[This corrects the article on p. e55 in vol. 3, PMID: 31453218.].
[This corrects the article on p. e55 in vol. 3, PMID: 31453218.].
We have previously shown that the curcumin derivative 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), when encapsulated in styrene maleic acid micelles (SMA-RL71), significantly suppressed the growth of MDA-MB-231 xenografts by 67%. Univariate statistical analysis showed that pEGFR/EGFR, pAkt/Akt, pmTOR/mTOR and p4EBP1/4EPBP1 were all significantly decreased in tumors from treated mice compared to SMA controls. In this study, multivariate statistical analyses (MVAs) were performed to identify the molecular networks that worked together to drive tumor suppression, with the aim to determine if this analysis could also be used to predict treatment outcome. Linear discriminant analysis correctly predicted, to 100% certainty, mice that received SMA-RL71 treatment. Additionally, results from multiple linear regression showed that the expression of Ki67, PKC-α, PP2AA-α, PP2AA-β and CaD1 networked together to drive tumor growth suppression. Overall, the MVAs provided evidence for a molecular network of signaling proteins that drives tumor suppression in response to SMA-RL71 treatment, which should be explored further in animal studies of cancer.
Eye banked research-grade human donor corneas serve as principal ex vivo source for studying the mechanisms that underlie corneal endothelial cell damage/death and survival. Wide-field specular microscopy can be used for corneal endothelial visualization and allows for indirect assessment of endothelial cell function by analyzing endothelial cell density and morphometric parameters. However, a standardized approach is needed to observe corneal endothelial changes over time. This protocol describes reliable ex vivo methods for consecutive analyses of human donor corneal endothelial cell density and morphometric parameters change using a wide-field dual imaging specular microscope. This protocol involves tissue warming, acquisition and analysis of specular endothelial images, assessment of corneal layers with the new Enhance mode, optical pachymetry measurement, and qualitative image quality grading scales. This quantitative and qualitative evaluation of donor corneas allows for a systematic analysis of endothelial dynamic responses to ex vivo induced stress and can be used as a valuable tool to better elucidate specular findings and mechanisms mediating corneal endothelial cell loss in corneal disease and after transplantation.
Ongoing tissue repair and formation and deposition of collagen-rich extracellular matrix in tissues and organs finally lead to fibrotic lesions and destruction of normal tissue/organ architecture and function. In the lung, scarring is observed in asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis to various degrees. At the cellular level immune cells, fibroblasts and epithelial cells are all involved in fibrotic processes. Mechanistically, fibroblast to myofibroblast transformation and epithelial to mesenchymal transition are major drivers of fibrosis. Amongst others, both processes are controlled by transforming growth factor beta-1 (TGFβ-1), a growth factor upregulated in idiopathic pulmonary fibrosis lungs. Phenotypic assays with primary human cells and complex disease-relevant readouts become increasingly important in modern drug discovery processes. We describe high-content screening based phenotypic assays with primary normal human lung fibroblasts and primary human airway epithelial cells. For both cell types, TGFβ-1 stimulation is used to induce fibrotic phenotypes in vitro, with alpha smooth muscle actin and collagen-I as readouts for FMT and E-cadherin as a readout for EMT. For each assay, a detailed image analysis protocols is described. Treatment of both cell types with TGFβ-1 and a transforming growth factor beta receptor inhibitor verifies the suitability of the assays for pharmacological interventions. In addition, the assays are compatible for siRNA and Cas9-ribonucleoprotein transfections, and thus are useful for genetic target identification/validation by modulating gene expression.