Background: Renal Cell Carcinoma (RCC) is the most common type of kidney cancer and requires accurate histopathological grading for effective prognosis and treatment planning. However, manual grading is time-consuming, subjective, and susceptible to inter-observer variability. Objective: This study proposes EAT-Net (Efficient Attention Transformer Network), a dual-stream deep learning model designed to automate and enhance RCC grade classification from histopathological images. Method: EAT-Net integrates EfficientNetB0 for local feature extraction and a Vision Transformer (ViT) stream for capturing global contextual dependencies. The architecture incorporates Squeeze-and-Excitation (SE) modules to recalibrate feature maps, improving focus on informative regions. The model was trained and evaluated on two publicly available datasets, KMC-RENAL and RCCG-Net. Standard preprocessing was applied, and the model's performance was assessed using accuracy, precision, recall, and F1-score. Results: EAT-Net achieved superior results compared to state-of-the-art models, with an accuracy of 92.25%, precision of 92.15%, recall of 92.12%, and F1-score of 92.25%. Ablation studies demonstrated the complementary value of the EfficientNet and ViT streams. Additionally, Grad-CAM visualizations confirmed that the model focuses on diagnostically relevant areas, supporting its interpretability and clinical relevance. Conclusion: EAT-Net offers an accurate, and explainable framework for RCC grading. Its lightweight architecture and high performance make it well-suited for clinical deployment in digital pathology workflows.
扫码关注我们
求助内容:
应助结果提醒方式:
