Vanesa C. Sanchez, Alayna Craig-Lucas, Christophe Cataisson, Brandi L. Carofino, Stuart H. Yuspa
Mouse models of breast cancer have revealed that tumour-bearing hosts must express the oxidoreductase CLIC4 to develop lung metastases. In the absence of host CLIC4, primary tumours grow but the lung premetastatic niche is defective for metastatic seeding. Primary breast cancer cells release EVs that incorporate CLIC4 as cargo and circulate in plasma of wildtype tumour-bearing hosts. CLIC4-deficient breast cancer cells also form tumours in wildtype hosts and release EVs in plasma, but these EVs lack CLIC4, suggesting that the tumour is the source of the plasma-derived EVs that carry CLIC4 as cargo. Paradoxically, circulating EVs are also devoid of CLIC4 when CLIC4-expressing primary tumours are grown in CLIC4 knockout hosts. Thus, the incorporation of CLIC4 (and perhaps other factors) as EV cargo released from tumours involve specific signals from the surrounding stroma determined by its genetic composition. Since CLIC4 is also detected in circulating EVs from human breast cancer patients, future studies will address its association with disease.
{"title":"Crosstalk between tumour and stroma modifies CLIC4 cargo in extracellular vesicles","authors":"Vanesa C. Sanchez, Alayna Craig-Lucas, Christophe Cataisson, Brandi L. Carofino, Stuart H. Yuspa","doi":"10.1002/jex2.118","DOIUrl":"https://doi.org/10.1002/jex2.118","url":null,"abstract":"<p>Mouse models of breast cancer have revealed that tumour-bearing hosts must express the oxidoreductase CLIC4 to develop lung metastases. In the absence of host CLIC4, primary tumours grow but the lung premetastatic niche is defective for metastatic seeding. Primary breast cancer cells release EVs that incorporate CLIC4 as cargo and circulate in plasma of wildtype tumour-bearing hosts. CLIC4-deficient breast cancer cells also form tumours in wildtype hosts and release EVs in plasma, but these EVs lack CLIC4, suggesting that the tumour is the source of the plasma-derived EVs that carry CLIC4 as cargo. Paradoxically, circulating EVs are also devoid of CLIC4 when CLIC4-expressing primary tumours are grown in CLIC4 knockout hosts. Thus, the incorporation of CLIC4 (and perhaps other factors) as EV cargo released from tumours involve specific signals from the surrounding stroma determined by its genetic composition. Since CLIC4 is also detected in circulating EVs from human breast cancer patients, future studies will address its association with disease.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50131922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal-side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases (e.g., AMD).
{"title":"Polarized desmosome and hemidesmosome shedding via small extracellular vesicles is an early indicator of outer blood-retina barrier dysfunction","authors":"Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn","doi":"10.1002/jex2.116","DOIUrl":"https://doi.org/10.1002/jex2.116","url":null,"abstract":"<p>The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal-side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases (e.g., AMD).</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.116","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50129547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vera Mugoni, Yari Ciani, Orsetta Quaini, Simone Tomasini, Michela Notarangelo, Federico Vannuccini, Alessia Marinelli, Elena Leonardi, Stefano Pontalti, Angela Martinelli, Daniele Rossetto, Isabella Pesce, Sheref S. Mansy, Mattia Barbareschi, Antonella Ferro, Orazio Caffo, Gerhardt Attard, Dolores Di Vizio, Vito Giuseppe D'Agostino, Caterina Nardella, Francesca Demichelis
Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (One Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n = 64 healthy donors (HD) and non–metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports ONCE as a valuable tool for multi-analytes liquid biopsies’ clinical implementation.
