首页 > 最新文献

Powder Metallurgy and Metal Ceramics最新文献

英文 中文
Optimization of Detonation Spraying Parameters for (Ti, Cr)C–Ni Composite Coatings 优化(钛、铬)C-镍复合涂层的引爆喷涂参数
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-13 DOI: 10.1007/s11106-024-00427-3
M. S. Storozhenko, O. P. Umanskyi, O. V. Melnyk, O. Yu. Koval, O. Ye. Terentiev, K. M. Haltsov, O. A. Bondarenko, I. S. Martsenyuk, V. P. Brazhevskyi, O. O. Chernyshov

The influence of detonation spraying parameters on the porosity and adhesion of (Ti, Cr)C–Ni coatings was studied. These detonation coatings were applied from (Ti, Cr)C-based composite powders containing 18, 25, and 33 wt.% Ni onto a steel substrate. The particle-size distribution of the powders was –63+40 μm. A Dnipro-5M installation was used for detonation spraying. The flow rate of acetylene and oxygen, the air pressure for ejecting detonation products, and the spraying distance were varied in the spraying process. The structure of the coatings was examined by optical microscopy and electron probe microanalysis. The adhesion of the (Ti, Cr)C–Ni coatings was determined by the pin method, and the porosity was measured by the linear Rosival method. In the detonation spraying of (Ti, Cr)C–Ni composite powders, particles of double titanium–chromium carbide refined to 6–7 μm, contributing to the development of a fine and uniform structure of the detonation coatings. It was found that the detonation spraying parameters should be adjusted upward when the nickel content changed from 18 to 33 wt.% in the (Ti, Cr)C–Ni composite powders. The increase in the nickel content from 18 to 33 wt.% resulted in higher adhesive strength and lower porosity of the coatings. In the research, an acceptable level of adhesive strength and porosity could not be reached for the (Ti, Cr)C–18 wt.% Ni detonation coating. The (Ti, Cr)C–33 wt.% Ni detonation coating exhibited the highest adhesive strength (101 MPa) and the lowest porosity (2%) among the studied coatings and is thus promising for further research of its tribological properties.

研究了引爆喷涂参数对(钛、铬)C-镍涂层的孔隙率和附着力的影响。这些雷管涂层由含 18、25 和 33 wt.% Ni 的(Ti、Cr)C 基复合粉末喷涂到钢基体上。粉末的粒度分布为 -63+40 μm。Dnipro-5M 装置用于引爆喷涂。在喷涂过程中,乙炔和氧气的流速、喷射起爆产物的气压以及喷涂距离都发生了变化。通过光学显微镜和电子探针显微分析检测了涂层的结构。针法测定了(Ti,Cr)C-Ni 涂层的附着力,线性 Rosival 法测量了孔隙率。在(Ti,Cr)C-Ni 复合粉末的引爆喷涂过程中,双钛-铬碳化物颗粒细化至 6-7 μm,有助于形成精细均匀的引爆涂层结构。研究发现,当(Ti,Cr)C-Ni 复合粉末中的镍含量从 18 重量%变为 33 重量%时,起爆喷涂参数应向上调整。镍含量从 18% 增加到 33% 时,涂层的粘合强度更高,孔隙率更低。在研究中,(Ti,Cr)C-18 wt.% Ni 起爆涂层的粘合强度和孔隙率无法达到可接受的水平。在所研究的涂层中,(Ti,Cr)C-33 wt.% Ni 起爆涂层的粘合强度最高(101 兆帕),孔隙率最低(2%),因此有望进一步研究其摩擦学特性。
{"title":"Optimization of Detonation Spraying Parameters for (Ti, Cr)C–Ni Composite Coatings","authors":"M. S. Storozhenko,&nbsp;O. P. Umanskyi,&nbsp;O. V. Melnyk,&nbsp;O. Yu. Koval,&nbsp;O. Ye. Terentiev,&nbsp;K. M. Haltsov,&nbsp;O. A. Bondarenko,&nbsp;I. S. Martsenyuk,&nbsp;V. P. Brazhevskyi,&nbsp;O. O. Chernyshov","doi":"10.1007/s11106-024-00427-3","DOIUrl":"10.1007/s11106-024-00427-3","url":null,"abstract":"<p>The influence of detonation spraying parameters on the porosity and adhesion of (Ti, Cr)C–Ni coatings was studied. These detonation coatings were applied from (Ti, Cr)C-based composite powders containing 18, 25, and 33 wt.% Ni onto a steel substrate. The particle-size distribution of the powders was –63+40 μm. A Dnipro-5M installation was used for detonation spraying. The flow rate of acetylene and oxygen, the air pressure for ejecting detonation products, and the spraying distance were varied in the spraying process. The structure of the coatings was examined by optical microscopy and electron probe microanalysis. The adhesion of the (Ti, Cr)C–Ni coatings was determined by the pin method, and the porosity was measured by the linear Rosival method. In the detonation spraying of (Ti, Cr)C–Ni composite powders, particles of double titanium–chromium carbide refined to 6–7 μm, contributing to the development of a fine and uniform structure of the detonation coatings. It was found that the detonation spraying parameters should be adjusted upward when the nickel content changed from 18 to 33 wt.% in the (Ti, Cr)C–Ni composite powders. The increase in the nickel content from 18 to 33 wt.% resulted in higher adhesive strength and lower porosity of the coatings. In the research, an acceptable level of adhesive strength and porosity could not be reached for the (Ti, Cr)C–18 wt.% Ni detonation coating. The (Ti, Cr)C–33 wt.% Ni detonation coating exhibited the highest adhesive strength (101 MPa) and the lowest porosity (2%) among the studied coatings and is thus promising for further research of its tribological properties.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 11-12","pages":"696 - 703"},"PeriodicalIF":0.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic Properties of Melts in the Ni–Tb System 镍钛系熔体的热力学性质
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-13 DOI: 10.1007/s11106-024-00431-7
V. S. Sudavtsova, V. G. Kudin, L. O. Romanova

