Annika Pfeiffer, Geethani Bandara, Jennifer D. Petersen, Guido H. Falduto, Joshua Zimmerberg, Dean D. Metcalfe, Ana Olivera
The receptor tyrosine kinase (RTK) KIT and its ligand stem cell factor (SCF) are essential for human mast cell (huMC) survival and proliferation. HuMCs expressing oncogenic KIT variants secrete large numbers of extracellular vesicles (EVs). The role KIT plays in regulating EV secretion has not been examined. Here, we investigated the effects of stimulation or inhibition of KIT activity on the secretion of small EVs (sEVs). In huMCs expressing constitutively active KIT, the quantity and quality of secreted sEVs positively correlated with the activity status of KIT. SCF-mediated stimulation of KIT in huMCs or murine MCs, or of transiently expressed KIT in HeLa cells, enhanced the release of sEVs expressing exosome markers. In contrast, ligand-mediated stimulation of the RTK EGFR in HeLa cells did not affect sEV secretion. The release of sEVs induced by either constitutively active or ligand-activated KIT was remarkably decreased when cells were treated with KIT inhibitors, concomitant with reduced exosome markers in sEVs. Similarly, inhibition of oncogenic KIT signalling kinases like PI3K, and MAPK significantly reduced the secretion of sEVs. Thus, activation of KIT and its early signalling cascades stimulate the secretion of exosome-like sEVs in a regulated fashion, which may have implications for KIT-driven functions.
{"title":"Activation of the receptor KIT induces the secretion of exosome-like small extracellular vesicles","authors":"Annika Pfeiffer, Geethani Bandara, Jennifer D. Petersen, Guido H. Falduto, Joshua Zimmerberg, Dean D. Metcalfe, Ana Olivera","doi":"10.1002/jex2.139","DOIUrl":"https://doi.org/10.1002/jex2.139","url":null,"abstract":"<p>The receptor tyrosine kinase (RTK) KIT and its ligand stem cell factor (SCF) are essential for human mast cell (huMC) survival and proliferation. HuMCs expressing oncogenic KIT variants secrete large numbers of extracellular vesicles (EVs). The role KIT plays in regulating EV secretion has not been examined. Here, we investigated the effects of stimulation or inhibition of KIT activity on the secretion of small EVs (sEVs). In huMCs expressing constitutively active KIT, the quantity and quality of secreted sEVs positively correlated with the activity status of KIT. SCF-mediated stimulation of KIT in huMCs or murine MCs, or of transiently expressed KIT in HeLa cells, enhanced the release of sEVs expressing exosome markers. In contrast, ligand-mediated stimulation of the RTK EGFR in HeLa cells did not affect sEV secretion. The release of sEVs induced by either constitutively active or ligand-activated KIT was remarkably decreased when cells were treated with KIT inhibitors, concomitant with reduced exosome markers in sEVs. Similarly, inhibition of oncogenic KIT signalling kinases like PI3K, and MAPK significantly reduced the secretion of sEVs. Thus, activation of KIT and its early signalling cascades stimulate the secretion of exosome-like sEVs in a regulated fashion, which may have implications for KIT-driven functions.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139550198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date. Here we explored stable reference genes through profiling the long RNA expression by RNA-seq following unsupervised analysis and validation studies. Candidate reference genes were identified using four algorithms: NormFinder, GeNorm, BestKeeper and the Delta Ct method, followed by validation. RNA profile showed uEVs contained abundant long RNAs information and the core transcriptome was related to cellular structures, especially ribosome which functions mainly as translation, protein and RNA binding molecules. Analysis of RNA-seq data identified RPL18A, RPL11, RPL27, RACK1, RPSA, RPL41, H1-2, RPL4, GAPDH, RPS27A as candidate reference genes. RT-qPCR validation revealed that RPL41, RPSA and RPL18A were reliable reference genes for long RNA quantification in uEVs from patients with diabetes mellitus (DM), diabetic nephropathy (DN), IgA nephropathy (IgAN) and prostate cancer (PCA). Interestingly, RPL41 also outperformed traditional reference genes in renal tissues of DN and IgAN, as well as in plasma EVs of several types of cancers. The stable reference genes identified in this study may facilitate development of uEVs as novel biomarkers and increase the accuracy and comparability of biomarker studies.
