Pub Date : 2021-09-01Epub Date: 2021-09-21DOI: 10.1007/978-3-030-87589-3_63
Qin Liu, Chunfeng Lian, Deqiang Xiao, Lei Ma, Han Deng, Xu Chen, Dinggang Shen, Pew-Thian Yap, James J Xia
Skull segmentation from three-dimensional (3D) cone-beam computed tomography (CBCT) images is critical for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Convolutional neural network (CNN)-based methods are currently dominating volumetric image segmentation, but these methods suffer from the limited GPU memory and the large image size (e.g., 512 × 512 × 448). Typical ad-hoc strategies, such as down-sampling or patch cropping, will degrade segmentation accuracy due to insufficient capturing of local fine details or global contextual information. Other methods such as Global-Local Networks (GLNet) are focusing on the improvement of neural networks, aiming to combine the local details and the global contextual information in a GPU memory-efficient manner. However, all these methods are operating on regular grids, which are computationally inefficient for volumetric image segmentation. In this work, we propose a novel VoxelRend-based network (VR-U-Net) by combining a memory-efficient variant of 3D U-Net with a voxel-based rendering (VoxelRend) module that refines local details via voxel-based predictions on non-regular grids. Establishing on relatively coarse feature maps, the VoxelRend module achieves significant improvement of segmentation accuracy with a fraction of GPU memory consumption. We evaluate our proposed VR-U-Net in the skull segmentation task on a high-resolution CBCT dataset collected from local hospitals. Experimental results show that the proposed VR-U-Net yields high-quality segmentation results in a memory-efficient manner, highlighting the practical value of our method.
三维锥形束计算机断层扫描(CBCT)图像的颅骨分割对于颅颌面畸形的诊断和治疗计划至关重要。基于卷积神经网络(CNN)的方法目前在体积图像分割中占主导地位,但这些方法受到GPU内存有限和图像尺寸较大(例如512 × 512 × 448)的影响。典型的特殊策略,如降采样或斑块裁剪,会降低分割的准确性,因为没有充分捕获局部细节或全局上下文信息。其他方法如global - local Networks (GLNet)则专注于神经网络的改进,旨在以GPU内存高效的方式将局部细节和全局上下文信息结合起来。然而,所有这些方法都是在规则网格上操作的,这对于体积图像分割来说计算效率很低。在这项工作中,我们提出了一种新的基于VoxelRend的网络(VR-U-Net),通过将3D U-Net的内存高效变体与基于体素的渲染(VoxelRend)模块相结合,该模块通过基于体素的非规则网格预测来细化局部细节。VoxelRend模块建立在相对粗糙的特征映射上,以一小部分GPU内存消耗实现了分割精度的显著提高。我们在从当地医院收集的高分辨率CBCT数据集上评估了我们提出的VR-U-Net在颅骨分割任务中的应用。实验结果表明,本文提出的VR-U-Net算法在节省内存的前提下,获得了高质量的分割结果,突出了本文方法的实用价值。
{"title":"Skull Segmentation from CBCT Images via Voxel-Based Rendering.","authors":"Qin Liu, Chunfeng Lian, Deqiang Xiao, Lei Ma, Han Deng, Xu Chen, Dinggang Shen, Pew-Thian Yap, James J Xia","doi":"10.1007/978-3-030-87589-3_63","DOIUrl":"https://doi.org/10.1007/978-3-030-87589-3_63","url":null,"abstract":"<p><p>Skull segmentation from three-dimensional (3D) cone-beam computed tomography (CBCT) images is critical for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Convolutional neural network (CNN)-based methods are currently dominating volumetric image segmentation, but these methods suffer from the limited GPU memory and the large image size (<i>e.g</i>., 512 × 512 × 448). Typical ad-hoc strategies, such as down-sampling or patch cropping, will degrade segmentation accuracy due to insufficient capturing of local fine details or global contextual information. Other methods such as Global-Local Networks (GLNet) are focusing on the improvement of neural networks, aiming to combine the local details and the global contextual information in a GPU memory-efficient manner. However, all these methods are operating on regular grids, which are computationally inefficient for volumetric image segmentation. In this work, we propose a novel VoxelRend-based network (VR-U-Net) by combining a memory-efficient variant of 3D U-Net with a voxel-based rendering (VoxelRend) module that refines local details via voxel-based predictions on non-regular grids. Establishing on relatively coarse feature maps, the VoxelRend module achieves significant improvement of segmentation accuracy with a fraction of GPU memory consumption. We evaluate our proposed VR-U-Net in the skull segmentation task on a high-resolution CBCT dataset collected from local hospitals. Experimental results show that the proposed VR-U-Net yields high-quality segmentation results in a memory-efficient manner, highlighting the practical value of our method.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":" ","pages":"615-623"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675180/pdf/nihms-1762343.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39853017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1007/978-3-030-87589-3_71