The isoperibolic calorimetry method was used to determine the mixing enthalpy of liquid alloys in the Ni–Tb system in the composition range 0 < xNi < 0.6 at 1660 ± 1 K. The minimum mixing enthalpy of melts in this system was –41.8 ± 0.9 kJ/mol at xNi = 0.6. The activities of components and the mole fractions of associates in these melts were calculated according to the ideal associated solution (IAS) model with our and literature values of formation enthalpies for compounds in the Ni–Tb system and with phase diagram data. Two associates were selected for the calculations: TbNi and TbNi5. The activities of the components showed large negative deviations from the ideal solution, with the simplest associate, TbNi, being predominant (xmax = 0.65). The second associate was present in a much smaller proportion (xmax = 0.22). These data correlate with the mixing enthalpies of the melts, formed with significant exothermic effects. To assess the reliability of the formation enthalpies of compounds and melts in the Ni–Tb system, they were compared with those of LnNi5 compounds and liquid alloys in the Ni–Ln system. All were determined with different options of the calorimetry method. Hence, to be compared, they were plotted as a function of the Ln atomic number. Most of the data points aligned with two trend lines, except for the data for compounds in binary Ni–Gd(Dy, Er) systems and melts in binary Ni–Ce (Eu, Yb) systems. Regarding these ΔHmin values, which are more exothermic (Ni–Ce system) and less exothermic (Ni–Eu(Yb) systems) than all others, they may be attributed to the electronic structures of atoms in the components of the melts. The Eu and Yb atoms are known to have half-filled and completely filled 4f orbitals, while the Ce atom contains one electron in the 4f orbital. Therefore, Eu and Yb are divalent and Ce is tetravalent in the nickel alloys. Since nickel is a strong electron acceptor, the energy of its interaction with Ce is greater and that with Eu and Yb is lower compared to other neighboring lanthanides.

采用等压量热法测定了成分范围为 0 < xNi < 0.6、1660 ± 1 K 时 Ni-Tb 体系中液态合金的混合焓。根据理想伴生溶液(IAS)模型、我们和文献中有关镍钛体系中化合物的形成焓值以及相图数据,计算了这些熔体中各组分的活度和伴生体的摩尔分数。计算选择了两种伴生化合物:TbNi 和 TbNi5。这些成分的活性与理想溶液的负偏差很大,其中最简单的联营体 TbNi 占主导地位(xmax = 0.65)。第二种伴生体的比例要小得多(xmax = 0.22)。这些数据与在显著放热效应下形成的熔体的混合焓相关。为了评估 Ni-Tb 体系中化合物和熔体形成焓的可靠性,我们将其与 Ni-Ln 体系中 LnNi5 化合物和液态合金的形成焓进行了比较。它们都是用不同的量热法测定的。因此,为了进行比较,我们将它们绘制成 Ln 原子序数的函数图。除了二元镍-钆(Dy、Er)体系化合物和二元镍-铈(Eu、Yb)体系熔体的数据外,大多数数据点都与两条趋势线一致。这些 ΔHmin 值的放热程度(Ni-Ce 体系)和放热程度(Ni-Eu(Yb) 体系)均高于其他体系,这可能是熔体成分中原子的电子结构造成的。众所周知,Eu 和 Yb 原子具有半填充和完全填充的 4f 轨道,而 Ce 原子的 4f 轨道中含有一个电子。因此,在镍合金中,Eu 和 Yb 为二价,Ce 为四价。由于镍是强电子受体,与其他邻近的镧系元素相比,镍与 Ce 的相互作用能量更大,而与 Eu 和 Yb 的相互作用能量更小。
{"title":"Thermodynamic Properties of Melts in the Ni–Tb System","authors":"V. S. Sudavtsova,&nbsp;V. G. Kudin,&nbsp;L. O. Romanova","doi":"10.1007/s11106-024-00431-7","DOIUrl":"10.1007/s11106-024-00431-7","url":null,"abstract":"<p>The isoperibolic calorimetry method was used to determine the mixing enthalpy of liquid alloys in the Ni–Tb system in the composition range 0 &lt; <i>x</i><sub>Ni</sub> &lt; 0.6 at 1660 ± 1 K. The minimum mixing enthalpy of melts in this system was –41.8 ± 0.9 kJ/mol at <i>x</i><sub>Ni</sub> = 0.6. The activities of components and the mole fractions of associates in these melts were calculated according to the ideal associated solution (IAS) model with our and literature values of formation enthalpies for compounds in the Ni–Tb system and with phase diagram data. Two associates were selected for the calculations: TbNi and TbNi<sub>5</sub>. The activities of the components showed large negative deviations from the ideal solution, with the simplest associate, TbNi, being predominant (<i>x</i><sub>max</sub> = 0.65). The second associate was present in a much smaller proportion (<i>x</i><sub>max</sub> = 0.22). These data correlate with the mixing enthalpies of the melts, formed with significant exothermic effects. To assess the reliability of the formation enthalpies of compounds and melts in the Ni–Tb system, they were compared with those of LnNi<sub>5</sub> compounds and liquid alloys in the Ni–Ln system. All were determined with different options of the calorimetry method. Hence, to be compared, they were plotted as a function of the Ln atomic number. Most of the data points aligned with two trend lines, except for the data for compounds in binary Ni–Gd(Dy, Er) systems and melts in binary Ni–Ce (Eu, Yb) systems. Regarding these Δ<i>H</i><sub>min</sub> values, which are more exothermic (Ni–Ce system) and less exothermic (Ni–Eu(Yb) systems) than all others, they may be attributed to the electronic structures of atoms in the components of the melts. The Eu and Yb atoms are known to have half-filled and completely filled 4f orbitals, while the Ce atom contains one electron in the 4f orbital. Therefore, Eu and Yb are divalent and Ce is tetravalent in the nickel alloys. Since nickel is a strong electron acceptor, the energy of its interaction with Ce is greater and that with Eu and Yb is lower compared to other neighboring lanthanides.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 11-12","pages":"737 - 744"},"PeriodicalIF":0.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic Properties of the Glass-Forming Ternary (Fe, Co, Ni, Cu)–Ti–Zr Liquid Alloys II. Temperature–Concentration Dependence of Thermodynamic Mixing Functions and Chemical Ordering in Liquid Alloys 玻璃态三元(铁、钴、镍、铜)-钛-锆液态合金的热力学性质 II.液态合金中热力学混合函数和化学有序性的温度-浓度依赖性
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-13 DOI: 10.1007/s11106-024-00430-8
M. A. Turchanin, P. G. Agraval, G. O. Vodopyanova, V. A. Korsun

