Objectives: The latest study with whole genome sequencing (WGS) in pediatric B-ALL validated its use as a standalone test to detect underlying clinically significant genetic abnormalities (Rezayee et al., 2023). This was a retrospective molecular survey in bone marrows previously collected and stored from 88 patients who were enrolled in NOPHO trials. The testing was done through 150 bp paired-end WGS applied to a paired analysis of leukemia-germline samples (L-N) (n=64), and to the analysis of leukemia-only samples (L) (n=88). The results demonstrated a full concordance between both WGS approaches and between the results from WGS and previous standard of care tests (SOCTs). All the mandatory aberrations that require testing in the current ALLTogether trial protocol were identified in 38 patients. In addition, WGS accurately identified the majority of aberrations characteristic of B-other ALL (35/36 cases), copy number abnormalities (CNAs) in eight critical genes or regions, CNAs that characterize the IKZF1plus profile, and the abnormalities in patients with Down syndrome. An adapted methodology was necessary for the detection of DUX4::IGH rearrangements in four patients. A comparison between sequencing coverages of 90X and 30X demonstrated that a lower 30X coverage was sufficient to detect all the relevant abnormalities. This successful testing was accomplished through filtering of WGS data focusing on just genes and genomic regions that are routinely implicated in pediatric B-ALL. As a result, it simplified the extraction of data and facilitated the interpretation of results. Overall, the precise identification of abnormalities that was accomplished by WGS allowed the assignment of patients to distinct genetic subtypes. The conclusion of this study was that WGS is quite reliable and can replace the use of SOCTs to profile pediatric B-ALL.
{"title":"The Confirmatory Diagnostic Value of Whole Genome Sequencing (WGS) as a Standalone Test for Childhood B-cell ALL: The Results of a NOPHO Trials Cohort.","authors":"Jaime Garcia-Heras","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>The latest study with whole genome sequencing (WGS) in pediatric B-ALL validated its use as a standalone test to detect underlying clinically significant genetic abnormalities (Rezayee et al., 2023). This was a retrospective molecular survey in bone marrows previously collected and stored from 88 patients who were enrolled in NOPHO trials. The testing was done through 150 bp paired-end WGS applied to a paired analysis of leukemia-germline samples (L-N) (n=64), and to the analysis of leukemia-only samples (L) (n=88). The results demonstrated a full concordance between both WGS approaches and between the results from WGS and previous standard of care tests (SOCTs). All the mandatory aberrations that require testing in the current ALLTogether trial protocol were identified in 38 patients. In addition, WGS accurately identified the majority of aberrations characteristic of B-other ALL (35/36 cases), copy number abnormalities (CNAs) in eight critical genes or regions, CNAs that characterize the IKZF1plus profile, and the abnormalities in patients with Down syndrome. An adapted methodology was necessary for the detection of DUX4::IGH rearrangements in four patients. A comparison between sequencing coverages of 90X and 30X demonstrated that a lower 30X coverage was sufficient to detect all the relevant abnormalities. This successful testing was accomplished through filtering of WGS data focusing on just genes and genomic regions that are routinely implicated in pediatric B-ALL. As a result, it simplified the extraction of data and facilitated the interpretation of results. Overall, the precise identification of abnormalities that was accomplished by WGS allowed the assignment of patients to distinct genetic subtypes. The conclusion of this study was that WGS is quite reliable and can replace the use of SOCTs to profile pediatric B-ALL.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"49 4","pages":"162-166"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138483584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: A new study demonstrated the power of WGS to comprehensively and accurately profile the genetic abnormalities in cases of childhood B-ALL that were previously studied with standard cytogenetics, FISH and MLPA (Ryan et al., 2023). Two cohorts with a total of 210 patients were studied. One cohort carried cytogenetic abnormalities of known significance (n=38). The other cohort (n=172) lacked cytogenetic abnormalities detectable by standard methods (B-other ALL group), and was treated within the UKALL2003 clinical trial. The WGS approaches used were a tumor-normal (T-N) pipeline and a tumor-only (T-only) pipeline. Most patients (202/210) carried a distinct abnormality already known or a new one that defined a genetic subtype. WGS identified almost all the abnormalities in the cohort with typical cytogenetic abnormalities previously detected (37/38 in the T-only pipeline, 34/38 in the T-N pipeline). The B-other ALL cohort showed two types of abnormalities by WGS. Some were cytogenetic abnormalities emblematic of B-ALL that were missed by previous standard methods (19/172 cases) due to poor samples or incomplete testing at the time of diagnosis. The remaining abnormalities were cryptic (145/153 cases) and defined genetic subtypes. Some new molecular variants emerged with WGS, the profile of PAX5 rearrangements and the ETV6::RUNX1-like subtype was characterized in more detail, and the detection of DUX4 rearrangements was markedly improved by a novel bioinformatic pipeline. Whole transcriptome sequencing (WTS) conducted in a subset of 85 patients was consistent with the results of WGS and standard cytogenomic techniques. This study validated the diagnostic use of WGS to uncover and characterize in detail the genetic aberrations in pediatric B-ALL. As a result, Ryan et al. endorsed the routine use of WGS to discover more abnormalities of clinical significance that define new genetic subtypes, as well as to improve diagnosis, risk stratification, and therapy.