{"title":"Identification of stable reference genes for relative quantification of long RNA expression in urinary extracellular vesicles","authors":"Xiao-Xiao Zhu, An-Ran Shen, Ning Li, Song-Tao Feng, Tao-Tao Tang, Yue Zhang, Jing Jing, Xin Zhong, Li-Jun Xie, Sheng-Lin Huang, Bi-Cheng Liu, Lin-Li Lv","doi":"10.1002/jex2.136","DOIUrl":"https://doi.org/10.1002/jex2.136","url":null,"abstract":"<p>Urinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date. Here we explored stable reference genes through profiling the long RNA expression by RNA-seq following unsupervised analysis and validation studies. Candidate reference genes were identified using four algorithms: NormFinder, GeNorm, BestKeeper and the Delta Ct method, followed by validation. RNA profile showed uEVs contained abundant long RNAs information and the core transcriptome was related to cellular structures, especially ribosome which functions mainly as translation, protein and RNA binding molecules. Analysis of RNA-seq data identified RPL18A, RPL11, RPL27, RACK1, RPSA, RPL41, H1-2, RPL4, GAPDH, RPS27A as candidate reference genes. RT-qPCR validation revealed that RPL41, RPSA and RPL18A were reliable reference genes for long RNA quantification in uEVs from patients with diabetes mellitus (DM), diabetic nephropathy (DN), IgA nephropathy (IgAN) and prostate cancer (PCA). Interestingly, RPL41 also outperformed traditional reference genes in renal tissues of DN and IgAN, as well as in plasma EVs of several types of cancers. The stable reference genes identified in this study may facilitate development of uEVs as novel biomarkers and increase the accuracy and comparability of biomarker studies.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139488329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tom A. P. Driedonks, Sarah Ressel, Thi Tran Ngoc Minh, Amy H. Buck, Esther N. M. Nolte-‘t Hoen
Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.
细胞可以通过释放和吸收胞外囊泡(EVs)进行交流,EVs 是一种纳米大小的膜囊泡,可以在细胞之间传输蛋白质和 RNA 货物。EVs含有microRNA和各种其他类型的非编码RNA,其中Y RNA是最丰富的类型之一。关于 RNA 及其结合蛋白如何被分拣到 EVs 中的研究主要集中在比较这些 RNA 在 EVs 中的细胞内(细胞质)水平和细胞外水平。除了整体转录水平可能调控 RNA 向 EVs 的分拣外,这一过程还可能受到 RNA/RBP 浓度的局部细胞内变化的驱动。细胞外 Y RNA 的变化与癌症和心血管疾病有关。虽然人们普遍认为 RNA 货物进入 EVs 会受到细胞刺激的影响,并受 RNA 结合蛋白(RBP)的调控,但对 Y RNA 穿梭进入 EVs 的情况却知之甚少。我们以前曾报道过,免疫刺激会改变 EVs 中的 Y RNA 水平,而不受细胞膜 Y RNA 水平的影响。这表明,Y RNA 结合蛋白和/或 EV 生物发生位点局部 Y RNA 浓度的变化可能会影响 Y RNA 在 EV 中的结合。在这里,我们研究了活化和非活化的 THP1 巨噬细胞中 Y RNA 和 Y RNA 结合蛋白的亚细胞分布。我们发现,Y RNA及其主要结合蛋白Ro60在参与EV生物生成的细胞器和EV中大量共分馏。细胞活化导致 EV 生物发生部位的 Y RNA 浓度增加,这与 EV 相关的 Y RNA 和 Ro60 水平增加相关。这些结果表明,Y RNA与EV的结合可能受控于细胞内Y RNA及其蛋白结合伙伴浓度的局部变化。
{"title":"Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins","authors":"Tom A. P. Driedonks, Sarah Ressel, Thi Tran Ngoc Minh, Amy H. Buck, Esther N. M. Nolte-‘t Hoen","doi":"10.1002/jex2.123","DOIUrl":"https://doi.org/10.1002/jex2.123","url":null,"abstract":"<p>Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139480450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Palma, Andrew Lai, Katherin Scholz-Romero, Haarika Chittoory, Benjamin Van Haeringen, Flavio Carrion, Aase Handberg, Martha Lappas, Sunil R Lakhani, Amy E McCart Reed, McIntyre, Soumyalekshmi Nair, Carlos Salomon
Placental extracellular vesicles (EVs) can be found in the maternal circulation throughout gestation, and their concentration, content and bioactivity are associated with pregnancy outcomes, including gestational diabetes mellitus (GDM). However, the effect of changes in the maternal microenvironment on the mechanisms associated with the secretion of EVs from placental cells remains to be fully established. Here, we evaluated the effect of high glucose on proteins associated with the trafficking and release of different populations of EVs from placental cells. BeWo and HTR8/SVneo cells were used as placental models and cultured under 5-mM D-glucose (i.e. control) or 25-mM D-glucose (high glucose). Cell-conditioned media (CCM) and cell lysate were collected after 48 h. Different populations of EVs were isolated from CCM by ultracentrifugation (i.e. pellet 2K-g, pellet 10K-g, and pellet 100K-g) and characterised