{"title":"Integrating extracellular vesicle and circulating cell-free DNA analysis using a single plasma aliquot improves the detection of HER2 positivity in breast cancer patients","authors":"Vera Mugoni, Yari Ciani, Orsetta Quaini, Simone Tomasini, Michela Notarangelo, Federico Vannuccini, Alessia Marinelli, Elena Leonardi, Stefano Pontalti, Angela Martinelli, Daniele Rossetto, Isabella Pesce, Sheref S. Mansy, Mattia Barbareschi, Antonella Ferro, Orazio Caffo, Gerhardt Attard, Dolores Di Vizio, Vito Giuseppe D'Agostino, Caterina Nardella, Francesca Demichelis","doi":"10.1002/jex2.108","DOIUrl":"https://doi.org/10.1002/jex2.108","url":null,"abstract":"<p>Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (One Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on <i>n</i> = 64 healthy donors (HD) and non–metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports ONCE as a valuable tool for multi-analytes liquid biopsies’ clinical implementation.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50154368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Højberg Berggreen, Julie Lund Petersen, Lin Lin, Karim Benabdellah, Yonglun Luo
The CRISPR gene editing tool holds great potential for curing genetic disorders. However, the safe, efficient, and specific delivery of the CRISPR/Cas9 components into cells and tissues remains a challenge. While many currently available delivery methods achieve high levels of gene editing effects in vivo, they often result in genotoxicity and immunogenicity. Extracellular vesicles (EVs), which are cell-derived lipid nanoparticles, are capable of transferring protein and nucleic acid cargoes between cells, making them a promising endogenous alternative to synthetic delivery methods. This review provides a comprehensive analysis of the currently available strategies for EV-mediated delivery of CRISPR/Cas9. These strategies include cell-based, passive loading obtained by overexpression of CRISPR/Cas9, active loading involving protein or RNA dimerization, and loading into already purified EVs. All these approaches suggest that EV-based CRISPR/Cas9 delivery is useful for achieving both in vitro and in vivo gene editing. Despite that, substantial variations in cellular uptake and gene editing efficiencies indicate that further improvement and standardization are required for the therapeutic use of EVs as a CRISPR/Cas9 delivery vehicle. These improvements include, but is not limited to, the high-yield purification of EVs, increased loading and release efficiencies, as well as improved tissue- or cell-specific targeting specificities.
{"title":"CRISPR delivery with extracellular vesicles: Promises and challenges","authors":"Anne Højberg Berggreen, Julie Lund Petersen, Lin Lin, Karim Benabdellah, Yonglun Luo","doi":"10.1002/jex2.111","DOIUrl":"https://doi.org/10.1002/jex2.111","url":null,"abstract":"<p>The CRISPR gene editing tool holds great potential for curing genetic disorders. However, the safe, efficient, and specific delivery of the CRISPR/Cas9 components into cells and tissues remains a challenge. While many currently available delivery methods achieve high levels of gene editing effects in vivo, they often result in genotoxicity and immunogenicity. Extracellular vesicles (EVs), which are cell-derived lipid nanoparticles, are capable of transferring protein and nucleic acid cargoes between cells, making them a promising endogenous alternative to synthetic delivery methods. This review provides a comprehensive analysis of the currently available strategies for EV-mediated delivery of CRISPR/Cas9. These strategies include cell-based, passive loading obtained by overexpression of CRISPR/Cas9, active loading involving protein or RNA dimerization, and loading into already purified EVs. All these approaches suggest that EV-based CRISPR/Cas9 delivery is useful for achieving both in vitro and in vivo gene editing. Despite that, substantial variations in cellular uptake and gene editing efficiencies indicate that further improvement and standardization are required for the therapeutic use of EVs as a CRISPR/Cas9 delivery vehicle. These improvements include, but is not limited to, the high-yield purification of EVs, increased loading and release efficiencies, as well as improved tissue- or cell-specific targeting specificities.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50140314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siddiq, A., Dong, G., Balan, B., Harrison, L. G., Jex, A., Olivier, M., Allain, T., & Buret, A. G. (2023). A thermo-resistant and RNase-sensitive cargo from Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria. Journal of Extracellular Biology, 2, e109. https://doi.org/10.1002/jex2.109
In the originally-published article, incorrect text was included for the Acknowledgements and Conflict of Interest Statement sections. The correct text appears below. The article has been updated online.
We apologize for this error.