目的:一项新的研究表明,WGS能够全面、准确地描述儿童B-ALL病例的遗传异常,而这些异常之前是用标准细胞遗传学、FISH和MLPA进行研究的(Ryan et al., 2023)。两组共210例患者进行了研究。一个队列携带已知意义的细胞遗传学异常(n=38)。另一组(n=172)缺乏标准方法检测到的细胞遗传学异常(B-other ALL组),并在UKALL2003临床试验中接受治疗。使用的WGS入路是肿瘤-正常(T-N)管道和肿瘤-仅(T-only)管道。大多数患者(202/210)携带已知的明显异常或定义遗传亚型的新异常。WGS发现了几乎所有先前发现的具有典型细胞遗传学异常的队列中的异常(T-only管道中37/38,T-N管道中34/38)。B-other ALL组WGS显示两种类型的异常。有些是B-ALL的细胞遗传学异常,由于诊断时样本差或检测不完整,以前的标准方法(19/172例)遗漏了这些异常。其余异常为隐蔽性(145/153例)和明确的遗传亚型。随着WGS出现了一些新的分子变异,PAX5重排和ETV6:: runx1样亚型的特征得到了更详细的描述,DUX4重排的检测得到了新的生物信息学管道的显著提高。在85名患者中进行的全转录组测序(WTS)与WGS和标准细胞基因组技术的结果一致。本研究验证了WGS在儿科B-ALL中发现和详细描述遗传畸变的诊断应用。因此,Ryan等人支持常规使用WGS,以发现更多具有临床意义的异常,定义新的遗传亚型,并改善诊断、风险分层和治疗。
{"title":"The Groundbreaking Validation of Whole Genome Sequencing (WGS) for a Comprehensive Genetic Profiling of Childhood B-cell ALL.","authors":"Jaime Garcia-Heras","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>A new study demonstrated the power of WGS to comprehensively and accurately profile the genetic abnormalities in cases of childhood B-ALL that were previously studied with standard cytogenetics, FISH and MLPA (Ryan et al., 2023). Two cohorts with a total of 210 patients were studied. One cohort carried cytogenetic abnormalities of known significance (n=38). The other cohort (n=172) lacked cytogenetic abnormalities detectable by standard methods (B-other ALL group), and was treated within the UKALL2003 clinical trial. The WGS approaches used were a tumor-normal (T-N) pipeline and a tumor-only (T-only) pipeline. Most patients (202/210) carried a distinct abnormality already known or a new one that defined a genetic subtype. WGS identified almost all the abnormalities in the cohort with typical cytogenetic abnormalities previously detected (37/38 in the T-only pipeline, 34/38 in the T-N pipeline). The B-other ALL cohort showed two types of abnormalities by WGS. Some were cytogenetic abnormalities emblematic of B-ALL that were missed by previous standard methods (19/172 cases) due to poor samples or incomplete testing at the time of diagnosis. The remaining abnormalities were cryptic (145/153 cases) and defined genetic subtypes. Some new molecular variants emerged with WGS, the profile of PAX5 rearrangements and the ETV6::RUNX1-like subtype was characterized in more detail, and the detection of DUX4 rearrangements was markedly improved by a novel bioinformatic pipeline. Whole transcriptome sequencing (WTS) conducted in a subset of 85 patients was consistent with the results of WGS and standard cytogenomic techniques. This study validated the diagnostic use of WGS to uncover and characterize in detail the genetic aberrations in pediatric B-ALL. As a result, Ryan et al. endorsed the routine use of WGS to discover more abnormalities of clinical significance that define new genetic subtypes, as well as to improve diagnosis, risk stratification, and therapy.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"49 4","pages":"156-161"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138483585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Babu Sruthi, Tahmeena Ahmed, Rodrigo Hurtado, Ann-Leslie Berger-Zaslav, Daniel Tully, Htien Lee, Gabriela Evans, Cynthia Poerio, Carlos A Tirado