This paper considers the dependence of the thermodynamic properties of glass-forming liquid alloys of the (Fe, Co, Ni, Cu)–Ti–Zr systems on composition and temperature. The associate solution model (ASM) was used as a calculation tool. The results of the calculations correspond to the experimental data on the integral mixing enthalpy, presented in the first part of the work, and reveal the regularities of changes in other thermodynamic functions and the features of interaction between components in these liquid alloys. It was established that the excess thermodynamic mixing functions in each system have negative values, which are determined by pair interactions between Fe, Co, Ni, and Cu as electron acceptors and Ti and Zr as electron donors. The trend of changes in the minimum values of excess thermodynamic mixing functions of the systems shows an increase in their absolute values along the 3d-series from iron to nickel and a significant decrease for copper, which corresponds to a change in the acceptor capacity of metals along the transition series. The temperature dependence of the thermodynamic mixing functions consists in an increase in negative deviations from ideality and an increase in the intensity of interaction between components with a decrease in temperature. The formation of glass-forming liquid alloys from pure metals is accompanied by an increase in the thermodynamic stability of the liquid phase, which is reflected in negative values of the Gibbs mixing energy. In the range of 800–1873 K, the ΔmG function of liquid equiatomic alloys of the systems considered shows values at the level of –20...–35 kJ/mol. Within the framework of ASM, using the total mole fraction of associates as a quantitative estimate of the degree of short-range chemical order, it is shown that liquid alloys of the Me–Ti–Zr system are characterized by significant chemical ordering, which increases with decreasing temperature. Using the empirical rule, the experimentally known compositions of amorphous alloys for the Cu–Ti–Zr and Ni–Ti–Zr systems were interpreted and the composition regions of liquid alloy amorphization were predicted for the Fe–Ti–Zr and Co–Ti–Zr systems.

本文探讨了(铁、钴、镍、铜)-钛-锆体系玻璃化液态合金的热力学性质与成分和温度的关系。计算工具是联溶模型(ASM)。计算结果与第一部分中介绍的有关积分混合焓的实验数据一致,并揭示了这些液态合金中其他热力学函数变化的规律性以及各组分之间相互作用的特点。研究发现,每个体系中的过量热力学混合函数都是负值,这是由作为电子受体的铁、钴、镍和铜与作为电子供体的钛和锆之间的成对相互作用决定的。各体系过量热力学混合函数最小值的变化趋势显示,从铁到镍,其绝对值沿 3d 系列不断增加,而铜的绝对值则显著下降,这与金属的受体能力沿过渡系列的变化相对应。热力学混合函数与温度的关系是,随着温度的降低,负偏离理想状态的情况增加,各组分之间相互作用的强度增加。在纯金属形成玻璃液态合金的同时,液相的热力学稳定性也在增加,这反映在吉布斯混合能的负值上。在 800-1873 K 的范围内,所考虑的系统的液态等原子合金的 ΔmG 函数值为 -20...-35 kJ/mol。在 ASM 框架内,使用同系物的总摩尔分数作为短程化学有序程度的定量估计,表明 Me-Ti-Zr 体系的液态合金具有显著的化学有序性,这种有序性随着温度的降低而增加。利用经验法则解释了实验已知的 Cu-Ti-Zr 和 Ni-Ti-Zr 系统非晶合金的成分,并预测了 Fe-Ti-Zr 和 Co-Ti-Zr 系统液态合金非晶化的成分区域。
{"title":"Thermodynamic Properties of the Glass-Forming Ternary (Fe, Co, Ni, Cu)–Ti–Zr Liquid Alloys II. Temperature–Concentration Dependence of Thermodynamic Mixing Functions and Chemical Ordering in Liquid Alloys","authors":"M. A. Turchanin,&nbsp;P. G. Agraval,&nbsp;G. O. Vodopyanova,&nbsp;V. A. Korsun","doi":"10.1007/s11106-024-00430-8","DOIUrl":"10.1007/s11106-024-00430-8","url":null,"abstract":"<p>This paper considers the dependence of the thermodynamic properties of glass-forming liquid alloys of the (Fe, Co, Ni, Cu)–Ti–Zr systems on composition and temperature. The associate solution model (ASM) was used as a calculation tool. The results of the calculations correspond to the experimental data on the integral mixing enthalpy, presented in the first part of the work, and reveal the regularities of changes in other thermodynamic functions and the features of interaction between components in these liquid alloys. It was established that the excess thermodynamic mixing functions in each system have negative values, which are determined by pair interactions between Fe, Co, Ni, and Cu as electron acceptors and Ti and Zr as electron donors. The trend of changes in the minimum values of excess thermodynamic mixing functions of the systems shows an increase in their absolute values along the 3d-series from iron to nickel and a significant decrease for copper, which corresponds to a change in the acceptor capacity of metals along the transition series. The temperature dependence of the thermodynamic mixing functions consists in an increase in negative deviations from ideality and an increase in the intensity of interaction between components with a decrease in temperature. The formation of glass-forming liquid alloys from pure metals is accompanied by an increase in the thermodynamic stability of the liquid phase, which is reflected in negative values of the Gibbs mixing energy. In the range of 800–1873 K, the Δ<sub>m</sub><i>G</i> function of liquid equiatomic alloys of the systems considered shows values at the level of –20...–35 kJ/mol. Within the framework of ASM, using the total mole fraction of associates as a quantitative estimate of the degree of short-range chemical order, it is shown that liquid alloys of the Me–Ti–Zr system are characterized by significant chemical ordering, which increases with decreasing temperature. Using the empirical rule, the experimentally known compositions of amorphous alloys for the Cu–Ti–Zr and Ni–Ti–Zr systems were interpreted and the composition regions of liquid alloy amorphization were predicted for the Fe–Ti–Zr and Co–Ti–Zr systems.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 11-12","pages":"722 - 736"},"PeriodicalIF":0.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Layer Composite Coatings Reinforced with Iron Borides 用铁硼化物增强的双层复合涂料
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-12 DOI: 10.1007/s11106-024-00428-2
O. V. Sukhova

The furnace infiltration technique was proposed to produce two-layer macroheterogeneous composite coatings. The technique involved consecutive infiltration of hard alloy reinforcement granules with two metallic matrices differing in the melting point. The infiltration resulted in a twolayer composite coating, with the layers being strengthened with the same reinforcement but not having the same matrix compositions. The Fe–12.5% B–0.1% C alloy was used as the reinforcement and the L62 copper-based alloy or hypoeutectic Fe–3.5% B–0.2% C alloy was the matrix. Quantitative metallography, energy-dispersive microanalysis, and microhardness measurements were employed to examine the structurization of interfaces between the boride reinforcement and the molten matrices. Furnace infiltration ensured virtually defect-free structure of the two-layer composite coating, with porosity not exceeding 5 to 7%. This was achieved through the dissolution of reinforcement surface phases in the molten matrices during infiltration without forming brittle intermetallic phases at the interfaces. The intensity of contact interaction processes at the interfaces between iron borides and iron- and copper-based matrices was compared. The mechanical and performance properties of the composite coating layers were studied. The combination of two layers prevented the delamination of the composite coatings under nonuniform distribution of temperatures, stresses, and strains. This determines the prospects of using the proposed technique for surface strengthening of aerospace engineering parts.

