Background: Major depressive disorder is a common mental disorder affecting 5% of adults worldwide. Early contact with health care services is critical for achieving accurate diagnosis and improving patient outcomes. Key symptoms of major depressive disorder (depression hereafter) such as cognitive distortions are observed in verbal communication, which can also manifest in the structure of written language. Thus, the automatic analysis of text outputs may provide opportunities for early intervention in settings where written communication is rich and regular, such as social media and web-based forums.
Objective: The objective of this study was 2-fold. We sought to gauge the effectiveness of different machine learning approaches to identify users of the mass web-based forum Reddit, who eventually disclose a diagnosis of depression. We then aimed to determine whether the time between a forum post and a depression diagnosis date was a relevant factor in performing this detection.
Methods: A total of 2 Reddit data sets containing posts belonging to users with and without a history of depression diagnosis were obtained. The intersection of these data sets provided users with an estimated date of depression diagnosis. This derived data set was used as an input for several machine learning classifiers, including transformer-based language models (LMs).
Results: Bidirectional Encoder Representations from Transformers (BERT) and MentalBERT transformer-based LMs proved the most effective in distinguishing forum users with a known depression diagnosis from those without. They each obtained a mean F1-score of 0.64 across the experimental setups used for binary classification. The results also suggested that the final 12 to 16 weeks (about 3-4 months) of posts before a depressed user's estimated diagnosis date are the most indicative of their illness, with data before that period not helping the models detect more accurately. Furthermore, in the 4- to 8-week period before the user's estimated diagnosis date, their posts exhibited more negative sentiment than any other 4-week period in their post history.
Conclusions: Transformer-based LMs may be used on data from web-based social media forums to identify users at risk for psychiatric conditions such as depression. Language features picked up by these classifiers might predate depression onset by weeks to months, enabling proactive mental health care interventions to support those at risk for this condition.
Background: Despite immense progress in artificial intelligence (AI) models, there has been limited deployment in health care environments. The gap between potential and actual AI applications is likely due to the lack of translatability between controlled research environments (where these models are developed) and clinical environments for which the AI tools are ultimately intended.
Objective: We previously developed the Translational Evaluation of Healthcare AI (TEHAI) framework to assess the translational value of AI models and to support successful transition to health care environments. In this study, we applied the TEHAI framework to the COVID-19 literature in order to assess how well translational topics are covered.
Methods: A systematic literature search for COVID-19 AI studies published between December 2019 and December 2020 resulted in 3830 records. A subset of 102 (2.7%) papers that passed the inclusion criteria was sampled for full review. The papers were assessed for translational value and descriptive data collected by 9 reviewers (each study was assessed by 2 reviewers). Evaluation scores and extracted data were compared by a third reviewer for resolution of discrepancies. The review process was conducted on the Covidence software platform.
Results: We observed a significant trend for studies to attain high scores for technical capability but low scores for the areas essential for clinical translatability. Specific questions regarding external model validation, safety, nonmaleficence, and service adoption received failed scores in most studies.
Conclusions: Using TEHAI, we identified notable gaps in how well translational topics of AI models are covered in the COVID-19 clinical sphere. These gaps in areas crucial for clinical translatability could, and should, be considered already at the model development stage to increase translatability into real COVID-19 health care environments.
Background: The use of patient health and treatment information captured in structured and unstructured formats in computerized electronic health record (EHR) repositories could potentially augment the detection of safety signals for drug products regulated by the US Food and Drug Administration (FDA). Natural language processing and other artificial intelligence (AI) techniques provide novel methodologies that could be leveraged to extract clinically useful information from EHR resources.
Objective: Our aim is to develop a novel AI-enabled software prototype to identify adverse drug event (ADE) safety signals from free-text discharge summaries in EHRs to enhance opioid drug safety and research activities at the FDA.
Methods: We developed a prototype for web-based software that leverages keyword and trigger-phrase searching with rule-based algorithms and deep learning to extract candidate ADEs for specific opioid drugs from discharge summaries in the Medical Information Mart for Intensive Care III (MIMIC III) database. The prototype uses MedSpacy components to identify relevant sections of discharge summaries and a pretrained natural language processing (NLP) model, Spark NLP for Healthcare, for named entity recognition. Fifteen FDA staff members provided feedback on the prototype's features and functionalities.
Results: Using the prototype, we were able to identify known, labeled, opioid-related adverse drug reactions from text in EHRs. The AI-enabled model achieved accuracy, recall, precision, and F1-scores of 0.66, 0.69, 0.64, and 0.67, respectively. FDA participants assessed the prototype as highly desirable in user satisfaction, visualizations, and in the potential to support drug safety signal detection for opioid drugs from EHR data while saving time and manual effort. Actionable design recommendations included (1) enlarging the tabs and visualizations; (2) enabling more flexibility and customizations to fit end users' individual needs; (3) providing additional instructional resources; (4) adding multiple graph export functionality; and (5) adding project summaries.
Conclusions: The novel prototype uses innovative AI-based techniques to automate searching for, extracting, and analyzing clinically useful information captured in unstructured text in EHRs. It increases efficiency in harnessing real-world data for opioid drug safety and increases the usability of the data to support regulatory review while decreasing the manual research burden.