Objectives: B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common leukemias affecting the pediatric population. It represents ~25% of cancer diagnoses among children. Specific genetic changes predict the prognosis in B-ALL with recurrent genetic changes. Here we present a case report of a 20-year-old male with B-ALL. The patient presented with acute onset worsening upper extremity pain with pallor, weight loss, dizziness, fatigue, and abnormal complete blood count (CBC). Conventional cytogenetics showed a karyotype of 46,XY,add(9)(q13),i(9)(q10)[19]. DNA FISH analysis performed on the bone marrow showed hemizygous deletion of the 9p21(CDKN2A) in 15.5% of the nuclei examined. The presence of an isochromosome 9q [i(9)(q10) is a rare event in pediatric B-ALL. An isochromosome 9q occurs in 0.6% of the patients studied in the literature. The significance of this abnormality in pediatric B-ALL is not clear. Profiling cases like this to understand the molecular mechanisms of rare chromosomal abnormalities and rare mutations in children with B-ALL could help us to better treat them.
{"title":"An Isochromosome 9q: A Rare Event in Pediatric B-ALL.","authors":"Babu Sruthi, Tahmeena Ahmed, Rodrigo Hurtado, Ann-Leslie Berger-Zaslav, Daniel Tully, Htien Lee, Gabriela Evans, Cynthia Poerio, Carlos A Tirado","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common leukemias affecting the pediatric population. It represents ~25% of cancer diagnoses among children. Specific genetic changes predict the prognosis in B-ALL with recurrent genetic changes. Here we present a case report of a 20-year-old male with B-ALL. The patient presented with acute onset worsening upper extremity pain with pallor, weight loss, dizziness, fatigue, and abnormal complete blood count (CBC). Conventional cytogenetics showed a karyotype of 46,XY,add(9)(q13),i(9)(q10)[19]. DNA FISH analysis performed on the bone marrow showed hemizygous deletion of the 9p21(CDKN2A) in 15.5% of the nuclei examined. The presence of an isochromosome 9q [i(9)(q10) is a rare event in pediatric B-ALL. An isochromosome 9q occurs in 0.6% of the patients studied in the literature. The significance of this abnormality in pediatric B-ALL is not clear. Profiling cases like this to understand the molecular mechanisms of rare chromosomal abnormalities and rare mutations in children with B-ALL could help us to better treat them.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"49 3","pages":"127-132"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: Noninvasive prenatal testing (NIPT) has become a widely used screening method to detect fetal aneuploidies using cell-free fetal DNA (cffDNA) obtained from maternal blood. It is noninvasive, highly sensitive and specific, and can be offered in the first trimester of pregnancy. Though the goal of NIPT is to detect abnormalities in fetal DNA, occasionally abnormalities are detected that are not attributable to the fetus. Tumor DNA is laden with abnormalities and, rarely, NIPT has detected occult malignancy in the mother. Maternal malignancy in pregnancy is relatively uncommon, estimated at 1 in 1,000 pregnant women. We present a case of a 38-year-old woman diagnosed with multiple myeloma after abnormal NIPT testing results.