by Nanoparticle Tracking Analysis. Quantitative proteomic analysis (IDA/SWATH) and multiple reaction monitoring protocols at high resolution (MRMHR) were developed to quantify 37 proteins related to biogenesis, trafficking/release and recognition/uptake of EVs. High glucose increased the secretion of total EVs across the pellets from BeWo cells, an effect driven mainly by changes in the small EVs concentration in the CCM. Interestingly, no effect of high glucose on HTR8/SVneo cells EVs secretion was observed. High glucose induces changes in proteins associated with vesicle trafficking in BeWo cells, including Heat Shock Protein Family A (Hsp70) Member 9 (HSPA9) and Member 8 (HSPA8). For HTR8/SVneo, altered proteins including prostaglandin F2α receptor regulatory protein (FPRP), RAB5A, RAB35, RAB5B, and RB11B, STAM1 and TSG101. These proteins are associated with the secretion and trafficking of EVs, which could explain in part, changes in the levels of circulating EVs in diabetic pregnancies. Further, we identified that proteins RAB11B, PDCD6IP, STAM, HSPA9, HSPA8, SDCBP, RAB5B, RAB5A, RAB7A and ERAP1 regulate EV release in response to high and low glucose when overexpressed in cells. Interestingly, immunohistochemistry analysis of RAB7A revealed distinct changes in placental tissues obtained from women with normal glucose tolerance (NGT, n = 6) and those with GDM (n = 6), influenced by diet or insulin treatment. High glucose regulation of proteins involved in intercellular dynamics and the trafficking of multivesicular bodies to the plasma membrane in placental cells is relevant in the context of GDM pregnancies.
{"title":"Differential response of placental cells to high D-glucose and its impact on extracellular vesicle biogenesis and trafficking via small GTPase Ras-related protein RAB-7A","authors":"Carlos Palma, Andrew Lai, Katherin Scholz-Romero, Haarika Chittoory, Benjamin Van Haeringen, Flavio Carrion, Aase Handberg, Martha Lappas, Sunil R Lakhani, Amy E McCart Reed, McIntyre, Soumyalekshmi Nair, Carlos Salomon","doi":"10.1002/jex2.135","DOIUrl":"https://doi.org/10.1002/jex2.135","url":null,"abstract":"<p>Placental extracellular vesicles (EVs) can be found in the maternal circulation throughout gestation, and their concentration, content and bioactivity are associated with pregnancy outcomes, including gestational diabetes mellitus (GDM). However, the effect of changes in the maternal microenvironment on the mechanisms associated with the secretion of EVs from placental cells remains to be fully established. Here, we evaluated the effect of high glucose on proteins associated with the trafficking and release of different populations of EVs from placental cells. BeWo and HTR8/SVneo cells were used as placental models and cultured under 5-mM D-glucose (i.e. control) or 25-mM D-glucose (high glucose). Cell-conditioned media (CCM) and cell lysate were collected after 48 h. Different populations of EVs were isolated from CCM by ultracentrifugation (i.e. pellet 2K-g, pellet 10K-g, and pellet 100K-g) and characterised by Nanoparticle Tracking Analysis. Quantitative proteomic analysis (IDA/SWATH) and multiple reaction monitoring protocols at high resolution (MRM<sup>HR</sup>) were developed to quantify 37 proteins related to biogenesis, trafficking/release and recognition/uptake of EVs. High glucose increased the secretion of total EVs across the pellets from BeWo cells, an effect driven mainly by changes in the small EVs concentration in the CCM. Interestingly, no effect of high glucose on HTR8/SVneo cells EVs secretion was observed. High glucose induces changes in proteins associated with vesicle trafficking in BeWo cells, including Heat Shock Protein Family A (Hsp70) Member 9 (HSPA9) and Member 8 (HSPA8). For HTR8/SVneo, altered proteins including prostaglandin F2α receptor regulatory protein (FPRP), RAB5A, RAB35, RAB5B, and RB11B, STAM1 and TSG101. These proteins are associated with the secretion and trafficking of EVs, which could explain in part, changes in the levels of circulating EVs in diabetic pregnancies. Further, we identified