Pub Date : 2022-09-15DOI: 10.1109/OJCSYS.2022.3206710
Shayok Mukhopadhyay;Hafiz M. Usman;Habibur Rehman
This paper proposes an accurate and efficient Universal Adaptive Stabilizer (UAS) based online parameters estimation technique for a 400 V Li-ion battery bank. The battery open circuit voltage, parameters modeling the transient response, and series resistance are all estimated in a single real-time test. In contrast to earlier UAS based work on individual battery packs, this work does not require prior offline experimentation or any post-processing. Real time fast convergence of parameters' estimates with minimal experimental effort enables update of battery parameters during run-time. The proposed strategy is mathematically validated and its performance is demonstrated on a 400 V, 6.6 Ah Li-ion battery bank powering an induction motor driven prototype electric vehicle (EV) traction system.
{"title":"Real Time Li-Ion Battery Bank Parameters Estimation via Universal Adaptive Stabilization","authors":"Shayok Mukhopadhyay;Hafiz M. Usman;Habibur Rehman","doi":"10.1109/OJCSYS.2022.3206710","DOIUrl":"https://doi.org/10.1109/OJCSYS.2022.3206710","url":null,"abstract":"This paper proposes an accurate and efficient Universal Adaptive Stabilizer (UAS) based online parameters estimation technique for a 400 V Li-ion battery bank. The battery open circuit voltage, parameters modeling the transient response, and series resistance are all estimated in a single real-time test. In contrast to earlier UAS based work on individual battery packs, this work does not require prior offline experimentation or any post-processing. Real time fast convergence of parameters' estimates with minimal experimental effort enables update of battery parameters during run-time. The proposed strategy is mathematically validated and its performance is demonstrated on a 400 V, 6.6 Ah Li-ion battery bank powering an induction motor driven prototype electric vehicle (EV) traction system.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"268-293"},"PeriodicalIF":0.0,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09893763.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50348786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-15DOI: 10.1109/OJCSYS.2022.3207108
Yu Wang;Hussein Sibai;Mark Yen;Sayan Mitra;Geir E. Dullerud
Statistical model checking is a class of sequential algorithms that can verify specifications of interest on an ensemble of cyber-physical systems (e.g., whether 99% of cars from a batch meet a requirement on their functionality). These algorithms infer the probability that given specifications are satisfied by the systems with provable statistical guarantees by drawing sufficient numbers of independent and identically distributed samples. During the process of statistical model checking, the values of the samples (e.g., a user's car trajectory) may be inferred by intruders, causing privacy concerns in consumer-level applications (e.g., automobiles and medical devices). This paper addresses the privacy of statistical model checking algorithms from the point of view of differential privacy. These algorithms are sequential, drawing samples until a condition on their values is met. We show that revealing the number of samples drawn can violate privacy. We also show that the standard exponential mechanism that randomizes the output of an algorithm to achieve differential privacy fails to do so in the context of sequential algorithms. Instead, we relax the conservative requirement in differential privacy that the sensitivity of the output of the algorithm should be bounded to any perturbation for any data set. We propose a new notion of differential privacy which we call expected differential privacy