All co-authors have seen and agree with the contents of the manuscript and there is no conflict of interest
{"title":"Correction to A thermo-resistant and RNase-sensitive cargo from Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria","authors":"","doi":"10.1002/jex2.114","DOIUrl":"https://doi.org/10.1002/jex2.114","url":null,"abstract":"<p>Siddiq, A., Dong, G., Balan, B., Harrison, L. G., Jex, A., Olivier, M., Allain, T., & Buret, A. G. (2023). A thermo-resistant and RNase-sensitive cargo from <i>Giardia duodenalis</i> extracellular vesicles modifies the behaviour of enterobacteria. <i>Journal of Extracellular Biology</i>, 2, e109. https://doi.org/10.1002/jex2.109</p><p>In the originally-published article, incorrect text was included for the Acknowledgements and Conflict of Interest Statement sections. The correct text appears below. The article has been updated online.</p><p>We apologize for this error.</p><p>All co-authors have seen and agree with the contents of the manuscript and there is no conflict of interest</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50136332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Elizabeth Bamford, Natasha Vassileff, Jereme G. Spiers, Wil Gardner, David A. Winkler, Benjamin W. Muir, Andrew F. Hill, Paul J. Pigram
Extracellular vesicles (EVs) are potentially useful biomarkers for disease detection and monitoring. Development of a label-free technique for imaging and distinguishing small volumes of EVs from different cell types and cell states would be of great value. Here, we have designed a method to explore the chemical changes in EVs associated with neuroinflammation using Time-of-Flight Secondary Ion Mass spectrometry (ToF-SIMS) and machine learning (ML). Mass spectral imaging was able to identify and differentiate EVs released by microglia following lipopolysaccharide (LPS) stimulation compared to a control group. This process requires a much smaller sample size (1 µL) than other molecular analysis methods (up to 50 µL). Conspicuously, we saw a reduction in free cysteine thiols (a marker of cellular oxidative stress associated with neuroinflammation) in EVs from microglial cells treated with LPS, consistent with the reduced cellular free thiol levels measured experimentally. This validates the synergistic combination of ToF-SIMS and ML as a sensitive and valuable technique for collecting and analysing molecular data from EVs at high resolution.
{"title":"High resolution imaging and analysis of extracellular vesicles using mass spectral imaging and machine learning","authors":"Sarah Elizabeth Bamford, Natasha Vassileff, Jereme G. Spiers, Wil Gardner, David A. Winkler, Benjamin W. Muir, Andrew F. Hill, Paul J. Pigram","doi":"10.1002/jex2.110","DOIUrl":"https://doi.org/10.1002/jex2.110","url":null,"abstract":"<p>Extracellular vesicles (EVs) are potentially useful biomarkers for disease detection and monitoring. Development of a label-free technique for imaging and distinguishing small volumes of EVs from different cell types and cell states would be of great value. Here, we have designed a method to explore the chemical changes in EVs associated with neuroinflammation using Time-of-Flight Secondary Ion Mass spectrometry (ToF-SIMS) and machine learning (ML). Mass spectral imaging was able to identify and differentiate EVs released by microglia following lipopolysaccharide (LPS) stimulation compared to a control group. This process requires a much smaller sample size (1 µL) than other molecular analysis methods (up to 50 µL). Conspicuously, we saw a reduction in free cysteine thiols (a marker of cellular oxidative stress associated with neuroinflammation) in EVs from microglial cells treated with LPS, consistent with the reduced cellular free thiol levels measured experimentally. This validates the synergistic combination of ToF-SIMS and ML as a sensitive and valuable technique for collecting and analysing molecular data from EVs at high resolution.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50149802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniele Stajano, Franco L. Lombino, Michaela Schweizer, Markus Glatzel, Paul Saftig, Kira V. Gromova, Matthias Kneussel
Neurons in the central nervous system release extracellular vesicles (EVs) and exosomes in response to synaptic activity to regulate physiological processes at target neurons. The intercellular transfer of proteins, mRNAs, lipids or metabolites through EVs potentially modulates the structure and function of neurons and circuits. Whereas the biogenesis of EVs, their release from donor cells, and their molecular composition have been studied extensively, the critical factors and mechanisms regulating EV interactions with target cells are incompletely understood.
Here, we identified tetraspanin 15 (Tspan15) as a component of tumor susceptibility gene 101 protein (TSG101)- and CD81-positive EV fractions. Tspan15 fluorescent fusion proteins were released from donor cells and interacted with target cells together with the exosomal marker CD63. EVs collected from wildtype cortical neurons (WT-EVs) underwent similar association with target neurons derived from either wildtype (+/+) or Tspan15 knockout (−/−) mice. In contrast, target cell interactions of EVs collected from Tspan15 (−/−) cortical donor neurons (KO-EVs) were significantly impaired, as compared to WT-EVs. Our data suggest that Tspan15 is dispensable at target neuron plasma membranes, but is required at the EV surface to promote EV docking at target neurons.