有人提出用熔炉渗透技术来生产双层宏观异质复合涂层。该技术包括将硬质合金强化颗粒与两种熔点不同的金属基体连续浸润。浸润后可形成双层复合涂层,各层增强材料相同,但基体成分不同。强化层采用 Fe-12.5% B-0.1% C 合金,基体采用 L62 铜基合金或低共晶 Fe-3.5% B-0.2% C 合金。定量金相分析、能量色散显微分析和显微硬度测量被用来检查硼化物增强材料与熔融基体之间的界面结构。熔炉渗透确保了双层复合涂层的结构几乎没有缺陷,孔隙率不超过 5%至 7%。这是由于在浸润过程中,熔融基质中的增强体表面相溶解,而不会在界面上形成脆性金属间相。比较了铁硼化物与铁基和铜基基材界面接触相互作用过程的强度。研究了复合涂层的机械性能和性能。在温度、应力和应变分布不均匀的情况下,两层涂层的结合防止了复合涂层的分层。这决定了将所提出的技术用于航空航天工程零件表面强化的前景。
{"title":"Two-Layer Composite Coatings Reinforced with Iron Borides","authors":"O. V. Sukhova","doi":"10.1007/s11106-024-00428-2","DOIUrl":"10.1007/s11106-024-00428-2","url":null,"abstract":"<p>The furnace infiltration technique was proposed to produce two-layer macroheterogeneous composite coatings. The technique involved consecutive infiltration of hard alloy reinforcement granules with two metallic matrices differing in the melting point. The infiltration resulted in a twolayer composite coating, with the layers being strengthened with the same reinforcement but not having the same matrix compositions. The Fe–12.5% B–0.1% C alloy was used as the reinforcement and the L62 copper-based alloy or hypoeutectic Fe–3.5% B–0.2% C alloy was the matrix. Quantitative metallography, energy-dispersive microanalysis, and microhardness measurements were employed to examine the structurization of interfaces between the boride reinforcement and the molten matrices. Furnace infiltration ensured virtually defect-free structure of the two-layer composite coating, with porosity not exceeding 5 to 7%. This was achieved through the dissolution of reinforcement surface phases in the molten matrices during infiltration without forming brittle intermetallic phases at the interfaces. The intensity of contact interaction processes at the interfaces between iron borides and iron- and copper-based matrices was compared. The mechanical and performance properties of the composite coating layers were studied. The combination of two layers prevented the delamination of the composite coatings under nonuniform distribution of temperatures, stresses, and strains. This determines the prospects of using the proposed technique for surface strengthening of aerospace engineering parts.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 11-12","pages":"704 - 711"},"PeriodicalIF":0.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and Mechanical Properties of WC-Based Hardmetal with a High-Entropy NiFeCrWMo Binder 含高熵镍铁铬钼粘合剂的 WC 基硬质合金的结构和机械性能
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-07 DOI: 10.1007/s11106-024-00417-5
S. O. Nakonechnyi, A. I. Yurkova, P. I. Loboda

An equiatomic NiFeCrWMo high-entropy alloy (HEA) produced by mechanical alloying was used as a binder alternative to cobalt for the manufacture of WC-based hardmetals. The WC–10 HEA (wt.%) powder mixture was homogenized in a planetary-ball mill for 2 h and consolidated by electron beam sintering (EBS) for 4 min at a temperature of 1450°C and spark plasma sintering (SPS) for 10 min at a temperature of 1400°C. The relative density of the sintered samples reached 99.4%. The phase composition, microstructure, and mechanical properties of WC–10 HEA hardmetals were studied by X-ray diffraction, scanning electron microscopy, and microindentation. The effect of the NiFeCrWMo HEA binder on the microstructure and mechanical properties of WC–10 HEA hardmetals in comparison with the conventional VK8 hardmetal (WC–8 Co) was determined. The WC–10 HEA hardmetal consolidated by EBS consisted of WC grains, a NiFeCrWMo HEA binder with a bcc structure, and a small amount (3.5%) of complex carbide (Ni, Fe, Cr)xWyCz, whereas the amount of the complex carbide after SPS increased to 47% due to longer sintering and pressure application. No noticeable growth of WC grains was observed during sintering of the WC–10 HEA hardmetal because of the multielement composition of the NiFeCrWMo HEA binder and the formation of complex carbide (Ni, Fe, Cr)xWyCz layers, preventing the growth of WC grains. The hardness HV and fracture toughness KIc of WC–10 HEA hardmetals after EBS were 18.9 GPa and 11.4 MPa · m1/2 and those after SPS were 19.9 GPa and 10.8 MPa · m1/2. The hardmetals with a HEA binder exhibit an excellent combination of hardness and fracture toughness. These values are higher than those for the conventional VK8 hardmetal (WC–8 Co) produced by EBS for 4 min at 1350°C, whose hardness is 16.5 GPa and fracture toughness KIc is 9.5 MPa · m1/2.

