Secure aggregation protects the local models of the users in federated learning, by not allowing the server to obtain any information beyond the aggregate model at each iteration. Naively implementing secure aggregation fails to protect the integrity of the aggregate model in the possible presence of a malicious server forging the aggregation result, which motivates verifiable aggregation in federated learning. Existing verifiable aggregation schemes either have a linear complexity in model size or require time-consuming reconstruction at the server, that is quadratic in the number of users, in case of likely user dropouts. To overcome these limitations, we propose LightVeriFL