{"title":"Multiple Myeloma Detected by Noninvasive Prenatal Testing.","authors":"Katherine A Devitt, Juli-Anne Gardner","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Noninvasive prenatal testing (NIPT) has become a widely used screening method to detect fetal aneuploidies using cell-free fetal DNA (cffDNA) obtained from maternal blood. It is noninvasive, highly sensitive and specific, and can be offered in the first trimester of pregnancy. Though the goal of NIPT is to detect abnormalities in fetal DNA, occasionally abnormalities are detected that are not attributable to the fetus. Tumor DNA is laden with abnormalities and, rarely, NIPT has detected occult malignancy in the mother. Maternal malignancy in pregnancy is relatively uncommon, estimated at 1 in 1,000 pregnant women. We present a case of a 38-year-old woman diagnosed with multiple myeloma after abnormal NIPT testing results.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"49 1","pages":"21-23"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9083129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pina J Trivedi, Dharmesh M Patel, Mahnaz Kazi, Priya Varma
Objectives: Chronic lymphocytic leukemia (CLL) is a malignancy identified by an increase in the number of lymphocytes in the blood. It is one of the most common adult leukemias. It is a heterogeneous clinical disease with changeable progression. Chromosomal aberrations play a significant role in predicting clinical outcomes and survival. Treatment strategies for each patient are determined by chromosomal abnormalities. Cytogenetic methods are sensitive procedures for detecting abnormalities in the genome. The aim of this study was to document the incidence of different genes and gene rearrangements in CLL patients by comparing conventional cytogenetic and fluorescence in situ hybridization (FISH) results and predicting their prognosis. Materials and Methods A total of 23 CLL patients, 18 men and five women with ages ranging from 45-75 years were enrolled in this case series. Interphase fluorescent in situ hybridization (I-FISH) was conducted on peripheral blood or bone marrow samples, whichever were available, and were cultured in growth culture medium. I-FISH was used to detect chromosomal abnormalities such as 11q-, del13q14, 17p-, 6q- and trisomy 12 in CLL patients. Results FISH results showed that there were different chromosomal gene rearrangements including del13q, del17p, del6q, del11q, and trisomy 12. Recurrent chromosomal abnormalities involved trisomy 12, del17p, del13q and novel translocation (8;17) were only seen in one patient. Conclusion Genomic aberrations in CLL are important independent predictors of disease progression and survival. Interphase cytogenetic analysis using FISH revealed chromosomal changes in the majority of CLL samples and is superior to standard karyotype analysis for identifying cytogenetic abnormalities.
{"title":"Cytogenetic Heterogeneity in Chronic Lymphocytic Leukemia.","authors":"Pina J Trivedi, Dharmesh M Patel, Mahnaz Kazi, Priya Varma","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Chronic lymphocytic leukemia (CLL) is a malignancy identified by an increase in the number of lymphocytes in the blood. It is one of the most common adult leukemias. It is a heterogeneous clinical disease with changeable progression. Chromosomal aberrations play a significant role in predicting clinical outcomes and survival. Treatment strategies for each patient are determined by chromosomal abnormalities. Cytogenetic methods are sensitive procedures for detecting abnormalities in the genome. The aim of this study was to document the incidence of different genes and gene rearrangements in CLL patients by comparing conventional cytogenetic and fluorescence in situ hybridization (FISH) results and predicting their prognosis. Materials and Methods A total of 23 CLL patients, 18 men and five women with ages ranging from 45-75 years were enrolled in this case series. Interphase fluorescent in situ hybridization (I-FISH) was conducted on peripheral blood or bone marrow samples, whichever were available, and were cultured in growth culture medium. I-FISH was used to detect chromosomal abnormalities such as 11q-, del13q14, 17p-, 6q- and trisomy 12 in CLL patients. Results FISH results showed that there were different chromosomal gene rearrangements including del13q, del17p, del6q, del11q, and trisomy 12. Recurrent chromosomal abnormalities involved trisomy 12, del17p, del13q and novel translocation (8;17) were only seen in one patient. Conclusion Genomic aberrations in CLL are important independent predictors of disease progression and survival. Interphase cytogenetic analysis using FISH revealed chromosomal changes in the majority of CLL samples and is superior to standard karyotype analysis for identifying cytogenetic abnormalities.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"49 1","pages":"4-9"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9083132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos A Tirado, Sheila Dobin, Krystal Eastwood, M Teresa Guardiola, Rodrigo Hurtado, Ari Rao
