasis, especially in the bones. This case describes a 60-year-old man who presented for increased prostate-specific antigen (PSA) level and underwent [68Ga]gallium-PSMA-11 PET/CT imaging for better disease assessment. 68Ga-PSMA-11 PET/CT revealed numerous radiotracer-positive lesions in both prostate lobes with associated sclerotic lesions on L4 and L5, but only L5 showed increased radiotracer avidity raising the possibility of metastasis. Magnetic Resonance Imaging (MRI) raises the possibility of aggressive MODIC type 1 lesion vs. infectious/inflammatory process. A biopsy of the radiotracer avid area was performed and showed no evidence of metastasis. The final diagnosis was aggressive MODIC type 1, in keeping with the false positive result of 68Ga-PSMA-11 PET/CT. This example demonstrates the possible limitations of 68Ga-PSMA-11 PET/CT, particularly in detecting bone metastases, and emphasizes the need for cautious interpretation and additional study to improve its diagnostic accuracy. Understanding and resolving these limitations is critical for increasing the accuracy of PSMA PET/CT in prostate cancer management.
In this article, we introduce parallelproj, a novel open-source framework designed for efficient parallel computation of projections in tomography leveraging either multiple CPU cores or GPUs. This framework efficiently implements forward and back projection functions for both sinogram and listmode data, utilizing Joseph's method, which is further extended to encompass time-of-flight (TOF) PET projections. Our evaluation involves a series of tests focusing on PET image reconstruction using data sourced from a state-of-the-art clinical PET/CT system. We thoroughly benchmark the performance of the projectors in non-TOF and TOF, sinogram, and listmode employing multi CPU-cores, hybrid CPU/GPU, and exclusive GPU mode. Moreover, we also investigate the timing of non-TOF sinogram projections calculated in STIR (Software for Tomographic Image Reconstruction) which recently integrated parallelproj as one of its projection backends. Our results indicate that the exclusive GPU mode provides acceleration factors between 25 and 68 relative to the multi-CPU-core mode. Furthermore, we demonstrate that OSEM listmode reconstruction of state-of-the-art real-world PET data sets is achievable within a few seconds using a single consumer GPU.
Introduction: We developed a new method that drastically speeds up radiobiological Monte Carlo radiation-track-structure (MC-RTS) calculations on a cell-by-cell basis.
Methods: The technique is based on random sampling and superposition of single-particle track (SPT) standard DNA damage (SDD) files from a "pre-calculated" data library, constructed using the RTS code TOPAS-nBio, with "time stamps" manually added to incorporate dose-rate effects. This time-stamped SDD file can then be input into MEDRAS, a mechanistic kinetic model that calculates various radiation-induced biological endpoints, such as DNA double-strand breaks (DSBs), misrepairs and chromosomal aberrations, and cell death. As a benchmark validation of the approach, we calculated the predicted energy-dependent DSB yield and the ratio of direct-to-total DNA damage, both of which agreed with published in vitro experimental data. We subsequently applied the method to perform a superfast cell-by-cell simulation of an experimental in vitro system consisting of neuroendocrine tumor cells uniformly incubated with 177Lu.
Results and discussion: The results for residual DSBs, both at 24 and 48 h post-irradiation, are in line with the published literature values. Our work serves as a proof-of-concept demonstration of the feasibility of a cost-effective "in silico clonogenic cell survival assay" for the computational design and development of radiopharmaceuticals and novel radiotherapy treatments more generally.
Background: 18F-prostate specific membrane antigen (PSMA) PET is fast becoming the gold-standard in prostate cancer, both in staging of intermediate-/high-risk patients and in re-staging patients with biochemical failure. Several pitfalls of 18F-PSMA PET have been reported, and we report, to our best of knowledge, for the first time, a case which could have been falsely diagnosed as peritoneal spread.
Case presentation: A 67-year-old patient with high-risk prostate cancer underwent staging with 18F-PSMA-1007 PET/CT (PSMA-PET/CT). PSMA-PET/CT revealed a histologically confirmed prostatic malignancy in the peripheral left zone. Unexpectedly, additional multiple highly PSMA-expressing intraabdominal formations were discovered. Based on apparent anatomic asplenia and a history of traumatic splenic rapture during childhood, a suspicion of post-traumatic splenosis was raised. For further non-invasive evaluation, a C-99 sulphur colloid scintigraphy with SPECT was conducted, confirming the presence of multiple functional ectopic splenic tissues. This is, to our best of knowledge, the first case utilising 18F-PSMA-1007-PET/CT and 99mTc-sulphur colloid SPECT to detect intraabdominal splenosis, highlighting the high potential of nuclear medicine in such trivial cases.