一种通过机械合金化生产的等原子镍铁铬钼高熵合金(HEA)被用作钴的粘合剂替代品,用于制造基于碳化钨的硬金属。WC-10 HEA(重量百分比)粉末混合物在行星球磨机中均质 2 小时,然后在 1450°C 温度下通过电子束烧结(EBS)固结 4 分钟,在 1400°C 温度下通过火花等离子体烧结(SPS)固结 10 分钟。烧结样品的相对密度达到 99.4%。通过 X 射线衍射、扫描电子显微镜和显微压痕法研究了 WC-10 HEA 硬金属的相组成、微观结构和机械性能。与传统的 VK8 硬金属(WC-8 Co)相比,确定了 NiFeCrWMo HEA 粘结剂对 WC-10 HEA 硬金属微观结构和机械性能的影响。通过 EBS 固结的 WC-10 HEA 硬金属由 WC 晶粒、具有 bcc 结构的 NiFeCrWMo HEA 粘结剂和少量(3.5%)复合碳化物(Ni、Fe、Cr)xWyCz 组成,而在 SPS 之后,由于烧结和加压时间更长,复合碳化物的含量增加到 47%。由于 NiFeCrWMo HEA 粘结剂的多元素组成和复合碳化物(Ni、Fe、Cr)xWyCz 层的形成阻止了 WC 晶粒的生长,因此在 WC-10 HEA 硬金属的烧结过程中没有观察到明显的 WC 晶粒生长。经 EBS 处理的 WC-10 HEA 硬金属的硬度 HV 和断裂韧性 KIc 分别为 18.9 GPa 和 11.4 MPa - m1/2,经 SPS 处理的硬度 HV 和断裂韧性 KIc 分别为 19.9 GPa 和 10.8 MPa - m1/2。含有 HEA 粘结剂的硬金属在硬度和断裂韧性方面表现出了极佳的组合。这些数值高于在 1350°C 下通过 4 分钟 EBS 生成的传统 VK8 硬金属(WC-8 Co),后者的硬度为 16.5 GPa,断裂韧性 KIc 为 9.5 MPa - m1/2。
{"title":"Structure and Mechanical Properties of WC-Based Hardmetal with a High-Entropy NiFeCrWMo Binder","authors":"S. O. Nakonechnyi,&nbsp;A. I. Yurkova,&nbsp;P. I. Loboda","doi":"10.1007/s11106-024-00417-5","DOIUrl":"10.1007/s11106-024-00417-5","url":null,"abstract":"<p>An equiatomic NiFeCrWMo high-entropy alloy (HEA) produced by mechanical alloying was used as a binder alternative to cobalt for the manufacture of WC-based hardmetals. The WC–10 HEA (wt.%) powder mixture was homogenized in a planetary-ball mill for 2 h and consolidated by electron beam sintering (EBS) for 4 min at a temperature of 1450°C and spark plasma sintering (SPS) for 10 min at a temperature of 1400°C. The relative density of the sintered samples reached 99.4%. The phase composition, microstructure, and mechanical properties of WC–10 HEA hardmetals were studied by X-ray diffraction, scanning electron microscopy, and microindentation. The effect of the NiFeCrWMo HEA binder on the microstructure and mechanical properties of WC–10 HEA hardmetals in comparison with the conventional VK8 hardmetal (WC–8 Co) was determined. The WC–10 HEA hardmetal consolidated by EBS consisted of WC grains, a NiFeCrWMo HEA binder with a bcc structure, and a small amount (3.5%) of complex carbide (Ni, Fe, Cr)<sub>x</sub>W<sub>y</sub>C<sub>z</sub>, whereas the amount of the complex carbide after SPS increased to 47% due to longer sintering and pressure application. No noticeable growth of WC grains was observed during sintering of the WC–10 HEA hardmetal because of the multielement composition of the NiFeCrWMo HEA binder and the formation of complex carbide (Ni, Fe, Cr)<sub>x</sub>W<sub>y</sub>C<sub>z</sub> layers, preventing the growth of WC grains. The hardness HV and fracture toughness K<sub>Ic</sub> of WC–10 HEA hardmetals after EBS were 18.9 GPa and 11.4 MPa · m<sup>1/2</sup> and those after SPS were 19.9 GPa and 10.8 MPa · m<sup>1/2</sup>. The hardmetals with a HEA binder exhibit an excellent combination of hardness and fracture toughness. These values are higher than those for the conventional VK8 hardmetal (WC–8 Co) produced by EBS for 4 min at 1350°C, whose hardness is 16.5 GPa and fracture toughness K<sub>Ic</sub> is 9.5 MPa · m<sup>1/2</sup>.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"555 - 571"},"PeriodicalIF":0.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective Plastic Properties of Porous Materials with an Inverse Opal Structure 具有反蛋白石结构的多孔材料的有效塑料特性
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-06 DOI: 10.1007/s11106-024-00418-4
P. O. Korobko, A. V. Kuzmov

The paper presents a theoretical evaluation of the mechanical properties of porous materials with an inverse opal structure, which is important for their application in various technological fields. The study focuses on a porous nickel-based material produced by a sequential multistep process that includes the self-assembly of polystyrene spheres, sintering, electrolytic deposition, and subsequent removal of polystyrene to achieve the desired structure. The study covers the process of transition from elastic to irreversible deformation. The objective of this study is to apply the finite element method to model the transition process to reveal the relationship between the structural characteristics of materials, such as porosity and coating thickness, and their mechanical properties. The yield surface was constructed by computational modeling on a representative cell with a number of points in the (p, τ) plane for two cases of opal structure: a highly porous uncoated structure and a structure with an additional solid phase layer. One of the results included approximation of the yield surface with a phenomenological Deshpande–Fleck crushable foam model available in finite element modeling packages. The conclusions show that the effective plastic properties of materials with an inverse opal structure significantly depend on their porosity level and the presence of additional coatings. The yield curve plotted for a porosity of 0.9 is close to the associated plastic flow law, allowing the material’s behavior under loading to be assessed from the uniaxial stress state. However, for a structure with medium porosity and an additional coating layer, the surface becomes significantly unassociated, with a discrepancy of almost 30%. The application of the Deshpande–Fleck model for crushable foam in the approximation of the numerical data from the study demonstrates its relevance in describing the plastic behavior of this structure only at high porosity values.

