Pub Date : 2024-03-16DOI: 10.1007/s11106-024-00401-z
A. L. Maximenko, O. I. Hetman, M. B. Shtern, E. A. Olevsky
Rotary furnaces are used as reactors to intensify chemical processes between the powder and gas atmosphere around it. The furnace rotation leads to relative motion and dilation of the powder layers, facilitating gas access. The paper is devoted to the modeling of nickel oxide powder behavior in a rotary furnace to estimate the contribution of furnace rotation speed to gas permeability when the nickel oxide granules are reduced in a hydrogen atmosphere. Discrete element modeling of powder granules in a rotary furnace was conducted employing Altair EDEM commercial software to estimate the powder gas permeability at different stages. The powder bed in a horizontal cylindrical rotary furnace was modeled as a packing of identical spherical granules with diameters equal to those of the nickel oxide granules. The furnace rotation led to periodic oscillations of the powder along the furnace wall with an amplitude that gradually diminished to some steady value. Gas permeability of the powder bed was evaluated through the porosity function, derived from the Carman permeability equations. Greater gas permeability resulting from significant powder dilation was observed only in active shear zones on the powder bed surface and in the contact area between the powder and the furnace wall. Sizes of the shear zones depended on the furnace rotation speed but never exceeded several granule diameters for all rotation speeds. The efficiency of a rotary furnace as a chemical reactor was shown to be determined not only by the powder dilation but also by the regeneration rate for the powder bed surface. The regeneration rate can be calculated and changes nonlinearly with the furnace rotation speed.
{"title":"Modeling the Gas Permeability of the Powder Bed in a Rotary Furnace","authors":"A. L. Maximenko, O. I. Hetman, M. B. Shtern, E. A. Olevsky","doi":"10.1007/s11106-024-00401-z","DOIUrl":"10.1007/s11106-024-00401-z","url":null,"abstract":"<p>Rotary furnaces are used as reactors to intensify chemical processes between the powder and gas atmosphere around it. The furnace rotation leads to relative motion and dilation of the powder layers, facilitating gas access. The paper is devoted to the modeling of nickel oxide powder behavior in a rotary furnace to estimate the contribution of furnace rotation speed to gas permeability when the nickel oxide granules are reduced in a hydrogen atmosphere. Discrete element modeling of powder granules in a rotary furnace was conducted employing Altair EDEM commercial software to estimate the powder gas permeability at different stages. The powder bed in a horizontal cylindrical rotary furnace was modeled as a packing of identical spherical granules with diameters equal to those of the nickel oxide granules. The furnace rotation led to periodic oscillations of the powder along the furnace wall with an amplitude that gradually diminished to some steady value. Gas permeability of the powder bed was evaluated through the porosity function, derived from the Carman permeability equations. Greater gas permeability resulting from significant powder dilation was observed only in active shear zones on the powder bed surface and in the contact area between the powder and the furnace wall. Sizes of the shear zones depended on the furnace rotation speed but never exceeded several granule diameters for all rotation speeds. The efficiency of a rotary furnace as a chemical reactor was shown to be determined not only by the powder dilation but also by the regeneration rate for the powder bed surface. The regeneration rate can be calculated and changes nonlinearly with the furnace rotation speed.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 7-8","pages":"383 - 389"},"PeriodicalIF":0.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-16DOI: 10.1007/s11106-024-00402-y
L. M. Kulikov
Modern research findings for the interaction of two-dimensional molybdenum disulfide (primarily in the nanocrystalline state) with water and air moisture were analyzed. Studies focusing on water intercalation/deintercalation processes and mechanisms in nanocrystalline d-transition metal dichalcogenides (TMDs, mainly 2D MoS2) are at their initial stage. Intercalated water was found to significantly influence the multifunctional properties of 2D MoS2 nanostructures and microsized powders. The need for interdisciplinary studies of 2D TMD nanostructures intercalated with water through complex mechanisms was justified. In particular, the studies should include the development of intercalation/deintercalation nanotechnologies, establishment of interrelationships between the intercalation processes/mechanisms and the state of actual surfaces and features of actual nanostructures, determination of differences in intercalation processes and mechanisms for various semiconductor and metallic nanostructures, and design of multifunctional low-dimensional van der Waals nanomaterials with controllable properties based on nanosized 2D/nD heterostructures (n = = 0, 1, 2, 3) intercalated with water. Promising applications for 2D MoS2 nanostructures intercalated with water are as follows: nanotechnologies of heterostructures with abnormal water properties, tribological characteristics of solid lubricants with moisture present, nanotechnologies using water or aqueous solutions, sorbents and photocatalysts for water purification, electro(photo, piezo)catalysts for the production of hydrogen and oxygen through water electrolysis, as well as hydrovoltaic effects, air humidity sensors, biosensors, and disinfection agents (COVID-19 pandemic).