{"title":"Tetraspanin 15 depletion impairs extracellular vesicle docking at target neurons","authors":"Daniele Stajano, Franco L. Lombino, Michaela Schweizer, Markus Glatzel, Paul Saftig, Kira V. Gromova, Matthias Kneussel","doi":"10.1002/jex2.113","DOIUrl":"https://doi.org/10.1002/jex2.113","url":null,"abstract":"<p>Neurons in the central nervous system release extracellular vesicles (EVs) and exosomes in response to synaptic activity to regulate physiological processes at target neurons. The intercellular transfer of proteins, mRNAs, lipids or metabolites through EVs potentially modulates the structure and function of neurons and circuits. Whereas the biogenesis of EVs, their release from donor cells, and their molecular composition have been studied extensively, the critical factors and mechanisms regulating EV interactions with target cells are incompletely understood.</p><p>Here, we identified tetraspanin 15 (Tspan15) as a component of tumor susceptibility gene 101 protein (TSG101)- and CD81-positive EV fractions. Tspan15 fluorescent fusion proteins were released from donor cells and interacted with target cells together with the exosomal marker CD63. EVs collected from wildtype cortical neurons (WT-EVs) underwent similar association with target neurons derived from either wildtype (+/+) or Tspan15 knockout (−/−) mice. In contrast, target cell interactions of EVs collected from Tspan15 (−/−) cortical donor neurons (KO-EVs) were significantly impaired, as compared to WT-EVs. Our data suggest that Tspan15 is dispensable at target neuron plasma membranes, but is required at the EV surface to promote EV docking at target neurons.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50149801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Affan Siddiq, George Dong, Balu Balan, Luke G. Harrison, Aaron Jex, Martin Olivier, Thibault Allain, Andre G. Buret
Extracellular vesicles (EVs) recently emerged as important players in the pathophysiology of parasitic infections. While the protist parasite Giardia duodenalis can produce EVs, their role in giardiasis remains obscure. Giardia can disrupt gut microbiota biofilms and transform commensal bacteria into invasive pathobionts at sites devoid of colonizing trophozoites via unknown mechanisms. We hypothesized that Giardia EVs could modify gut bacterial behaviour via a novel mode of trans-kingdom communication. Our findings indicate that Giardia EVs exert bacteriostatic effects on Escherichia coli HB101 and Enterobacter cloacae TW1, increasing their swimming motility. Giardia EVs also decreased the biofilm-forming ability of E. coli HB101 but not by E. cloacae TW1, supporting the hypothesis that these effects are, at least in part, bacteria-selective. E. coli HB101 and E. cloacae TW1 exhibited increased adhesion/invasion onto small intestine epithelial cells when exposed to Giardia EVs. EVs labelled with PKH67 revealed colocalization with E. coli HB101 and E. cloacae TW1 bacterial cells. Small RNA sequencing revealed a high abundance of ribosomal RNA (rRNA)- and transfer RNA (tRNA)-derived small RNAs, short-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) within Giardia EVs. Proteomic analysis of EVs uncovered the presence of RNA chaperones and heat shock proteins that can facilitate the thermal stability of EVs and its sRNA cargo, as well as protein-modifying enzymes. In vitro, RNase heat-treatment assays showed that total RNAs in EVs, but not proteins, are responsible for modulating bacterial swimming motility and biofilm formation. G. duodenalis small RNAs of EVs, but not proteins, were responsible for the increased bacterial adhesion to intestinal epithelial cells induced upon exposure to Giardia EVs. Together, the findings indicate that Giardia EVs contain a heat-stable, RNase-sensitive cargo that can trigger the development of pathobiont characteristics in Enterobacteria, depicting a novel trans-kingdom cross-talk in the gut.
