[This corrects the article DOI: 10.1093/femsml/uqae003.].
[This corrects the article DOI: 10.1093/femsml/uqae003.].
Ecosystems subject to mantle degassing are of particular interest for understanding global biogeochemistry, as their microbiomes are shaped by prolonged exposure to high CO2 and have recently been suggested to be highly active. While the genetic diversity of bacteria and archaea in these deep biosphere systems have been studied extensively, little is known about how viruses impact these microbial communities. Here, we show that the viral community in a high-CO2 cold-water geyser (Wallender Born, Germany) undergoes substantial fluctuations over a period of 12 days, although the corresponding prokaryotic community remains stable, indicating a newly observed "infect to keep in check" strategy that maintains prokaryotic community structure. We characterized the viral community using metagenomics and metaproteomics, revealing 8 654 viral operational taxonomic units (vOTUs). CRISPR spacer-to-protospacer matching linked 278 vOTUs to 32 hosts, with many vOTUs sharing hosts from different families. High levels of viral structural proteins present in the metaproteome (several structurally annotated based on AlphaFold models) indicate active virion production at the time of sampling. Viral genomes expressed many proteins involved in DNA metabolism and manipulation, and encoded for auxiliary metabolic genes, which likely bolster phosphate and sulfur metabolism of their hosts. The active viral community encodes genes to facilitate acquisition and transformation of host nutrients, and appears to consist of many nutrient-demanding members, based on abundant virion proteins. These findings indicate viruses are inextricably linked to the biogeochemical cycling in this high-CO2 environment and substantially contribute to prokaryotic community stability in the deep biosphere hotspots.
The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family Mimiviridae, suggesting this may be the major evolutionary force behind their giant genomes.
The introduction of high-throughput sequencing has resulted in a surge of available bacteriophage genomes, unveiling their tremendous genomic diversity. However, our current understanding of the complex transcriptional mechanisms that dictate their gene expression during infection is limited to a handful of model phages. Here, we applied ONT-cappable-seq to reveal the transcriptional architecture of six different clades of virulent phages infecting Pseudomonas aeruginosa. This long-read microbial transcriptomics approach is tailored to globally map transcription start and termination sites, transcription units, and putative RNA-based regulators on dense phage genomes. Specifically, the full-length transcriptomes of LUZ19, LUZ24, 14-1, YuA, PAK_P3, and giant phage phiKZ during early, middle, and late infection were collectively charted. Beyond pinpointing traditional promoter and terminator elements and transcription units, these transcriptional profiles provide insights in transcriptional attenuation and splicing events and allow straightforward validation of Group I intron activity. In addition, ONT-cappable-seq data can guide genome-wide discovery of novel regulatory element candidates, including noncoding RNAs and riboswitches. This work substantially expands the number of annotated phage-encoded transcriptional elements identified to date, shedding light on the intricate and diverse gene expression regulation mechanisms in Pseudomonas phages, which can ultimately be sourced as tools for biotechnological applications in phage and bacterial engineering.
Bacteriophages play a crucial role in shaping bacterial communities, yet the mechanisms by which nonmotile bacteriophages interact with their hosts remain poorly understood. This knowledge gap is especially pronounced in structured environments like soil, where spatial constraints and air-filled zones hinder aqueous diffusion. In soil, hyphae of filamentous microorganisms form a network of 'fungal highways' (FHs) that facilitate the dispersal of other microorganisms. We propose that FHs also promote bacteriophage dissemination. Viral particles can diffuse in liquid films surrounding hyphae or be transported by infectable (host) or uninfectable (nonhost) bacterial carriers coexisting on FH networks. To test this, two bacteriophages that infect Pseudomonas putida DSM291 (host) but not KT2440 (nonhost) were used. In the absence of carriers, bacteriophages showed limited diffusion on 3D-printed abiotic networks, but diffusion was significantly improved in Pythium ultimum-formed FHs when the number of connecting hyphae exceeded 20. Transport by both host and nonhost carriers enhanced bacteriophage dissemination. Host carriers were five times more effective in transporting bacteriophages, particularly in FHs with over 30 connecting hyphae. This study enhances our understanding of bacteriophage dissemination in nonsaturated environments like soils, highlighting the importance of biotic networks and bacterial hosts in facilitating this process.