{"title":"Two-Dimensional Molybdenum Disulfide–Water: Intercalation Processes, New Functional Properties, and Application Prospects","authors":"L. M. Kulikov","doi":"10.1007/s11106-024-00402-y","DOIUrl":"10.1007/s11106-024-00402-y","url":null,"abstract":"<p>Modern research findings for the interaction of two-dimensional molybdenum disulfide (primarily in the nanocrystalline state) with water and air moisture were analyzed. Studies focusing on water intercalation/deintercalation processes and mechanisms in nanocrystalline d-transition metal dichalcogenides (TMDs, mainly 2D MoS<sub>2</sub>) are at their initial stage. Intercalated water was found to significantly influence the multifunctional properties of 2D MoS<sub>2</sub> nanostructures and microsized powders. The need for interdisciplinary studies of 2D TMD nanostructures intercalated with water through complex mechanisms was justified. In particular, the studies should include the development of intercalation/deintercalation nanotechnologies, establishment of interrelationships between the intercalation processes/mechanisms and the state of actual surfaces and features of actual nanostructures, determination of differences in intercalation processes and mechanisms for various semiconductor and metallic nanostructures, and design of multifunctional low-dimensional van der Waals nanomaterials with controllable properties based on nanosized 2D/nD heterostructures (n = = 0, 1, 2, 3) intercalated with water. Promising applications for 2D MoS<sub>2</sub> nanostructures intercalated with water are as follows: nanotechnologies of heterostructures with abnormal water properties, tribological characteristics of solid lubricants with moisture present, nanotechnologies using water or aqueous solutions, sorbents and photocatalysts for water purification, electro(photo, piezo)catalysts for the production of hydrogen and oxygen through water electrolysis, as well as hydrovoltaic effects, air humidity sensors, biosensors, and disinfection agents (COVID-19 pandemic).</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 7-8","pages":"390 - 399"},"PeriodicalIF":0.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-16DOI: 10.1007/s11106-024-00404-w
G. A. Bagliuk, S. F. Kyryliuk, N. K. Zlochevska
The evolution of the stress-strain state and the relative density distribution throughout a porous workpiece in the two-stage hot forging process was studied. The primary stage involved hot deformation of a cylindrical preform with the application of force to its lateral surface to form an intermediate semi-finished product with a cross-section shaped as a truncated cone. Further deformation in the secondary stage involved hot forging of the conical workpiece into a prism. These process stages were simulated using the finite-element method with the DEFORM 2D/3D software package. The starting preform was a cylinder with uniformly distributed porosity throughout the volume. The simulation results revealed significant uneven strains εi across the workpiece following the primary process stage, leading to an area with increased strains εi concentrated near the upper punch. Conversely, the secondary process stage noticeably evened out the strain values across the forged workpiece. This occurred because the severe deformation area in the secondary process stage matched the stagnant area in the primary stage. The proposed two-stage deformation pattern achieved sufficiently high strains (1.3–1.7), allowing the production of forged materials with excellent mechanical properties.