{"title":"A thermo-resistant and RNase-sensitive cargo from Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria","authors":"Affan Siddiq, George Dong, Balu Balan, Luke G. Harrison, Aaron Jex, Martin Olivier, Thibault Allain, Andre G. Buret","doi":"10.1002/jex2.109","DOIUrl":"10.1002/jex2.109","url":null,"abstract":"<p>Extracellular vesicles (EVs) recently emerged as important players in the pathophysiology of parasitic infections. While the protist parasite <i>Giardia duodenalis</i> can produce EVs, their role in giardiasis remains obscure. <i>Giardia</i> can disrupt gut microbiota biofilms and transform commensal bacteria into invasive pathobionts at sites devoid of colonizing trophozoites via unknown mechanisms. We hypothesized that <i>Giardia</i> EVs could modify gut bacterial behaviour via a novel mode of trans-kingdom communication. Our findings indicate that <i>Giardia</i> EVs exert bacteriostatic effects on <i>Escherichia coli</i> HB101 and <i>Enterobacter cloacae</i> TW1, increasing their swimming motility. <i>Giardia</i> EVs also decreased the biofilm-forming ability of <i>E. coli</i> HB101 but not by <i>E. cloacae</i> TW1, supporting the hypothesis that these effects are, at least in part, bacteria-selective. <i>E. coli</i> HB101 and <i>E. cloacae</i> TW1 exhibited increased adhesion/invasion onto small intestine epithelial cells when exposed to <i>Giardia</i> EVs. EVs labelled with PKH67 revealed colocalization with <i>E. coli</i> HB101 and <i>E. cloacae</i> TW1 bacterial cells. Small RNA sequencing revealed a high abundance of ribosomal RNA (rRNA)- and transfer RNA (tRNA)-derived small RNAs, short-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) within <i>Giardia</i> EVs. Proteomic analysis of EVs uncovered the presence of RNA chaperones and heat shock proteins that can facilitate the thermal stability of EVs and its sRNA cargo, as well as protein-modifying enzymes. In vitro, RNase heat-treatment assays showed that total RNAs in EVs, but not proteins, are responsible for modulating bacterial swimming motility and biofilm formation. <i>G. duodenalis</i> small RNAs of EVs, but not proteins, were responsible for the increased bacterial adhesion to intestinal epithelial cells induced upon exposure to <i>Giardia</i> EVs. Together, the findings indicate that <i>Giardia</i> EVs contain a heat-stable, RNase-sensitive cargo that can trigger the development of pathobiont characteristics in Enterobacteria, depicting a novel trans-kingdom cross-talk in the gut.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43818241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nazma F. Ilahibaks, Marieke T. Roefs, Maike A. D. Brans, Christian Snijders Blok, Saskia C. A. de Jager, Raymond M. Schiffelers, Pieter Vader, Zhiyong Lei, Joost P. G. Sluijter
Extracellular vesicles (EVs) are nanoscale particles that facilitate intercellular communication. They are regarded as a promising natural drug delivery system for transporting and delivering bioactive macromolecules to target cells. Recently, researchers have engineered EVs with FKBP12/FRB heterodimerization domains that interact with rapamycin to load and deliver exogenous proteins for both in vitro and in vivo applications. In this study, we examined the tissue distribution of EVs using near-infrared fluorescent imaging. We evaluated the effectiveness of EV-mediated delivery of Cre recombinase specifically to hepatocytes in the livers of Ai9 Cre-loxP reporter mice. Intravenous injection resulted in more efficient Cre protein delivery to the liver than intraperitoneal injections. Depleting liver-resident macrophages with clodronate-encapsulated liposome pre-treatment did not enhance EV-mediated Cre delivery to hepatocytes. Moreover, we demonstrated that multiple intravenous injections of Cre-EVs facilitated functional Cre delivery to hepatocytes. To the best of our knowledge, this is the first study to simultaneously investigate the tissue distribution of FKBP12/FRB-engineered EVs and their subsequent intracellular protein delivery in Ai9 Cre-loxP reporter mice. These insights can inform preclinical research and contribute to developing next-generation EV-based platforms for delivering therapeutic proteins or genome editing technologies targeting the liver.