that proteins RAB11B, PDCD6IP, STAM, HSPA9, HSPA8, SDCBP, RAB5B, RAB5A, RAB7A and ERAP1 regulate EV release in response to high and low glucose when overexpressed in cells. Interestingly, immunohistochemistry analysis of RAB7A revealed distinct changes in placental tissues obtained from women with normal glucose tolerance (NGT, <i>n</i> = 6) and those with GDM (<i>n</i> = 6), influenced by diet or insulin treatment. High glucose regulation of proteins involved in intercellular dynamics and the trafficking of multivesicular bodies to the plasma membrane in placental cells is relevant in the context of GDM pregnancies.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marianne Pultar, Johannes Oesterreicher, Jaana Hartmann, Moritz Weigl, Andreas Diendorfer, Katharina Schimek, Barbara Schädl, Thomas Heuser, Marlene Brandstetter, Johannes Grillari, Peter Sykacek, Matthias Hackl, Wolfgang Holnthoner
Extracellular vesicles (EVs) are crucial mediators of cell-to-cell communication in physiological and pathological conditions. Specifically, EVs released from the vasculature into blood were found to be quantitatively and qualitatively different in diseases compared to healthy states. However, our understanding of EVs derived from the lymphatic system is still scarce. In this study, we compared the mRNA and microRNA (miRNA) expression in blood vascular (BEC) and lymphatic (LEC) endothelial cells. After characterization of the EVs by fluorescence-triggered flow cytometry, nanoparticle tracking analysis and cryo-transmission electron microscopy (cryo-TEM) we utilized small RNA-sequencing to characterize miRNA signatures in the EVs and identify cell-type specific miRNAs in BEC and LEC. We found miRNAs specifically enriched in BEC and LEC on the cellular as well as the extracellular vesicle level. Our data provide a solid basis for further functional in vitro and in vivo studies addressing the role of EVs in the blood and lymphatic vasculature.
{"title":"Analysis of extracellular vesicle microRNA profiles reveals distinct blood and lymphatic endothelial cell origins","authors":"Marianne Pultar, Johannes Oesterreicher, Jaana Hartmann, Moritz Weigl, Andreas Diendorfer, Katharina Schimek, Barbara Schädl, Thomas Heuser, Marlene Brandstetter, Johannes Grillari, Peter Sykacek, Matthias Hackl, Wolfgang Holnthoner","doi":"10.1002/jex2.134","DOIUrl":"https://doi.org/10.1002/jex2.134","url":null,"abstract":"<p>Extracellular vesicles (EVs) are crucial mediators of cell-to-cell communication in physiological and pathological conditions. Specifically, EVs released from the vasculature into blood were found to be quantitatively and qualitatively different in diseases compared to healthy states. However, our understanding of EVs derived from the lymphatic system is still scarce. In this study, we compared the mRNA and microRNA (miRNA) expression in blood vascular (BEC) and lymphatic (LEC) endothelial cells. After characterization of the EVs by fluorescence-triggered flow cytometry, nanoparticle tracking analysis and cryo-transmission electron microscopy (cryo-TEM) we utilized small RNA-sequencing to characterize miRNA signatures in the EVs and identify cell-type specific miRNAs in BEC and LEC. We found miRNAs specifically enriched in BEC and LEC on the cellular as well as the extracellular vesicle level. Our data provide a solid basis for further functional in vitro and in vivo studies addressing the role of EVs in the blood and lymphatic vasculature.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139468436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laureana Muok, Li Sun, Colin Esmonde, Hannah Worden, Cynthia Vied, Leanne Duke, Shaoyang Ma, Olivia Zeng, Tristan Driscoll, Sunghoon Jung, Yan Li
Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood–brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The in vitro functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17–23 fold higher EV secretion, and EV collection in mTeSR had 2.7–3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia in vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.