Objectives: B-cell acute lymphoblastic leukemia (B-ALL) can afflict both adult and pediatric patients and is characterized by a build-up of B lymphoblasts. Here we present a case of a 25-year-old male patient with a history of B-ALL. Ninety percent of the bone marrow revealed pancytopenia with sheets of B lymphoblasts consistent with the diagnosis of B-ALL for acute pre-B lymphoblastic leukemia. The immunophenotype also presented predominant immature precursor B lymphoid cells positive for CD19, CD10, CD34, CD58, CD38, CD9, and TdT. Chromosome analysis of the bone marrow showed a complex karyotype described as 45~47,XY,i(8)(q10),der(10)add(10)(p11.1)add(10)(q23),-20,+1~2mar[cp3]/46,XY[36]. While IGH rearrangements were cryptic cytogenetically, DNA FISH analysis showed evidence of the IGH (14q32.2) gene rearrangement in 96.5% of the nuclei examined. These results were described as nuc ish(IGHx2)(5'IGH sep 3'IGHx1)[187/200],(5'IGH,3'IGH)x1~4(5'IGH con 3'IGHx0~2) [6/200]. The remaining probes were normal. Further studies using the MYC/IGH DC, DF probe from Abbott showed a gain of IGH signal in 7.5% of the nuclei examined: nuc ish(MYCx2,IGHx3)[15/200]. Metaphase FISH also showed that what appeared to be an isochromosome 8q was a derivative chromosome 8 defined as add(8)(p11.2) that contained a green IGH signal. In light of these results the karyotype was characterized as 45~47,XY,add(8)(p11.2),der(10)add(10)(p11.1)add(10)(q23),-20,+1~2mar[cp3].ish add(8) (p11.2) IgH+. IgH abnormalities are rare in B-ALL and are usually associated with a poor prognosis. However, at the present time our patient presented no evidence of persistent or residual disease and a cytogenetic response to the present therapy.
{"title":"A B-ALL Pediatric Patient with a Cryptic IGH Rearrangement Within the Context of a Complex Karyotype.","authors":"Carlos A Tirado, Sheila Dobin, Krystal Eastwood, M Teresa Guardiola, Rodrigo Hurtado, Ari Rao","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>B-cell acute lymphoblastic leukemia (B-ALL) can afflict both adult and pediatric patients and is characterized by a build-up of B lymphoblasts. Here we present a case of a 25-year-old male patient with a history of B-ALL. Ninety percent of the bone marrow revealed pancytopenia with sheets of B lymphoblasts consistent with the diagnosis of B-ALL for acute pre-B lymphoblastic leukemia. The immunophenotype also presented predominant immature precursor B lymphoid cells positive for CD19, CD10, CD34, CD58, CD38, CD9, and TdT. Chromosome analysis of the bone marrow showed a complex karyotype described as 45~47,XY,i(8)(q10),der(10)add(10)(p11.1)add(10)(q23),-20,+1~2mar[cp3]/46,XY[36]. While IGH rearrangements were cryptic cytogenetically, DNA FISH analysis showed evidence of the IGH (14q32.2) gene rearrangement in 96.5% of the nuclei examined. These results were described as nuc ish(IGHx2)(5'IGH sep 3'IGHx1)[187/200],(5'IGH,3'IGH)x1~4(5'IGH con 3'IGHx0~2) [6/200]. The remaining probes were normal. Further studies using the MYC/IGH DC, DF probe from Abbott showed a gain of IGH signal in 7.5% of the nuclei examined: nuc ish(MYCx2,IGHx3)[15/200]. Metaphase FISH also showed that what appeared to be an isochromosome 8q was a derivative chromosome 8 defined as add(8)(p11.2) that contained a green IGH signal. In light of these results the karyotype was characterized as 45~47,XY,add(8)(p11.2),der(10)add(10)(p11.1)add(10)(q23),-20,+1~2mar[cp3].ish add(8) (p11.2) IgH+. IgH abnormalities are rare in B-ALL and are usually associated with a poor prognosis. However, at the present time our patient presented no evidence of persistent or residual disease and a cytogenetic response to the present therapy.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"49 2","pages":"88-92"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9582083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas C Taylor, Joanna L Conant, Juli-Anne Gardner
Objectives: Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) is a high-risk subtype of AML that has recently undergone significant reclassification. Proper classification requires the integration of clinical history and diagnostic studies including peripheral blood and bone marrow morphology, flow cytometry, cytogenetic and molecular studies. The latter have significant clinical and prognostic implications. We present a case of a 55-year-old male diagnosed with AML-MRC with a pathogenic variant in TP53 and amplification of KMT2A (MLL) without rearrangement. We discuss presentation, importance of diagnostic testing through multiple modalities, and the changes in classification and diagnostic criteria between the 2017 World Health Organization (WHO) revised 4th edition and the WHO 5th edition and International Consensus Classification (ICC).