{"title":"Extracellular vesicle-mediated protein delivery to the liver","authors":"Nazma F. Ilahibaks, Marieke T. Roefs, Maike A. D. Brans, Christian Snijders Blok, Saskia C. A. de Jager, Raymond M. Schiffelers, Pieter Vader, Zhiyong Lei, Joost P. G. Sluijter","doi":"10.1002/jex2.97","DOIUrl":"10.1002/jex2.97","url":null,"abstract":"<p>Extracellular vesicles (EVs) are nanoscale particles that facilitate intercellular communication. They are regarded as a promising natural drug delivery system for transporting and delivering bioactive macromolecules to target cells. Recently, researchers have engineered EVs with FKBP12/FRB heterodimerization domains that interact with rapamycin to load and deliver exogenous proteins for both <i>in vitro</i> and <i>in vivo</i> applications. In this study, we examined the tissue distribution of EVs using near-infrared fluorescent imaging. We evaluated the effectiveness of EV-mediated delivery of Cre recombinase specifically to hepatocytes in the livers of Ai9 Cre-loxP reporter mice. Intravenous injection resulted in more efficient Cre protein delivery to the liver than intraperitoneal injections. Depleting liver-resident macrophages with clodronate-encapsulated liposome pre-treatment did not enhance EV-mediated Cre delivery to hepatocytes. Moreover, we demonstrated that multiple intravenous injections of Cre-EVs facilitated functional Cre delivery to hepatocytes. To the best of our knowledge, this is the first study to simultaneously investigate the tissue distribution of FKBP12/FRB-engineered EVs and their subsequent intracellular protein delivery in Ai9 Cre-loxP reporter mice. These insights can inform preclinical research and contribute to developing next-generation EV-based platforms for delivering therapeutic proteins or genome editing technologies targeting the liver.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.97","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44937477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kotb Abdelmohsen, Allison B. Herman, Angelica E. Carr, Charnae’ A. Henry-Smith, Martina Rossi, Qiong Meng, Jen-Hao Yang, Dimitrios Tsitsipatis, Alhassan Bangura, Rachel Munk, Jennifer L. Martindale, Carlos J. Nogueras-Ortiz, Jon Hao, Yi Gong, Yie Liu, Chang-Yi Cui, Lisa M. Hartnell, Nathan L. Price, Luigi Ferrucci, Dimitrios Kapogiannis, Rafael de Cabo, Myriam Gorospe
Extracellular vesicles and particles (EVPs) are secreted by organs across the body into different circulatory systems, including the bloodstream, and reflect pathophysiologic conditions of the organ. However, the heterogeneity of EVPs in the blood makes it challenging to determine their organ of origin. We hypothesized that small (s)EVPs (<100 nm in diameter) in the bloodstream carry distinctive protein signatures associated with each originating organ, and we investigated this possibility by studying the proteomes of sEVPs produced by six major organs (brain, liver, lung, heart, kidney, and fat). We found that each organ contained distinctive sEVP proteins: 68 proteins were preferentially found in brain sEVPs, 194 in liver, 39 in lung, 15 in heart, 29 in kidney, and 33 in fat. Furthermore, we isolated sEVPs from blood and validated the presence of sEVP proteins associated with the brain (DPP6, SYT1, DNM1L), liver (FABPL, ARG1, ASGR1/2), lung (SFPTA), heart (CPT1B), kidney (SLC31), and fat (GDN). We further discovered altered levels of these proteins in serum sEVPs obtained from old mice compared to young mice. In sum, we have cataloged sEVP proteins that can serve as potential biomarkers for organ identification in serum and show differential expression with age.
{"title":"Survey of organ-derived small extracellular vesicles and particles (sEVPs) to identify selective protein markers in mouse serum","authors":"Kotb Abdelmohsen, Allison B. Herman, Angelica E. Carr, Charnae’ A. Henry-Smith, Martina Rossi, Qiong Meng, Jen-Hao Yang, Dimitrios Tsitsipatis, Alhassan Bangura, Rachel Munk, Jennifer L. Martindale, Carlos J. Nogueras-Ortiz, Jon Hao, Yi Gong, Yie Liu, Chang-Yi Cui, Lisa M. Hartnell, Nathan L. Price, Luigi Ferrucci, Dimitrios Kapogiannis, Rafael de Cabo, Myriam Gorospe","doi":"10.1002/jex2.106","DOIUrl":"10.1002/jex2.106","url":null,"abstract":"<p>Extracellular vesicles and particles (EVPs) are secreted by organs across the body into different circulatory systems, including the bloodstream, and reflect pathophysiologic conditions of the organ. However, the heterogeneity of EVPs in the blood makes it challenging to determine their organ of origin. We hypothesized that small (s)EVPs (<100 nm in diameter) in the bloodstream carry distinctive protein signatures associated with each originating organ, and we investigated this possibility by studying the proteomes of sEVPs produced by six major organs (brain, liver, lung, heart, kidney, and fat). We found that each organ contained distinctive sEVP proteins: 68 proteins were preferentially found in brain sEVPs, 194 in liver, 39 in lung, 15 in heart, 29 in kidney, and 33 in fat. Furthermore, we isolated sEVPs from blood and validated the presence of sEVP proteins associated with the brain (DPP6, SYT1, DNM1L), liver (FABPL, ARG1, ASGR1/2), lung (SFPTA), heart (CPT1B), kidney (SLC31), and fat (GDN). We further discovered altered levels of these proteins in serum sEVPs obtained from old mice compared to young mice. In sum, we have cataloged sEVP proteins that can serve as potential biomarkers for organ identification in serum and show differential expression with age.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"2 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41164303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}