人类诱导多能干细胞(hiPSCs)分泌的胞外囊泡(EVs)作为无细胞疗法在多种疾病中具有巨大潜力,包括预防血脑屏障衰老和中风。然而,由于需要大规模大量生产,hiPSC-EVs 的临床前和临床应用仍面临挑战。垂直轮式生物反应器(VWBR)的设计特点允许在低剪切应力下使用可扩展的聚合体或微载体培养系统生物制造 hiPSC-EV。我们研究了未分化的 hiPSCs 在 VWBRs 中作为三维聚集体和在 Synthemax II 微载体上扩增时分泌 EV 的情况。此外,还比较了 mTeSR 和 HBM 两种 EV 收集介质。通过代谢物和转录组分析以及 EV 生物生成标记对 hiPSCs 进行了表征。蛋白质组学和 microRNA-seq 分别对蛋白质和 microRNA 货物进行了分析。进行了小胶质细胞刺激和增殖的体外功能测试。以三维聚合体形式扩增的 HiPSCs 和在微载体上扩增的 HiPSCs 的细胞数量相当,而根据 mRNA-seq 分析,微载体培养物的葡萄糖消耗更高、糖酵解更高、自噬基因表达更低。微载体培养物的EV分泌量至少比HBM培养基高17-23倍,mTeSR中的EV收集量比HBM培养基高2.7-3.7倍。与其他组相比,mTeSR EV收集的微载体培养物的EV体积更小,货物富含蛋白质(蛋白质组学)和miRNA(microRNA-seq),可减少细胞凋亡,促进细胞增殖(如Wnt相关通路)。HiPSC在微载体上扩增产生的EV比hiPSC在VWBR中聚集产生的EV要高得多。与 HBM 相比,在 mTeSR 中收集 EV 可提高产量。在 mTeSR 中通过微载体培养产生的生物制造的 EVs 具有外泌体特征,并且在刺激小胶质细胞时具有功能性,这为未来的体内抗衰老研究铺平了道路。
{"title":"Extracellular vesicle biogenesis of three-dimensional human pluripotent stem cells in a novel Vertical-Wheel bioreactor","authors":"Laureana Muok, Li Sun, Colin Esmonde, Hannah Worden, Cynthia Vied, Leanne Duke, Shaoyang Ma, Olivia Zeng, Tristan Driscoll, Sunghoon Jung, Yan Li","doi":"10.1002/jex2.133","DOIUrl":"https://doi.org/10.1002/jex2.133","url":null,"abstract":"<p>Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood–brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The <i>in vitro</i> functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17–23 fold higher EV secretion, and EV collection in mTeSR had 2.7–3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia <i>in vitro</i>. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petra Ilvonen, Reetta Pusa, Kai Härkönen, Saara Laitinen, Ulla Impola
Blood-derived extracellular vesicles (EVs) hold great therapeutic potential. As blood contains mixed EV populations, it is challenging to study EVs originating from different cells separately. Blood cell concentrates manufactured in blood banks offer an excellent non-invasive source of blood cell-specific EV populations. To study blood cell-specific EVs, we isolated EVs from platelet (TREVs) and red blood cell (EryEVs) concentrates and characterized them using nanoparticle tracking analysis, imaging flow cytometry, electron microscopy and western blot analysis and co-cultured them with peripheral blood mononuclear cells (PBMCs). Our aim was to use imaging flow cytometry to investigate EV interaction with PBMCs as well as study their effects on T-lymphocyte populations to better understand their possible biological functions. As a conclusion, TREVs interacted with PBMCs more than EryEVs. Distinctively, TREVs were uptaken into CD11c+ monocytes rapidly and into CD19+ B-lymphocytes in 24 h. EryEVs were not uptaken into CD11c+ monocytes before the 24-h time point, and they were only seen on the surface of lymphocytes. Neither TREVs nor EryEV were uptaken into CD3+ T-lymphocytes and no effect on T-cell populations was detected. We have previously seen similar differences in targeting PC-3 cancer cells. Further studies are needed to address the functional properties of blood cell concentrate-derived EVs. This study demonstrates that imaging flow cytometry can be used to study the distinctive differences in the interaction and uptake of EVs. Considering our current and previous results, EVs present a new valuable component for the future development of blood-derived therapeutics.