本文对具有反蛋白石结构的多孔材料的机械性能进行了理论评估,这对其在各种技术领域的应用非常重要。研究的重点是一种多孔镍基材料,这种材料是通过一个连续的多步骤过程生产出来的,其中包括聚苯乙烯球的自组装、烧结、电解沉积以及随后去除聚苯乙烯以达到所需的结构。研究涵盖了从弹性变形到不可逆变形的过渡过程。本研究的目的是应用有限元法对过渡过程进行建模,以揭示材料的结构特征(如孔隙率和涂层厚度)与其机械性能之间的关系。通过在一个具有代表性的单元上建立计算模型,在(p, τ)平面上对两种蛋白石结构情况下的多个点构建了屈服面:一种是高孔隙率的无涂层结构,另一种是带有额外固相层的结构。其中一项结果包括使用有限元建模软件包中的 Deshpande-Fleck 现象可压缩泡沫模型对屈服面进行近似。结论表明,具有反蛋白石结构的材料的有效塑性取决于其孔隙率水平和附加涂层的存在。孔隙率为 0.9 时绘制的屈服曲线接近相关的塑性流动规律,因此可以从单轴应力状态评估材料在加载下的行为。然而,对于具有中等孔隙率和额外涂层的结构,表面变得明显不相关,差异接近 30%。在对研究中的数值数据进行近似处理时,应用了可压缩泡沫的 Deshpande-Fleck 模型,这表明该模型仅在高孔隙率值时才适用于描述这种结构的塑性行为。
{"title":"Effective Plastic Properties of Porous Materials with an Inverse Opal Structure","authors":"P. O. Korobko,&nbsp;A. V. Kuzmov","doi":"10.1007/s11106-024-00418-4","DOIUrl":"10.1007/s11106-024-00418-4","url":null,"abstract":"<p>The paper presents a theoretical evaluation of the mechanical properties of porous materials with an inverse opal structure, which is important for their application in various technological fields. The study focuses on a porous nickel-based material produced by a sequential multistep process that includes the self-assembly of polystyrene spheres, sintering, electrolytic deposition, and subsequent removal of polystyrene to achieve the desired structure. The study covers the process of transition from elastic to irreversible deformation. The objective of this study is to apply the finite element method to model the transition process to reveal the relationship between the structural characteristics of materials, such as porosity and coating thickness, and their mechanical properties. The yield surface was constructed by computational modeling on a representative cell with a number of points in the (<i>p</i>, <i>τ</i>) plane for two cases of opal structure: a highly porous uncoated structure and a structure with an additional solid phase layer. One of the results included approximation of the yield surface with a phenomenological Deshpande–Fleck crushable foam model available in finite element modeling packages. The conclusions show that the effective plastic properties of materials with an inverse opal structure significantly depend on their porosity level and the presence of additional coatings. The yield curve plotted for a porosity of 0.9 is close to the associated plastic flow law, allowing the material’s behavior under loading to be assessed from the uniaxial stress state. However, for a structure with medium porosity and an additional coating layer, the surface becomes significantly unassociated, with a discrepancy of almost 30%. The application of the Deshpande–Fleck model for crushable foam in the approximation of the numerical data from the study demonstrates its relevance in describing the plastic behavior of this structure only at high porosity values.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"572 - 579"},"PeriodicalIF":0.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Pore Structure in Compacts Produced from Nickel Carbonyl Powders during Sintering 羰基镍粉末在烧结过程中产生的复合材料中孔隙结构的演变
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-04 DOI: 10.1007/s11106-024-00415-7
P. Ya. Radchenko, O. I. Hetman

The influence of pore structure evolution in compacts sintered from nickel carbonyl powder with an average particle size of 1.4 μm in the temperature range 200–1000°C on local and bulk shrinkage was analyzed. The pore structure of the samples was characterized by the maximum and average diameters of pore channel constrictions determined by the Barus–Bechhold method. To minimize local (incoherent) shrinkage in the sintering of fine nickel powders, a criterion for pore structure homogeneity in compacts, α ≤ 0.03, was selected. The criterion was determined by the difference between the maximum and average diameters of pore channel constrictions. The influence of pore structure evolution on local and bulk shrinkage during sintering of compacts produced from nickel carbonyl powder with an average particle size of 1.4 and 4 μm was experimentally confirmed. The local shrinkage was due to the three-level structure and wide particle size distribution of the nickel carbonyl powders. A method was proposed to determine the average diameter of particles (agglomerates) in nickel carbonyl powders using the Kozeny equation, establishing a relationship between the particle diameter, the maximum diameter of pore channel constrictions, and the porosity of the compacts, varying from 0.25 to 0.45.

在 200-1000°C 的温度范围内,分析了由平均粒径为 1.4 μm 的羰基镍粉烧结而成的致密体中孔隙结构演变对局部和整体收缩的影响。样品的孔隙结构是通过巴鲁斯-贝赫霍尔德法测定的孔隙通道收缩的最大直径和平均直径来表征的。为了最大限度地减少镍粉烧结过程中的局部(不连贯)收缩,选择了压实物中孔隙结构均匀性的标准 α ≤ 0.03。该标准由孔道收缩的最大直径和平均直径之差决定。实验证实了平均粒径为 1.4 和 4 μm 的羰基镍粉末在烧结过程中产生的致密体的局部收缩和整体收缩受孔隙结构演变的影响。局部收缩是由于羰基镍粉的三级结构和较宽的粒度分布造成的。提出了一种利用 Kozeny 方程确定羰基镍粉末中颗粒(团聚体)平均直径的方法,在颗粒直径、孔道收缩的最大直径和密实度之间建立了 0.25 至 0.45 的关系。
{"title":"Evolution of Pore Structure in Compacts Produced from Nickel Carbonyl Powders during Sintering","authors":"P. Ya. Radchenko,&nbsp;O. I. Hetman","doi":"10.1007/s11106-024-00415-7","DOIUrl":"10.1007/s11106-024-00415-7","url":null,"abstract":"<p>The influence of pore structure evolution in compacts sintered from nickel carbonyl powder with an average particle size of 1.4 μm in the temperature range 200–1000°C on local and bulk shrinkage was analyzed. The pore structure of the samples was characterized by the maximum and average diameters of pore channel constrictions determined by the Barus–Bechhold method. To minimize local (incoherent) shrinkage in the sintering of fine nickel powders, a criterion for pore structure homogeneity in compacts, α ≤ 0.03, was selected. The criterion was determined by the difference between the maximum and average diameters of pore channel constrictions. The influence of pore structure evolution on local and bulk shrinkage during sintering of compacts produced from nickel carbonyl powder with an average particle size of 1.4 and 4 μm was experimentally confirmed. The local shrinkage was due to the three-level structure and wide particle size distribution of the nickel carbonyl powders. A method was proposed to determine the average diameter of particles (agglomerates) in nickel carbonyl powders using the Kozeny equation, establishing a relationship between the particle diameter, the maximum diameter of pore channel constrictions, and the porosity of the compacts, varying from 0.25 to 0.45.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"529 - 535"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEM Research on Stress and Force Chains during Warm Compaction of Intricate Parts 复杂部件热压实过程中的应力和力链 DEM 研究
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-04 DOI: 10.1007/s11106-024-00414-8
Yi Yang, Fei Ma, Wei Xiong, Tao Li