N. Islam, S. Gehlot, Zongwei Zhou, M. Gotway, Jianming Liang
{"title":"Seeking an Optimal Approach for Computer-Aided Pulmonary Embolism Detection","authors":"N. Islam, S. Gehlot, Zongwei Zhou, M. Gotway, Jianming Liang","doi":"10.1007/978-3-030-87589-3_71","DOIUrl":"https://doi.org/10.1007/978-3-030-87589-3_71","url":null,"abstract":"","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"10 1","pages":"692-702"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86109324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-09-21DOI: 10.1007/978-3-030-87589-3_62
Qin Liu, Han Deng, Chunfeng Lian, Xiaoyang Chen, Deqiang Xiao, Lei Ma, Xu Chen, Tianshu Kuang, Jaime Gateno, Pew-Thian Yap, James J Xia
Accurate bone segmentation and landmark detection are two essential preparation tasks in computer-aided surgical planning for patients with craniomaxillofacial (CMF) deformities. Surgeons typically have to complete the two tasks manually, spending ~12 hours for each set of CBCT or ~5 hours for CT. To tackle these problems, we propose a multi-stage coarse-to-fine CNN-based framework, called SkullEngine, for high-resolution segmentation and large-scale landmark detection through a collaborative, integrated, and scalable JSD model and three segmentation and landmark detection refinement models. We evaluated our framework on a clinical dataset consisting of 170 CBCT/CT images for the task of segmenting 2 bones (midface and mandible) and detecting 175 clinically common landmarks on bones, teeth, and soft tissues. Experimental results show that SkullEngine significantly improves segmentation quality, especially in regions where the bone is thin. In addition, SkullEngine also efficiently and accurately detect all of the 175 landmarks. Both tasks were completed simultaneously within 3 minutes regardless of CBCT or CT with high segmentation quality. Currently, SkullEngine has been integrated into a clinical workflow to further evaluate its clinical efficiency.
{"title":"SkullEngine: A Multi-Stage CNN Framework for Collaborative CBCT Image Segmentation and Landmark Detection.","authors":"Qin Liu, Han Deng, Chunfeng Lian, Xiaoyang Chen, Deqiang Xiao, Lei Ma, Xu Chen, Tianshu Kuang, Jaime Gateno, Pew-Thian Yap, James J Xia","doi":"10.1007/978-3-030-87589-3_62","DOIUrl":"https://doi.org/10.1007/978-3-030-87589-3_62","url":null,"abstract":"<p><p>Accurate bone segmentation and landmark detection are two essential preparation tasks in computer-aided surgical planning for patients with craniomaxillofacial (CMF) deformities. Surgeons typically have to complete the two tasks manually, spending ~12 hours for each set of CBCT or ~5 hours for CT. To tackle these problems, we propose a multi-stage coarse-to-fine CNN-based framework, called SkullEngine, for high-resolution segmentation and large-scale landmark detection through a collaborative, integrated, and scalable JSD model and three segmentation and landmark detection refinement models. We evaluated our framework on a clinical dataset consisting of 170 CBCT/CT images for the task of segmenting 2 bones (midface and mandible) and detecting 175 clinically common landmarks on bones, teeth, and soft tissues. Experimental results show that SkullEngine significantly improves segmentation quality, especially in regions where the bone is thin. In addition, SkullEngine also efficiently and accurately detect all of the 175 landmarks. Both tasks were completed simultaneously within 3 minutes regardless of CBCT or CT with high segmentation quality. Currently, SkullEngine has been integrated into a clinical workflow to further evaluate its clinical efficiency.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":" ","pages":"606-614"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712093/pdf/nihms-1762341.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39631757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1007/978-3-030-87589-3_18
Yue Sun, Kun Gao, W. Lin, Gang Li, Sijie Niu, Li Wang
{"title":"Multi-scale Self-supervised Learning for Multi-site Pediatric Brain MR Image Segmentation with Motion/Gibbs Artifacts","authors":"Yue Sun, Kun Gao, W. Lin, Gang Li, Sijie Niu, Li Wang","doi":"10.1007/978-3-030-87589-3_18","DOIUrl":"https://doi.org/10.1007/978-3-030-87589-3_18","url":null,"abstract":"","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"34 1","pages":"171-179"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78010116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1007/978-3-030-87589-3_12