源自血液的细胞外囊泡 (EV) 具有巨大的治疗潜力。由于血液中含有混合的 EV 群,要分别研究来自不同细胞的 EVs 具有挑战性。血库制造的血细胞浓缩物是血细胞特异性EV群的绝佳非侵入性来源。为了研究血细胞特异性 EVs,我们从血小板(TREVs)和红细胞(EryEVs)浓缩物中分离了 EVs,并使用纳米粒子追踪分析、成像流式细胞术、电子显微镜和 Western 印迹分析对其进行了表征,然后将它们与外周血单核细胞(PBMCs)共培养。我们的目的是利用成像流式细胞术研究 EV 与 PBMC 的相互作用,并研究它们对 T 淋巴细胞群的影响,从而更好地了解它们可能具有的生物功能。结论是,TREV 与 PBMC 的相互作用比 EryEV 更大。不同的是,TREVs 能迅速被 CD11c+ 单核细胞吸收,并在 24 小时内被 CD19+ B 淋巴细胞吸收。TREVs 和 EryEV 均未被 CD3+ T 淋巴细胞吸收,也未检测到对 T 细胞群的影响。我们之前在靶向 PC-3 癌细胞时也发现了类似的差异。要了解血细胞浓缩物衍生 EV 的功能特性,还需要进一步的研究。这项研究表明,成像流式细胞术可用于研究 EVs 相互作用和吸收的独特差异。考虑到我们目前和以前的研究结果,EVs 为未来血液衍生疗法的开发提供了一种新的有价值的成分。
{"title":"Distinct targeting and uptake of platelet and red blood cell-derived extracellular vesicles into immune cells","authors":"Petra Ilvonen, Reetta Pusa, Kai Härkönen, Saara Laitinen, Ulla Impola","doi":"10.1002/jex2.130","DOIUrl":"https://doi.org/10.1002/jex2.130","url":null,"abstract":"<p>Blood-derived extracellular vesicles (EVs) hold great therapeutic potential. As blood contains mixed EV populations, it is challenging to study EVs originating from different cells separately. Blood cell concentrates manufactured in blood banks offer an excellent non-invasive source of blood cell-specific EV populations. To study blood cell-specific EVs, we isolated EVs from platelet (TREVs) and red blood cell (EryEVs) concentrates and characterized them using nanoparticle tracking analysis, imaging flow cytometry, electron microscopy and western blot analysis and co-cultured them with peripheral blood mononuclear cells (PBMCs). Our aim was to use imaging flow cytometry to investigate EV interaction with PBMCs as well as study their effects on T-lymphocyte populations to better understand their possible biological functions. As a conclusion, TREVs interacted with PBMCs more than EryEVs. Distinctively, TREVs were uptaken into CD11c+ monocytes rapidly and into CD19+ B-lymphocytes in 24 h. EryEVs were not uptaken into CD11c+ monocytes before the 24-h time point, and they were only seen on the surface of lymphocytes. Neither TREVs nor EryEV were uptaken into CD3+ T-lymphocytes and no effect on T-cell populations was detected. We have previously seen similar differences in targeting PC-3 cancer cells. Further studies are needed to address the functional properties of blood cell concentrate-derived EVs. This study demonstrates that imaging flow cytometry can be used to study the distinctive differences in the interaction and uptake of EVs. Considering our current and previous results, EVs present a new valuable component for the future development of blood-derived therapeutics.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syrine Arif, Sébastien Larochelle, Benjamin Trudel, Céline Gounou, François Bordeleau, Alain R. Brisson, Véronique J. Moulin
Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information over long distances, affecting normal and pathological processes including skin wound healing. However, the diffusion of MVs into tissues can be impeded by the extracellular matrix (ECM). We investigated the diffusion of dermal wound myofibroblast-derived MVs into the ECM by using hydrogels composed of different ECM molecules such as fibrin, type III collagen and type I collagen that are present during the healing process. Fluorescent MVs mixed with hydrogels were employed to detect MV diffusion using fluorometric methods. Our results showed that MVs specifically bound type I collagen and diffused freely out of fibrin and type III collagen. Further analysis using flow cytometry and specific inhibitors revealed that MVs bind to type I collagen via the α2β1 integrin. These data demonstrate that MV transport depends on the composition of the wound environment.