{"title":"What's in a Name? The Many Classifications of Acute Myeloid Leukemia with Dysplasia.","authors":"Nicholas C Taylor, Joanna L Conant, Juli-Anne Gardner","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) is a high-risk subtype of AML that has recently undergone significant reclassification. Proper classification requires the integration of clinical history and diagnostic studies including peripheral blood and bone marrow morphology, flow cytometry, cytogenetic and molecular studies. The latter have significant clinical and prognostic implications. We present a case of a 55-year-old male diagnosed with AML-MRC with a pathogenic variant in TP53 and amplification of KMT2A (MLL) without rearrangement. We discuss presentation, importance of diagnostic testing through multiple modalities, and the changes in classification and diagnostic criteria between the 2017 World Health Organization (WHO) revised 4th edition and the WHO 5th edition and International Consensus Classification (ICC).</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"49 2","pages":"93-99"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9622347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos A Tirado, Yuri Lin, Ruby Tang, Aarushi Bajpai, Wilson Yeh, Sarvenaz Karamooz, Ari Rao
Objectives: B-cell acute lymphoblastic leukemia (B-ALL) is one of the prevalent pediatric leukemias, accounting for 26% of cancers diagnosed in children 0-14 years of age. We present a case report of an 11-year-old girl with B-ALL. The patient was in complete remission nine months after diagnosis but passed away a month later from chemotherapy-induced hepatic failure, renal failure, and febrile neutropenia. Conventional cytogenetics showed a karyotype of 46,XX,del(5)(q31q35),add(6)(q23),del(7)(q32q36),add(11)(q23),ider(21)(q10)add(21) (q22),inc[20]. DNA FISH analysis performed on the bone marrow showed variant rearrangement of CRLF2, as well as loss of ETV6 signals and gain of RUNX1 signals. The presence of CRLF2 rearrangements within the context of a complex karyotype is often associated with CRLF2 overexpression and poor prognosis. The heterogeneity of B-ALL and the variability in the outcomes of patients that lack characteristic genetic abnormalities highlight the importance of profiling unusual genetic cases such as this one and continuing research to understand the molecular mechanisms of rarer mutations.
{"title":"A CRLF2 Rearrangement in a Pediatric Patient with B-ALL Detected by FISH Within the Context of a Complex Abnormal Karyotype.","authors":"Carlos A Tirado, Yuri Lin, Ruby Tang, Aarushi Bajpai, Wilson Yeh, Sarvenaz Karamooz, Ari Rao","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>B-cell acute lymphoblastic leukemia (B-ALL) is one of the prevalent pediatric leukemias, accounting for 26% of cancers diagnosed in children 0-14 years of age. We present a case report of an 11-year-old girl with B-ALL. The patient was in complete remission nine months after diagnosis but passed away a month later from chemotherapy-induced hepatic failure, renal failure, and febrile neutropenia. Conventional cytogenetics showed a karyotype of 46,XX,del(5)(q31q35),add(6)(q23),del(7)(q32q36),add(11)(q23),ider(21)(q10)add(21) (q22),inc[20]. DNA FISH analysis performed on the bone marrow showed variant rearrangement of CRLF2, as well as loss of ETV6 signals and gain of RUNX1 signals. The presence of CRLF2 rearrangements within the context of a complex karyotype is often associated with CRLF2 overexpression and poor prognosis. The heterogeneity of B-ALL and the variability in the outcomes of patients that lack characteristic genetic abnormalities highlight the importance of profiling unusual genetic cases such as this one and continuing research to understand the molecular mechanisms of rarer mutations.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"48 4","pages":"164-167"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35258637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Haslett, Deborah L Cook, Katherine A Devitt, Juli-Anne Gardner
Objectives: Cutaneous lymphoma is a broad term used to describe any type of lymphoma involving the skin. They may be primary, arising in the skin, or secondary, resulting from spread of a systemic lymphoma. Cutaneous involvement of mantle cell lymphoma (MCL) is extremely rare and most often occurs secondarily. To date, less than 100 cases of MCL involving the skin have been described in the English literature. We describe a case of MCL involving the skin as the clinical presentation of disease in a 74-year-old man and highlight the radiographic and pathologic findings, treatment course, and prognosis.
