Background: Parkinson's disease (PD) results from degeneration of dopamine and norepinephrine neurons due to α-synuclein aggregates that likely have their origin in the gut. Tyrosine hydroxylase (TH) catalyses the formation of L-DOPA, the rate-limiting step in the biosynthesis of dopamine. A second enzyme, DOPA decarboxylase (DDC), catalyzes the conversion of L-DOPA to dopamine. A third enzyme, dopamine ß-hydroxylase (DBH), catalyzes the conversion of dopamine to norepinephrine. To analyze possible interactions of α-synuclein with TH, DDC and DBH, we performed in silico protein-protein docking.
Methods: Protein data bank (pdb) entries were searched on the RCSB Protein Data Bank. We identified four structures that allowed us to examine the relationship of α-synuclein with TH, DDC, and DBH: (1) Human micelle-bound alpha-synuclein, (2) solution structure of the regulatory domain of tyrosine hydroxylase (Rattus norvegicus), (3) crystal structure of human aromatic L-amino acid decarboxylase (DOPA decarboxylase) in the apo form and (4) crystal structure of human dopamine ß-hydroxylase at 2.9 angstrom resolution. We used the ClusPro server (https://cluspro.org) for protein-protein docking. The protein structures were visualized with PyMOL v 2.3.4.
Results: α-synuclein partially enfolds tyrosine hydroxylase and dopamine ß-hydroxylase, potentially reducing dopamine and norepinephrine synthesis. α-synuclein may dock too far away from DOPA decarboxylase to affect its function directly.
Conclusions: Our in silico finding of α-synuclein partly enfolding tyrosine hydroxylase and dopamine ß-hydroxylase suggests that α-synuclein docking inhibition could increase dopamine and norepinephrine biosynthesis, ameliorating PD symptoms. Small molecules that bind to α-synuclein have already been identified. Further studies may lead to new small molecule drugs that block α-synuclein enfolding of tyrosine hydroxylase and dopamine ß-hydroxylase.