A Discrete Element Method (DEM) was applied to establish a model that simulates a cross-shaped powder system under hot compaction. The average stress, force chains, principal stress angles, and coordination numbers were recorded and studied. The experimental results show that the stresses in the vertical part of the cross-shaped powder system are higher than in the lateral part, and the highest stress value is always concentrated in the upper zone of the system. This is also consistent with the strength of the force chains in the vertical part being stronger than that in the lateral part. The angle of the principal stress is consistent with the direction of the external load and shows anisotropy and irregular distribution during the compaction process. The vertical section of the cross-shaped powder system tends to be 90°, except for the area close to the lateral section, which tends to be 70°. However, the principal stress angle of the lateral part tends to be 0° during the compaction process. The coordination numbers of the measurement circles have a series of sudden changes and increase with the pressing, the changes of which correspond to the stress distribution.

应用离散元素法(DEM)建立了一个模拟热压实下十字形粉末系统的模型。记录并研究了平均应力、力链、主应力角和配位数。实验结果表明,十字形粉末体系垂直部分的应力高于横向部分,且最高应力值始终集中在体系的上部区域。这也与垂直部分的力链强度大于横向部分的力链强度相一致。主应力的角度与外部荷载的方向一致,在压实过程中呈现各向异性和不规则分布。十字形粉末体系的垂直部分倾向于 90°,只有靠近横向部分的区域倾向于 70°。然而,在压实过程中,横向部分的主应力角趋向于 0°。测量圆的协调数有一系列突变,并随着压制而增加,其变化与应力分布相对应。
{"title":"DEM Research on Stress and Force Chains during Warm Compaction of Intricate Parts","authors":"Yi Yang,&nbsp;Fei Ma,&nbsp;Wei Xiong,&nbsp;Tao Li","doi":"10.1007/s11106-024-00414-8","DOIUrl":"10.1007/s11106-024-00414-8","url":null,"abstract":"<p>A Discrete Element Method (DEM) was applied to establish a model that simulates a cross-shaped powder system under hot compaction. The average stress, force chains, principal stress angles, and coordination numbers were recorded and studied. The experimental results show that the stresses in the vertical part of the cross-shaped powder system are higher than in the lateral part, and the highest stress value is always concentrated in the upper zone of the system. This is also consistent with the strength of the force chains in the vertical part being stronger than that in the lateral part. The angle of the principal stress is consistent with the direction of the external load and shows anisotropy and irregular distribution during the compaction process. The vertical section of the cross-shaped powder system tends to be 90°, except for the area close to the lateral section, which tends to be 70°. However, the principal stress angle of the lateral part tends to be 0° during the compaction process. The coordination numbers of the measurement circles have a series of sudden changes and increase with the pressing, the changes of which correspond to the stress distribution.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"519 - 528"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Geometric Parameters and Mechanical Properties of Metal-Based Composites 金属基复合材料的几何参数和机械性能研究
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-03 DOI: 10.1007/s11106-024-00419-3
T. Kulpinas, R. Kandrotaitė Janutienė, O. Sizonenko

As the aerospace industry continues to grow, so does the demand for new materials that can withstand high temperatures and corrosive environments. In this paper, materials from the Ti–Al–C system that thrives in the aforementioned environments are studied. The method of measuring the grain size was described according to the relevant standards. The geometrical parameters of titanium carbide and its volume fraction have been determined under the ASTM E112 and ASTM E562 standards, respectively, for two series of specimens that were produced with different parameters and methods. The grain sizes determined are G12 and G12.5 according to ASTM E112. The volume fractions determined for the two series of samples are 20.22 and 17.65%, respectively. Using the above parameters, elastic and shear modulus, and Poisson’s ratio were determined for the specimens tested using RVE modeling. RVE results showed that materials with higher volume fractions and larger average grain size resulted in stiffer materials. Specimens with higher TiC content exhibited higher elastic and shear modules, which were 153.6 and 58.3 GPa, respectively. Poisson’s ratio was the lowest at 0.315. However, the difference was not significant between the specimens, the elasticity and shear modulus, of a specimen with a lower concentration of TiC, are 145 and 55.2 GPa, respectively. Poisson’s ratio was higher and equal to 0.319. Comparing the above properties with the popular aerospace alloy Ti–6Al–4V, both specimens are much stiffer.

随着航空航天工业的不断发展,对能承受高温和腐蚀性环境的新材料的需求也在不断增长。本文研究了在上述环境中茁壮成长的 Ti-Al-C 系统材料。根据相关标准介绍了测量晶粒尺寸的方法。根据 ASTM E112 和 ASTM E562 标准,分别测定了用不同参数和方法制作的两个系列试样的碳化钛几何参数及其体积分数。根据 ASTM E112 标准测定的晶粒大小为 G12 和 G12.5。两个系列试样的体积分数分别为 20.22% 和 17.65%。利用上述参数,使用 RVE 模型确定了测试试样的弹性模量、剪切模量和泊松比。RVE 结果表明,体积分数越高、平均晶粒尺寸越大的材料越硬。TiC 含量较高的试样显示出较高的弹性模量和剪切模量,分别为 153.6 和 58.3 GPa。泊松比最低,为 0.315。然而,试样之间的差异并不显著,TiC 含量较低的试样的弹性模量和剪切模量分别为 145 和 55.2 GPa。泊松比较高,等于 0.319。将上述特性与常用的航空航天合金 Ti-6Al-4V 相比,两种试样的硬度都要高得多。
{"title":"Study of Geometric Parameters and Mechanical Properties of Metal-Based Composites","authors":"T. Kulpinas,&nbsp;R. Kandrotaitė Janutienė,&nbsp;O. Sizonenko","doi":"10.1007/s11106-024-00419-3","DOIUrl":"10.1007/s11106-024-00419-3","url":null,"abstract":"<p>As the aerospace industry continues to grow, so does the demand for new materials that can withstand high temperatures and corrosive environments. In this paper, materials from the Ti–Al–C system that thrives in the aforementioned environments are studied. The method of measuring the grain size was described according to the relevant standards. The geometrical parameters of titanium carbide and its volume fraction have been determined under the ASTM E112 and ASTM E562 standards, respectively, for two series of specimens that were produced with different parameters and methods. The grain sizes determined are G12 and G12.5 according to ASTM E112. The volume fractions determined for the two series of samples are 20.22 and 17.65%, respectively. Using the above parameters, elastic and shear modulus, and Poisson’s ratio were determined for the specimens tested using RVE modeling. RVE results showed that materials with higher volume fractions and larger average grain size resulted in stiffer materials. Specimens with higher TiC content exhibited higher elastic and shear modules, which were 153.6 and 58.3 GPa, respectively. Poisson’s ratio was the lowest at 0.315. However, the difference was not significant between the specimens, the elasticity and shear modulus, of a specimen with a lower concentration of TiC, are 145 and 55.2 GPa, respectively. Poisson’s ratio was higher and equal to 0.319. Comparing the above properties with the popular aerospace alloy Ti–6Al–4V, both specimens are much stiffer.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"580 - 596"},"PeriodicalIF":0.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Humidity on the Dielectric Properties of Two-Dimensional Microsized Molybdenum Disulfide Powders 湿度对二维微化二硫化钼粉末介电性能的影响
IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-06-01 DOI: 10.1007/s11106-024-00413-9
L. M. Kulikov, A. V. Ragulya, A. P. Pozniy, N. V. Shevchuk, L. G. Akselrud