{"title":"Mantle Cell Lymphoma Presenting with Cutaneous Lesions: A Rare Manifestation of a Systemic Disease.","authors":"Nicholas Haslett, Deborah L Cook, Katherine A Devitt, Juli-Anne Gardner","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Cutaneous lymphoma is a broad term used to describe any type of lymphoma involving the skin. They may be primary, arising in the skin, or secondary, resulting from spread of a systemic lymphoma. Cutaneous involvement of mantle cell lymphoma (MCL) is extremely rare and most often occurs secondarily. To date, less than 100 cases of MCL involving the skin have been described in the English literature. We describe a case of MCL involving the skin as the clinical presentation of disease in a 74-year-old man and highlight the radiographic and pathologic findings, treatment course, and prognosis.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"48 4","pages":"173-175"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35258636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodrigo Hurtado, Stalin Tello, Juan Juarez, Carlos A Tirado
Objectives: Acute myeloid leukemia (AML) is a heterogeneous disease, characterized by clonal expansion of undifferentiated myeloid precursors, leading to alterations in hematopoiesis and bone marrow failure. Characteristic chromosomal abnormalities in AML are translocations t(8;21), inv(16), t(15;17), t(9;22), as well as mutations of genes that regulate proliferation and survival (FLT 3, PTPN 11, ETV 6/PDGFB), or genes responsible for differentiation and apoptosis (RUNX-1/RUNX1T1, PML/RARA, KMT2A, CEBPA and CBFB). Amplification of RUNX1 is a rare event in AML. Herein we described a 60-year-old patient that was admitted to the hospital due to a clinical picture of symptoms of acute anemia, thrombocytopenia, leukocytosis, and profuse nasal bleeding, hepatomegaly, splenomegaly, and gallstones. The blood cell count indicated the presence of 72% blasts. The bone marrow also showed 97% of blasts of myeloid lineage. The flow cytometry study also showed findings compatible with AML (MPOneg/+, CD34+, CD19neg /+d, CD117+, CD38neg /+, HLA-DR ++, CD13neg /+, CD33neg, CD15neg, D56neg, CD123+, CD7neg, CD11bneg, CD64neg, CD41aneg, which represented 68% of the pathological cellularity). Chromosome analysis showed additional copies of an isochromosome 21q. FISH studies revealed five copies of RUNX1. Amplification of RUNX1 is a rare event in AML with only a few cases reported in the literature (mainly therapy related AML) and it is usually associated with poor prognosis.
{"title":"Amplification of RUNX1 in a Patient With AML.","authors":"Rodrigo Hurtado, Stalin Tello, Juan Juarez, Carlos A Tirado","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Acute myeloid leukemia (AML) is a heterogeneous disease, characterized by clonal expansion of undifferentiated myeloid precursors, leading to alterations in hematopoiesis and bone marrow failure. Characteristic chromosomal abnormalities in AML are translocations t(8;21), inv(16), t(15;17), t(9;22), as well as mutations of genes that regulate proliferation and survival (FLT 3, PTPN 11, ETV 6/PDGFB), or genes responsible for differentiation and apoptosis (RUNX-1/RUNX1T1, PML/RARA, KMT2A, CEBPA and CBFB). Amplification of RUNX1 is a rare event in AML. Herein we described a 60-year-old patient that was admitted to the hospital due to a clinical picture of symptoms of acute anemia, thrombocytopenia, leukocytosis, and profuse nasal bleeding, hepatomegaly, splenomegaly, and gallstones. The blood cell count indicated the presence of 72% blasts. The bone marrow also showed 97% of blasts of myeloid lineage. The flow cytometry study also showed findings compatible with AML (MPOneg/+, CD34+, CD19neg /+d, CD117+, CD38neg /+, HLA-DR ++, CD13neg /+, CD33neg, CD15neg, D56neg, CD123+, CD7neg, CD11bneg, CD64neg, CD41aneg, which represented 68% of the pathological cellularity). Chromosome analysis showed additional copies of an isochromosome 21q. FISH studies revealed five copies of RUNX1. Amplification of RUNX1 is a rare event in AML with only a few cases reported in the literature (mainly therapy related AML) and it is usually associated with poor prognosis.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"48 3","pages":"107-109"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40354797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}