微囊泡(MVs)是细胞外囊泡的一种亚型,可以远距离传递生物信息,影响正常和病理过程,包括皮肤伤口愈合。然而,细胞外基质(ECM)会阻碍微囊泡扩散到组织中。我们使用由不同 ECM 分子(如纤维蛋白、III 型胶原蛋白和 I 型胶原蛋白)组成的水凝胶,研究了真皮伤口肌成纤维细胞衍生的中空分子向 ECM 的扩散。采用荧光法检测与水凝胶混合的荧光中空分子的扩散。我们的结果表明,MV 与 I 型胶原蛋白特异性结合,并从纤维蛋白和 III 型胶原蛋白中自由扩散出来。使用流式细胞仪和特异性抑制剂进行的进一步分析表明,中微体通过α2β1整合素与Ⅰ型胶原结合。这些数据表明,中空纤维蛋白的运输取决于伤口环境的组成。
{"title":"The diffusion of normal skin wound myofibroblast-derived microvesicles differs according to matrix composition","authors":"Syrine Arif, Sébastien Larochelle, Benjamin Trudel, Céline Gounou, François Bordeleau, Alain R. Brisson, Véronique J. Moulin","doi":"10.1002/jex2.131","DOIUrl":"https://doi.org/10.1002/jex2.131","url":null,"abstract":"<p>Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information over long distances, affecting normal and pathological processes including skin wound healing. However, the diffusion of MVs into tissues can be impeded by the extracellular matrix (ECM). We investigated the diffusion of dermal wound myofibroblast-derived MVs into the ECM by using hydrogels composed of different ECM molecules such as fibrin, type III collagen and type I collagen that are present during the healing process. Fluorescent MVs mixed with hydrogels were employed to detect MV diffusion using fluorometric methods. Our results showed that MVs specifically bound type I collagen and diffused freely out of fibrin and type III collagen. Further analysis using flow cytometry and specific inhibitors revealed that MVs bind to type I collagen via the α2β1 integrin. These data demonstrate that MV transport depends on the composition of the wound environment.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139101150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brett Vahkal, Illimar Altosaar, Eric Tremblay, David Gagné, Nico Hüttman, Zoran Minic, Marceline Côté, Alexandre Blais, Jean-François Beaulieu, Emanuela Ferretti
Human milk extracellular vesicles (HM EVs) are proposed to protect against disease development in infants. This protection could in part be facilitated by the bioactive EV cargo of proteins and RNA. Notably, mothers birth infants of different gestational ages with unique needs, wherein the EV cargo of HM may diverge. We collected HM from lactating mothers within two weeks of a term or preterm birth. Following purification of EVs, proteins and mRNA were extracted for proteomics and sequencing analyses, respectively. Over 2000 protein groups were identified, and over 8000 genes were quantified. The total number of proteins and mRNA did not differ significantly between the two conditions, while functional bioinformatics of differentially expressed cargo indicated enrichment in immunoregulatory cargo for preterm HM EVs. In term HM EVs, significantly upregulated cargo was enriched in metabolism-related functions. Based on gene expression signatures from HM-contained single cell sequencing data, we proposed that a larger portion of preterm HM EVs are secreted by immune cells, whereas term HM EVs contain more signatures of lactocyte epithelial cells. Proposed differences in EV cargo could indicate variation in mother's milk based on infants’ gestational age and provide basis for further functional characterisation.
{"title":"Gestational age at birth influences protein and RNA content in human milk extracellular vesicles","authors":"Brett Vahkal, Illimar Altosaar, Eric Tremblay, David Gagné, Nico Hüttman, Zoran Minic, Marceline Côté, Alexandre Blais, Jean-François Beaulieu, Emanuela Ferretti","doi":"10.1002/jex2.128","DOIUrl":"https://doi.org/10.1002/jex2.128","url":null,"abstract":"<p>Human milk extracellular vesicles (HM EVs) are proposed to protect against disease development in infants. This protection could in part be facilitated by the bioactive EV cargo of proteins and RNA. Notably, mothers birth infants of different gestational ages with unique needs, wherein the EV cargo of HM may diverge. We collected HM from lactating mothers within two weeks of a term or preterm birth. Following purification of EVs, proteins and mRNA were extracted for proteomics and sequencing analyses, respectively. Over 2000 protein groups were identified, and over 8000 genes were quantified. The total number of proteins and mRNA did not differ significantly between the two conditions, while functional bioinformatics of differentially expressed cargo indicated enrichment in immunoregulatory cargo for preterm HM EVs. In term HM EVs, significantly upregulated cargo was enriched in metabolism-related functions. Based on gene expression signatures from HM-contained single cell sequencing data, we proposed that a larger portion of preterm HM EVs are secreted by immune cells, whereas term HM EVs contain more signatures of lactocyte epithelial cells. Proposed differences in EV cargo could indicate variation in mother's milk based on infants’ gestational age and provide basis for further functional characterisation.