{"title":"Simulation of Two-Stage Hot Forging of Porous Workpieces Involving Severe Plastic Deformation","authors":"G. A. Bagliuk, S. F. Kyryliuk, N. K. Zlochevska","doi":"10.1007/s11106-024-00404-w","DOIUrl":"10.1007/s11106-024-00404-w","url":null,"abstract":"<p>The evolution of the stress-strain state and the relative density distribution throughout a porous workpiece in the two-stage hot forging process was studied. The primary stage involved hot deformation of a cylindrical preform with the application of force to its lateral surface to form an intermediate semi-finished product with a cross-section shaped as a truncated cone. Further deformation in the secondary stage involved hot forging of the conical workpiece into a prism. These process stages were simulated using the finite-element method with the DEFORM 2D/3D software package. The starting preform was a cylinder with uniformly distributed porosity throughout the volume. The simulation results revealed significant uneven strains ε<sub>i</sub> across the workpiece following the primary process stage, leading to an area with increased strains ε<sub>i</sub> concentrated near the upper punch. Conversely, the secondary process stage noticeably evened out the strain values across the forged workpiece. This occurred because the severe deformation area in the secondary process stage matched the stagnant area in the primary stage. The proposed two-stage deformation pattern achieved sufficiently high strains (1.3–1.7), allowing the production of forged materials with excellent mechanical properties.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 7-8","pages":"427 - 435"},"PeriodicalIF":0.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.1007/s11106-023-00394-1
Youyu Li
TiAl intermediate compound is an important material for high-temperature applications due to its superior creep resistance and oxidation resistance. It is suitable for high-pressure compressors and low-pressure turbine blades of advanced military aircraft engines. TiAl intermediate compound is an excellent substitute for nickel-based superalloys, as it can decrease weight by 40% and greatly enhance aircraft thrust-to-weight ratio. In this paper, the microstructure evolution and the mechanical properties of Ti2AlNb alloy with a 3.0 wt.% W and 0.1 wt.% Y addition obtained by blending elemental ultrafine powders was investigated by XRD, SEM-EDS, and mechanical testing device. The findings show that high relative density of 0.9945, and the excellent mechanical properties of Ti2AlNb–3W–0.1Y alloy can be obtained through isothermal sintering for 3 hour in a furnace with controllable argon atmosphere flow of 200 mL/min at 1,500°C. The alloy’s tensile strength, yield strength, and elongation reach 1,030 MPa, 913 MPa, and 15.1% at 700°C, respectively. Meanwhile, the 3 wt.% of element W is added to the alloy to form (TiW)C as the second strengthening phase, which is uniformly distributed in the matrix of Ti2AlNb. The addition of Y element at 0.1 wt.% into the alloy can act as an effective scavenger of oxygen and inhibit the unsatisfactory precipitation of the brittle α2-phase in the Ti2AlNb alloy. Compared to the alloy without additions, the Ti2AlNb alloy with 3 wt.% W and 0.1 wt.% Y demonstrated 13.5% and 19.35% improvements in the fracture resistance at 25°C and 700°C, respectively. The alloy’s yield strength was increased as well. The evolution regularity of the main metallography is (Ti2AlNb–TiAl–Ti3Al) → (Ti2AlNb–Ti3Al) → (Ti2AlNb–Ti3Al–(TiW) C) during the isothermal sintering of Ti–22Al–25Nb–3W–0.1Y alloy at 1,500°C. This study provides technical guidance for the preparation of ultrafine TiAl-based alloy powder and high-temperature aerospace applications
