Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough in the immunotherapy field and has achieved great success following its approval in 2017 for the treatment of B cell malignancies. While CAR-T cells are mostly applied as anti-tumor therapy in the present, their initial concept was aimed at a more general purpose of targeting membrane antigens, thus translating in many potential applications. Since then, several studies have assessed the use of CAR-T cells toward non-malignant pathologies such as autoimmune diseases, infectious diseases and, more recently, cardiac fibrosis, and cellular senescence. In this review, we present the main findings and implications of CAR-based therapies for non-malignant conditions.
Introduction: Ageing is associated with increased number of infections, decreased vaccine efficacy and increased systemic inflammation termed inflammageing. These changes are reflected by reduced recall responses to varicella zoster virus (VZV) challenge in the skin of older adults. Vitamin D deficiency is more common in the old and has been associated with frailty and increased inflammation. In addition, vitamin D increases immunoregulatory mechanisms and therefore has the potential to inhibit inflammageing.
Objectives: We investigated the use of vitamin D3 replacement to enhance cutaneous antigen-specific immunity in older adults (≥65 years).
Methods: Vitamin D insufficient older adults (n = 18) were administered 6400IU of vitamin D3/day orally for 14 weeks. Antigen-specific immunity to VZV was assessed by clinical score assessment of the injection site and transcriptional analysis of skin biopsies collected from challenged injection sites pre- and post-vitamin D3 replacement.
Results: We showed that older adults had reduced VZV-specific cutaneous immune response and increased non-specific inflammation as compared to young. Increased non-specific inflammation observed in the skin of older adults negatively correlated with vitamin D sufficiency. We showed that vitamin D3 supplementation significantly increased the response to cutaneous VZV antigen challenge in older adults. This enhancement was associated with a reduction in inflammatory monocyte infiltration with a concomitant enhancement of T cell recruitment to the site of antigen challenge in the skin.
Conclusion: Vitamin D3 replacement can boost antigen-specific immunity in older adults with sub-optimal vitamin D status.
Curbing unwanted T cell responses by costimulation blockade has been a recognised immunosuppressive strategy for the last 15 years. However, our understanding of how best to deploy this intervention is still evolving. A key challenge has been the heterogeneity in the clinical response to costimulation blockade, and an inability to predict which individuals are likely to benefit most. Here, we discuss our recent findings based on the use of costimulation blockade in people with type 1 diabetes (T1D) and place them in the context of the current literature. We discuss how profiling follicular helper T cells (Tfh) in pre-treatment blood samples may have value in predicting which individuals are likely to benefit from costimulation blockade drugs such as abatacept.
Immunotherapies are disease management strategies that target or manipulate components of the immune system. Infectious diseases pose a significant threat to human health as evidenced by countries continuing to grapple with several emerging and re-emerging diseases, the most recent global health threat being the SARS-CoV2 pandemic. As such, various immunotherapeutic approaches are increasingly being investigated as alternative therapies for infectious diseases, resulting in significant advances towards the uncovering of pathogen-host immunity interactions. Novel and innovative therapeutic strategies are necessary to overcome the challenges typically faced by existing infectious disease prevention and control methods such as lack of adequate efficacy, drug toxicity, and the emergence of drug resistance. As evidenced by recent developments and success of pharmaceuticals such as monoclonal antibodies (mAbs), immunotherapies already show abundant promise to overcome such limitations while also advancing the frontiers of medicine. In this review, we summarize some of the most notable inroads made to combat infectious disease, over mainly the last 5 years, through the use of immunotherapies such as vaccines, mAb-based therapies, T-cell-based therapies, manipulation of cytokine levels, and checkpoint inhibition. While its most general applications are founded in cancer treatment, advances made towards the curative treatment of human immunodeficiency virus, tuberculosis, malaria, zika virus and, most recently COVID-19, reinforce the role of immunotherapeutic strategies in the broader field of disease control. Ultimately, the comprehensive specificity, safety, and cost of immunotherapeutics will impact its widespread implementation.
Objectives: Regulatory T cells (Treg) play a major role in the suppression of protective anti-tumour T cell responses. In the CT26 BALB/c murine model of colorectal carcinoma, Tregs differentially suppress responses to two characterised CD8+ T epitopes, AH1 and GSW11, which results in an absence of detectable IFN-γ-producing GSW11-specific T cells in the spleen and lymph nodes of tumour challenged mice. Activation of GSW11-specific T cells correlates with protection against tumour progression. We wanted to examine the presence of non-functional GSW11-specific T cells in Treg replete and depleted mice, assess their phenotype and their affinity compared to AH1-specific T cells.
Methods: We used peptide-specific tetramers to identify tumour-specific CD8+ T cells and assessed the cell surface expression of markers associated with exhaustion (PD-1, Tim3 and Lag-3) and their function by IFN-g production using flow cytometry. We also assessed the T cell receptor (TcR) clonality of tumour-specific T cells. Tetramer competition assays were performed to determine the relative affinity of identified TcR.
Results: Here, we show that GSW11-specific T cells are in fact induced in Treg-replete, CT26-bearing mice, where they make up the majority of tumour-infiltrating CD8+ lymphocytes, but exhibit an 'exhausted' phenotype. This dysfunctional phenotype is induced early in the anti-tumour response in tumours. Depletion of Tregs prior to tumour challenge correlates with an altered T cell receptor (TcR) repertoire. Moreover, the avidity of GSW11-specific TcRs that expanded in the absence of Tregs was significantly lower compared with TcRs of CD8+populations that were diminished in protective anti-tumour responses.
Conclusion: Our results indicate that Tregs suppress the induction of protective anti-tumour T cell responses and may signify that low-avidity T cells play an important role in this protection.