Changes in the dielectric properties of two-dimensional (2D) microsized molybdenum disulfide powders in response to ambient air humidity at room temperature were studied (impedance spectroscopy, 1 Hz–20 MHz). The microsized 2H-MoS2 powders were found to absorb significant amounts of moisture (0.43–2.88 wt.%, 3.5 h, relative air humidity of 45–100%). According to impedance spectroscopy data, reversible water intercalation/deintercalation processes led to significant changes in the dielectric properties (total, active, and reactive (capacitive) resistance, capacitance, loss tangent, and real component of relative permittivity) of 2H-MoS2 powders until equilibrium was reached. In equilibrium, the dielectric properties depended on humidity and frequencies. The dielectric properties of microsized 2H-MoS2 powders are dynamic functional characteristics that can be effectively controlled over wide ranges by varying the humidity and frequency levels. It is assumed that changes in the dielectric properties of microsized 2H-MoS2 powders are due to the formation of 2D nanosized MoO3–x/MoO3/H+x(H2O)yMoS2 heterostructures on the surface of the intercalated H+x(H2O)yMoS2 phase particles. These findings can be used to improve nanotechnologies that use aqueous environments, optimize the semiconductor, tribological, and catalytic properties of 2H-MoS2, and develop multifunctional 2D nanomaterials (humidity sensors, sorbents, and photocatalysts for water purification and electro(photo)catalysts for hydrogen production by water electrolysis).

研究了二维(2D)微小二硫化钼粉末的介电性能在室温环境空气湿度下的变化(阻抗光谱,1 Hz-20 MHz)。研究发现,微型 2H-MoS2 粉末能吸收大量水分(0.43-2.88 wt.%,3.5 h,相对空气湿度为 45-100%)。根据阻抗光谱数据,水的可逆插层/脱插层过程导致 2H-MoS2 粉末的介电性能(总电阻、有源电阻和反应电阻(电容)、电容、损耗正切和相对介电常数的实分量)发生显著变化,直至达到平衡。在平衡状态下,介电性能取决于湿度和频率。微小 2H-MoS2 粉末的介电性能是动态功能特性,可通过改变湿度和频率水平在很大范围内进行有效控制。据推测,微小 2H-MoS2 粉末介电性能的变化是由于插层 H+x(H2O)yMoS2 相颗粒表面形成了二维纳米 MoO3-x/MoO3/H+x(H2O)yMoS2 异质结构。这些发现可用于改进利用水环境的纳米技术,优化 2H-MoS2 的半导体、摩擦学和催化特性,以及开发多功能二维纳米材料(湿度传感器、吸附剂、用于水净化的光催化剂和用于电解水制氢的电(光)催化剂)。
{"title":"Influence of Humidity on the Dielectric Properties of Two-Dimensional Microsized Molybdenum Disulfide Powders","authors":"L. M. Kulikov,&nbsp;A. V. Ragulya,&nbsp;A. P. Pozniy,&nbsp;N. V. Shevchuk,&nbsp;L. G. Akselrud","doi":"10.1007/s11106-024-00413-9","DOIUrl":"10.1007/s11106-024-00413-9","url":null,"abstract":"<p>Changes in the dielectric properties of two-dimensional (2D) microsized molybdenum disulfide powders in response to ambient air humidity at room temperature were studied (impedance spectroscopy, 1 Hz–20 MHz). The microsized 2H-MoS<sub>2</sub> powders were found to absorb significant amounts of moisture (0.43–2.88 wt.%, 3.5 h, relative air humidity of 45–100%). According to impedance spectroscopy data, reversible water intercalation/deintercalation processes led to significant changes in the dielectric properties (total, active, and reactive (capacitive) resistance, capacitance, loss tangent, and real component of relative permittivity) of 2H-MoS<sub>2</sub> powders until equilibrium was reached. In equilibrium, the dielectric properties depended on humidity and frequencies. The dielectric properties of microsized 2H-MoS<sub>2</sub> powders are dynamic functional characteristics that can be effectively controlled over wide ranges by varying the humidity and frequency levels. It is assumed that changes in the dielectric properties of microsized 2H-MoS<sub>2</sub> powders are due to the formation of 2D nanosized MoO<sub>3–<i>x</i></sub>/MoO<sub>3</sub>/H<sup>+</sup><sub><i>x</i></sub>(H<sub>2</sub>O)<sub><i>y</i></sub>MoS<sub>2</sub> heterostructures on the surface of the intercalated H<sup>+</sup><sub><i>x</i></sub>(H<sub>2</sub>O)<sub><i>y</i></sub>MoS<sub>2</sub> phase particles. These findings can be used to improve nanotechnologies that use aqueous environments, optimize the semiconductor, tribological, and catalytic properties of 2H-MoS<sub>2</sub>, and develop multifunctional 2D nanomaterials (humidity sensors, sorbents, and photocatalysts for water purification and electro(photo)catalysts for hydrogen production by water electrolysis).</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"505 - 518"},"PeriodicalIF":0.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Powder Metallurgy and Metal Ceramics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1