TiAl 中间化合物具有优异的抗蠕变性和抗氧化性,是一种重要的高温应用材料。它适用于先进军用飞机发动机的高压压缩机和低压涡轮叶片。TiAl 中间化合物是镍基超合金的绝佳替代品,因为它可以减轻 40% 的重量,大大提高飞机的推重比。本文通过 XRD、SEM-EDS 和机械测试装置研究了通过混合元素超细粉获得的添加 3.0 wt.% W 和 0.1 wt.% Y 的 Ti2AlNb 合金的微观结构演变和机械性能。研究结果表明,在氩气流量为 200 mL/min、温度为 1,500°C 的可控炉中等温烧结 3 小时后,Ti2AlNb-3W-0.1Y 合金可获得 0.9945 的高相对密度和优异的机械性能。在 700°C 时,合金的抗拉强度、屈服强度和伸长率分别达到 1,030 兆帕、913 兆帕和 15.1%。同时,在合金中加入 3 重量%的 W 元素,形成 (TiW)C 作为第二强化相,均匀地分布在 Ti2AlNb 的基体中。在合金中添加 0.1 重量%的 Y 元素可作为有效的氧清除剂,抑制 Ti2AlNb 合金中脆性 α2- 相的析出。与未添加的合金相比,添加了 3 wt.% W 和 0.1 wt.% Y 的 Ti2AlNb 合金在 25°C 和 700°C 时的抗断裂强度分别提高了 13.5% 和 19.35%。合金的屈服强度也有所提高。Ti-22Al-25Nb-3W-0.1Y 合金在 1,500°C 等温烧结过程中,主要金相组织的演变规律为 (Ti2AlNb-TiAl-Ti3Al) → (Ti2AlNb-Ti3Al) → (Ti2AlNb-Ti3Al-(TiW) C)。这项研究为制备超细 TiAl 基合金粉末和高温航空航天应用提供了技术指导
{"title":"Microstructural Evolution and Mechanical Properties of the Ti2AlNb Alloy with 3 wt.% W and 0.1 wt.% Y Obtained Using Powder Metallurgy Technique","authors":"Youyu Li","doi":"10.1007/s11106-023-00394-1","DOIUrl":"10.1007/s11106-023-00394-1","url":null,"abstract":"<p>TiAl intermediate compound is an important material for high-temperature applications due to its superior creep resistance and oxidation resistance. It is suitable for high-pressure compressors and low-pressure turbine blades of advanced military aircraft engines. TiAl intermediate compound is an excellent substitute for nickel-based superalloys, as it can decrease weight by 40% and greatly enhance aircraft thrust-to-weight ratio. In this paper, the microstructure evolution and the mechanical properties of Ti<sub>2</sub>AlNb alloy with a 3.0 wt.% W and 0.1 wt.% Y addition obtained by blending elemental ultrafine powders was investigated by XRD, SEM-EDS, and mechanical testing device. The findings show that high relative density of 0.9945, and the excellent mechanical properties of Ti<sub>2</sub>AlNb–3W–0.1Y alloy can be obtained through isothermal sintering for 3 hour in a furnace with controllable argon atmosphere flow of 200 mL/min at 1,500°C. The alloy’s tensile strength, yield strength, and elongation reach 1,030 MPa, 913 MPa, and 15.1% at 700°C, respectively. Meanwhile, the 3 wt.% of element W is added to the alloy to form (TiW)C as the second strengthening phase, which is uniformly distributed in the matrix of Ti<sub>2</sub>AlNb. The addition of Y element at 0.1 wt.% into the alloy can act as an effective scavenger of oxygen and inhibit the unsatisfactory precipitation of the brittle α<sub>2</sub>-phase in the Ti<sub>2</sub>AlNb alloy. Compared to the alloy without additions, the Ti<sub>2</sub>AlNb alloy with 3 wt.% W and 0.1 wt.% Y demonstrated 13.5% and 19.35% improvements in the fracture resistance at 25°C and 700°C, respectively. The alloy’s yield strength was increased as well. The evolution regularity of the main metallography is (Ti<sub>2</sub>AlNb–TiAl–Ti<sub>3</sub>Al) → (Ti<sub>2</sub>AlNb–Ti<sub>3</sub>Al) → (Ti<sub>2</sub>AlNb–Ti<sub>3</sub>Al–(TiW) C) during the isothermal sintering of Ti–22Al–25Nb–3W–0.1Y alloy at 1,500°C. This study provides technical guidance for the preparation of ultrafine TiAl-based alloy powder and high-temperature aerospace applications</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"302 - 311"},"PeriodicalIF":0.9,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1007/s11106-023-00395-0
O. A. Goncharov, I. S. Kolinko, G. V. Kornich, O. V. Khomenko, D. V. Shyrokorad