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139101149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elise H. Padbury, Štefan Bálint, Emanuela Carollo, David R. F. Carter, Esther B. E. Becker
Extracellular vesicles (EVs) contribute to a wide range of pathological processes including cancer progression, yet the molecular mechanisms underlying their biogenesis remain incompletely characterized. The development of tetraspanin-based pHluorin reporters has enabled the real-time analysis of EV release at the plasma membrane. Here, we employed CD81-pHluorin to investigate mechanisms of EV release in ovarian cancer (OC) cells and report a novel role for the Ca2+-permeable transient receptor potential (TRP) channel TRPC3 in EV-mediated communication. We found that specific activation of TRPC3 increased Ca2+ signalling in SKOV3 cells and stimulated an immediate increase in EV release. Ca2+-stimulants histamine and ionomycin likewise induced EV release, and imaging analysis revealed distinct stimulation-dependent temporal and spatial release dynamics. Interestingly, inhibition of TRPC3 attenuated histamine-stimulated Ca2+-entry and EV release, indicating that TRPC3 is likely to act downstream of histamine signalling in EV biogenesis. Furthermore, we found that direct activation of TRPC3 as well as the application of EVs derived from TRPC3-activated cells increased SKOV3 proliferation. Our data provides insights into the molecular mechanisms and dynamics underlying EV release in OC cells, proposing a key role for TRPC3 in EV biogenesis.
细胞外囊泡(EVs)对包括癌症进展在内的多种病理过程都有影响,但其生物发生的分子机制仍未完全阐明。基于四泛素的 pHluorin 报告器的开发使得在质膜上实时分析 EV 释放成为可能。在这里,我们利用 CD81-pHluorin 研究了卵巢癌(OC)细胞中 EV 释放的机制,并报告了钙离子渗透性瞬时受体电位(TRP)通道 TRPC3 在 EV 介导的通讯中的新作用。我们发现,特异性激活 TRPC3 会增加 SKOV3 细胞中的 Ca2+ 信号,并刺激 EV 释放的立即增加。Ca2+刺激物组胺和离子霉素同样诱导了EV释放,成像分析显示了不同刺激依赖的时间和空间释放动态。有趣的是,抑制 TRPC3 可减轻组胺刺激的 Ca2+ 进入和 EV 释放,这表明 TRPC3 可能是组胺信号在 EV 生物发生过程中的下游作用。此外,我们还发现,直接激活 TRPC3 以及应用来自 TRPC3 激活细胞的 EV 可增加 SKOV3 的增殖。我们的数据深入揭示了OC细胞中EV释放的分子机制和动力学,提出了TRPC3在EV生物发生中的关键作用。
{"title":"TRPC3 signalling contributes to the biogenesis of extracellular vesicles","authors":"Elise H. Padbury, Štefan Bálint, Emanuela Carollo, David R. F. Carter, Esther B. E. Becker","doi":"10.1002/jex2.132","DOIUrl":"https://doi.org/10.1002/jex2.132","url":null,"abstract":"<p>Extracellular vesicles (EVs) contribute to a wide range of pathological processes including cancer progression, yet the molecular mechanisms underlying their biogenesis remain incompletely characterized. The development of tetraspanin-based pHluorin reporters has enabled the real-time analysis of EV release at the plasma membrane. Here, we employed CD81-pHluorin to investigate mechanisms of EV release in ovarian cancer (OC) cells and report a novel role for the Ca<sup>2+</sup>-permeable transient receptor potential (TRP) channel TRPC3 in EV-mediated communication. We found that specific activation of TRPC3 increased Ca<sup>2+</sup> signalling in SKOV3 cells and stimulated an immediate increase in EV release. Ca<sup>2+</sup>-stimulants histamine and ionomycin likewise induced EV release, and imaging analysis revealed distinct stimulation-dependent temporal and spatial release dynamics. Interestingly, inhibition of TRPC3 attenuated histamine-stimulated Ca<sup>2+</sup>-entry and EV release, indicating that TRPC3 is likely to act downstream of histamine signalling in EV biogenesis. Furthermore, we found that direct activation of TRPC3 as well as the application of EVs derived from TRPC3-activated cells increased SKOV3 proliferation. Our data provides insights into the molecular mechanisms and dynamics underlying EV release in OC cells, proposing a key role for TRPC3 in EV biogenesis.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139045102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}