Zhanghexuan Ji, Mohammad Abuzar Shaikh, Dana Moukheiber, S. Srihari, Yifan Peng, Mingchen Gao
{"title":"Improving Joint Learning of Chest X-Ray and Radiology Report by Word Region Alignment","authors":"Zhanghexuan Ji, Mohammad Abuzar Shaikh, Dana Moukheiber, S. Srihari, Yifan Peng, Mingchen Gao","doi":"10.1007/978-3-030-87589-3_12","DOIUrl":"https://doi.org/10.1007/978-3-030-87589-3_12","url":null,"abstract":"","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"1 1","pages":"110-119"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80401668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1007/978-3-030-87589-3_41
Ugur Demir, Ismail Irmakci, Elif Keles, Ahmet Topcu, Ziyue Xu, Concetto Spampinato, Sachin Jambawalikar, Evrim Turkbey, Baris Turkbey, Ulas Bagci
Visual explanation methods have an important role in the prognosis of the patients where the annotated data is limited or unavailable. There have been several attempts to use gradient-based attribution methods to localize pathology from medical scans without using segmentation labels. This research direction has been impeded by the lack of robustness and reliability. These methods are highly sensitive to the network parameters. In this study, we introduce a robust visual explanation method to address this problem for medical applications. We provide an innovative visual explanation algorithm for general purpose and as an example application we demonstrate its effectiveness for quantifying lesions in the lungs caused by the Covid-19 with high accuracy and robustness without using dense segmentation labels. This approach overcomes the drawbacks of commonly used Grad-CAM and its extended versions. The premise behind our proposed strategy is that the information flow is minimized while ensuring the classifier prediction stays similar. Our findings indicate that the bottleneck condition provides a more stable severity estimation than the similar attribution methods. The source code will be publicly available upon publication.
{"title":"Information Bottleneck Attribution for Visual Explanations of Diagnosis and Prognosis.","authors":"Ugur Demir, Ismail Irmakci, Elif Keles, Ahmet Topcu, Ziyue Xu, Concetto Spampinato, Sachin Jambawalikar, Evrim Turkbey, Baris Turkbey, Ulas Bagci","doi":"10.1007/978-3-030-87589-3_41","DOIUrl":"https://doi.org/10.1007/978-3-030-87589-3_41","url":null,"abstract":"<p><p>Visual explanation methods have an important role in the prognosis of the patients where the annotated data is limited or unavailable. There have been several attempts to use gradient-based attribution methods to localize pathology from medical scans without using segmentation labels. This research direction has been impeded by the lack of robustness and reliability. These methods are highly sensitive to the network parameters. In this study, we introduce a robust visual explanation method to address this problem for medical applications. We provide an innovative visual explanation algorithm for general purpose and as an example application we demonstrate its effectiveness for quantifying lesions in the lungs caused by the Covid-19 with high accuracy and robustness without using dense segmentation labels. This approach overcomes the drawbacks of commonly used Grad-CAM and its extended versions. The premise behind our proposed strategy is that the information flow is minimized while ensuring the classifier prediction stays similar. Our findings indicate that the bottleneck condition provides a more stable severity estimation than the similar attribution methods. The source code will be publicly available upon publication.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"12966 ","pages":"396-405"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921297/pdf/nihms-1871448.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10721276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-87589-3
{"title":"Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings","authors":"","doi":"10.1007/978-3-030-87589-3","DOIUrl":"https://doi.org/10.1007/978-3-030-87589-3","url":null,"abstract":"","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77936797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-01Epub Date: 2020-09-29DOI: 10.1007/978-3-030-59861-7_13
Huahong Zhang, Rohit Bakshi, Francesca Bagnato, Ipek Oguz