Ultrahigh-temperature ceramics (UHTC) have a wide range of applications, particularly in supersonic aircraft vehicles. However, the production of UHTCs with predetermined mechanical parameters is relevant. The paper analyzes the structurization trends and their influence on the properties of film coatings from transition metal nitrides and borides synthesized by ion-plasma and magnetron sputtering methods. Under optimal deposition energy conditions, the films show general regularities in their formation, such as the presence of a columnar (fibrous) structure and growth texture. The average grain size varies from 18–20 nm to 60–80 nm, depending on the deposition parameters and method. The films demonstrate excellent mechanical properties, including hardness, elastic modulus, recoverable elastic indicators under load, etc. Growth directions <111> and <100> are observed for transition metal carbide and nitride coatings, while growth in direction <0001> is typical of transition metal diborides. The identified trends will allow realistic computer modeling of the film formation process, using predetermined film properties and optimal sputtering parameters to promote excellent mechanical characteristics of the surface. A thermodynamic model describing the formation of nuclei for a typical film in the environment of atoms randomly deposited onto the substrate is proposed. The critical radius for nucleus growth and, accordingly, for film crystallization is analytically estimated. The influence of Gibbs energy changes on the crystallization process is discussed within the model.
{"title":"Structural Characteristics and Their Influence on the Properties of Transition Metal Nitride and Boride Films (Overview)","authors":"O. A. Goncharov, I. S. Kolinko, G. V. Kornich, O. V. Khomenko, D. V. Shyrokorad","doi":"10.1007/s11106-023-00395-0","DOIUrl":"10.1007/s11106-023-00395-0","url":null,"abstract":"<p>Ultrahigh-temperature ceramics (UHTC) have a wide range of applications, particularly in supersonic aircraft vehicles. However, the production of UHTCs with predetermined mechanical parameters is relevant. The paper analyzes the structurization trends and their influence on the properties of film coatings from transition metal nitrides and borides synthesized by ion-plasma and magnetron sputtering methods. Under optimal deposition energy conditions, the films show general regularities in their formation, such as the presence of a columnar (fibrous) structure and growth texture. The average grain size varies from 18–20 nm to 60–80 nm, depending on the deposition parameters and method. The films demonstrate excellent mechanical properties, including hardness, elastic modulus, recoverable elastic indicators under load, etc. Growth directions <111> and <100> are observed for transition metal carbide and nitride coatings, while growth in direction <0001> is typical of transition metal diborides. The identified trends will allow realistic computer modeling of the film formation process, using predetermined film properties and optimal sputtering parameters to promote excellent mechanical characteristics of the surface. A thermodynamic model describing the formation of nuclei for a typical film in the environment of atoms randomly deposited onto the substrate is proposed. The critical radius for nucleus growth and, accordingly, for film crystallization is analytically estimated. The influence of Gibbs energy changes on the crystallization process is discussed within the model.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"312 - 325"},"PeriodicalIF":0.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1007/s11106-023-00397-y
O. M. Myslyvchenko, R. V. Lytvyn, K. E. Grinkevich, O. B. Zgalat-Lozynskyy, I. V. Tkachenko, O. M. Bloschanevich, S. E. Ivanchenko, V. M. Novichenko, O. P. Gaponova
The microstructure, phase composition, and microhardness of the cast high-entropy VNb2TaCrMoW alloy with the addition of titanium diboride were studied. The initial VNb2TaCrMoW alloy consisted of two bcc solid solutions, slightly differing in lattice parameters (a = 0.3139 nm and 0.3200 nm). The addition of boron as titanium diboride and repeated remelting led to a bcc solid solution with a larger lattice parameter (a = 0.3217 nm) and a boride with W3.5Fe2.5B4 structure (a = 0.6054 nm and c = 0.3256 nm). The bcc solid solution was the first to crystallize, and the boride was part of the eutectic grains and precipitated from the last melt portions, forming a closed network. The resulting alloy was applied to a carbon steel substrate as a coating using electrospark deposition employing an Elitron-24A installation with varying electrical pulse energy. Higher pulse energy during coating deposition increased the layer thickness and surface roughness but did not influence the phase composition. The microstructure of the coatings was more uniform compared to the cast alloys, and X-ray diffraction showed that the coatings contained bcc solid solutions, Fe7W6 intermetallic compound, and a small amount of TaO2 oxide. The coatings had a hardness of about 10 GPa and were 11–15 μm and 16–20 μm thick at discharge energies of 0.52 and 1.1 J, respectively. A comparative analysis of the phase composition, hardness, and microstructure of the cast alloy and associated coatings was carried out. The coatings deposited at a discharge energy of 0.52 J were subjected to laser processing. Laser processing of the coatings resulted in a thermally affected zone, while the surface layer hardness hardly changed. The wear resistance of the coatings deposited at a discharge energy of 0.52 J was analyzed. Wear resistance testing was conducted for three counterface materials (VK6, Al2O3, and Si3N4) in quasistatic and dynamic loading modes. Laser processing of the electrospark coatings changed the wear mechanism and significantly increased the wear resistance regardless of the counterface material and loading mode.
{"title":"Laser Processing of High-Entropy VNb2TaCrMoWTi0.3B0.6 Alloy Coatings for Wear Reduction in Dry Friction with Different Counterfaces","authors":"O. M. Myslyvchenko, R. V. Lytvyn, K. E. Grinkevich, O. B. Zgalat-Lozynskyy, I. V. Tkachenko, O. M. Bloschanevich, S. E. Ivanchenko, V. M. Novichenko, O. P. Gaponova","doi":"10.1007/s11106-023-00397-y","DOIUrl":"10.1007/s11106-023-00397-y","url":null,"abstract":"<p>The microstructure, phase composition, and microhardness of the cast high-entropy VNb<sub>2</sub>TaCrMoW alloy with the addition of titanium diboride were studied. The initial VNb<sub>2</sub>TaCrMoW alloy consisted of two bcc solid solutions, slightly differing in lattice parameters (<i>a</i> = 0.3139 nm and 0.3200 nm). The addition of boron as titanium diboride and repeated remelting led to a bcc solid solution with a larger lattice parameter (<i>a</i> = 0.3217 nm) and a boride with W<sub>3.5</sub>Fe<sub>2.5</sub>B<sub>4</sub> structure (<i>a</i> = 0.6054 nm and <i>c</i> = 0.3256 nm). The bcc solid solution was the first to crystallize, and the boride was part of the eutectic grains and precipitated from the last melt portions, forming a closed network. The resulting alloy was applied to a carbon steel substrate as a coating using electrospark deposition employing an Elitron-24A installation with varying electrical pulse energy. Higher pulse energy during coating deposition increased the layer thickness and surface roughness but did not influence the phase composition. The microstructure of the coatings was more uniform compared to the cast alloys, and X-ray diffraction showed that the coatings contained bcc solid solutions, Fe<sub>7</sub>W<sub>6</sub> intermetallic compound, and