Inpainting lesions is an important preprocessing task for algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such as tissue segmentation and cortical surface reconstruction. We propose a new deep learning approach for this task. Unlike existing inpainting approaches which ignore the lesion areas of the input image, we leverage the edge information around the lesions as a prior to help the inpainting process. Thus, the input of this network includes the T1-w image, lesion mask and the edge map computed from the T1-w image, and the output is the lesion-free image. The introduction of the edge prior is based on our observation that the edge detection results of the MRI scans will usually contain the contour of white matter (WM) and grey matter (GM), even though some undesired edges appear near the lesions. Instead of losing all the information around the neighborhood of lesions, our approach preserves the local tissue shape (brain/WM/GM) with the guidance of the input edges. The qualitative results show that our pipeline inpaints the lesion areas in a realistic and shape-consistent way. Our quantitative evaluation shows that our approach outperforms the existing state-of-the-art inpainting methods in both image-based metrics and in FreeSurfer segmentation accuracy. Furthermore, our approach demonstrates robustness to inaccurate lesion mask inputs. This is important for practical usability, because it allows for a generous over-segmentation of lesions instead of requiring precise boundaries, while still yielding accurate results.
{"title":"Robust Multiple Sclerosis Lesion Inpainting with Edge Prior.","authors":"Huahong Zhang, Rohit Bakshi, Francesca Bagnato, Ipek Oguz","doi":"10.1007/978-3-030-59861-7_13","DOIUrl":"10.1007/978-3-030-59861-7_13","url":null,"abstract":"<p><p>Inpainting lesions is an important preprocessing task for algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such as tissue segmentation and cortical surface reconstruction. We propose a new deep learning approach for this task. Unlike existing inpainting approaches which ignore the lesion areas of the input image, we leverage the edge information around the lesions as a prior to help the inpainting process. Thus, the input of this network includes the T1-w image, lesion mask and the edge map computed from the T1-w image, and the output is the lesion-free image. The introduction of the edge prior is based on our observation that the edge detection results of the MRI scans will usually contain the contour of white matter (WM) and grey matter (GM), even though some undesired edges appear near the lesions. Instead of losing all the information around the neighborhood of lesions, our approach preserves the local tissue shape (brain/WM/GM) with the guidance of the input edges. The qualitative results show that our pipeline inpaints the lesion areas in a realistic and shape-consistent way. Our quantitative evaluation shows that our approach outperforms the existing state-of-the-art inpainting methods in both image-based metrics and in FreeSurfer segmentation accuracy. Furthermore, our approach demonstrates robustness to inaccurate lesion mask inputs. This is important for practical usability, because it allows for a generous over-segmentation of lesions instead of requiring precise boundaries, while still yielding accurate results.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"12436 ","pages":"120-129"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692168/pdf/nihms-1752653.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39847994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.
{"title":"Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI.","authors":"Dongren Yao, Jing Sui, Erkun Yang, Pew-Thian Yap, Dinggang Shen, Mingxia Liu","doi":"10.1007/978-3-030-59861-7_1","DOIUrl":"https://doi.org/10.1007/978-3-030-59861-7_1","url":null,"abstract":"<p><p>Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645786/pdf/nihms-1822329.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40687357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-01DOI: 10.1007/978-3-030-59861-7_68
Kun Gao, Yue Sun, Sijie Niu, Li Wang
{"title":"Informative Feature-Guided Siamese Network for Early Diagnosis of Autism","authors":"Kun Gao, Yue Sun, Sijie Niu, Li Wang","doi":"10.1007/978-3-030-59861-7_68","DOIUrl":"https://doi.org/10.1007/978-3-030-59861-7_68","url":null,"abstract":"","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"26 1","pages":"674-682"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74366783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}