a small amount of TaO<sub>2</sub> oxide. The coatings had a hardness of about 10 GPa and were 11–15 μm and 16–20 μm thick at discharge energies of 0.52 and 1.1 J, respectively. A comparative analysis of the phase composition, hardness, and microstructure of the cast alloy and associated coatings was carried out. The coatings deposited at a discharge energy of 0.52 J were subjected to laser processing. Laser processing of the coatings resulted in a thermally affected zone, while the surface layer hardness hardly changed. The wear resistance of the coatings deposited at a discharge energy of 0.52 J was analyzed. Wear resistance testing was conducted for three counterface materials (VK6, Al<sub>2</sub>O<sub>3</sub>, and Si<sub>3</sub>N<sub>4</sub>) in quasistatic and dynamic loading modes. Laser processing of the electrospark coatings changed the wear mechanism and significantly increased the wear resistance regardless of the counterface material and loading mode.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"339 - 349"},"PeriodicalIF":0.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1007/s11106-023-00392-3
O. V. Yarovytsyn, A. V. Mykytchyk, Y. V. Oliynyk
The distribution of doping elements and impurities between the external surfaces and internal volumes of typical fine particles in samples of gas-atomized commercial additive powders of hightemperature creep-resistant (Inconel 939, ZhS32) and high-temperature oxidation-resistant (Inconel 625, Hastelloy C22) nickel superalloys was examined employing energy-dispersive X-ray analysis (EDX). Significant concentration gradients were observed between the surfaces and internal volumes of powder particles for doping elements reaching 4–5 wt.%: Re, Mo Ta, and Nb in the high-temperature creep-resistant alloys and Al, Nb, Co, Fe, V, and Mn in the Inconel 625 hightemperature oxidation-resistant alloy. Besides doping elements, concentration gradients of O, N, S, P, and Si impurities were found in the near-surface layers of the additive powders. The EDX findings and data from the reduction–extraction method were used to calculate the amounts of oxygen and nitrogen in the internal volumes and the near-surface layer of typical fine powder particles and the thickness of this layer corresponding to the increased content of impurities. The surface layer of typical fine particles was shown to increase the total weight-average content of impurities in the samples of commercial additive powders: oxygen up to 2.5 times and nitrogen up to 1.8 times. To assess the influence of impurity amounts of oxygen <0.16 wt.% and nitrogen <0.13 wt.% on the welding process properties of the atomized additive powders, additional samples of hightemperature oxidation-resistant (ChS40) and high-temperature creep-resistant (ZhS6U, ZhS32, Renè 80) nickel superalloys were tested to ascertain their suitability for microplasma powder deposition at a welding current of up to 15 A. It was found that the suitability of the additive powder for lowamperage deposition was mainly determined by the limited oxygen impurity content: weight-average content up to 0.025 wt.% and content in the 1–3 μm thick near-surface layer of a typical fine particle up to 0.1 wt.%.
采用能量色散 X 射线分析法 (EDX) 研究了耐高温蠕变镍超合金(Inconel 939、ZhS32)和耐高温氧化镍超合金(Inconel 625、Hastelloy C22)气雾化商用添加剂粉末样品中典型细颗粒的外表面和内部体积之间的掺杂元素和杂质分布情况。当掺杂元素达到 4-5 wt.%时,在粉末颗粒的表面和内部体积之间观察到明显的浓度梯度:高温抗蠕变合金中的 Re、Mo Ta 和 Nb 以及高温抗氧化合金 Inconel 625 中的 Al、Nb、Co、Fe、V 和 Mn。除掺杂元素外,在添加剂粉末的近表层还发现了 O、N、S、P 和 Si 杂质的浓度梯度。利用 EDX 的发现和还原萃取法的数据,计算了典型细粉颗粒内部体积和近表层中氧和氮的含量,以及与杂质含量增加相对应的表层厚度。结果表明,典型细粉末颗粒的表面层会增加商用添加剂粉末样品中杂质的总平均重量含量:氧气增加了 2.5 倍,氮气增加了 1.8 倍。为了评估0.16 重量% 氧和 0.13 重量% 氮的杂质含量对雾化添加剂粉末焊接工艺性能的影响,还测试了耐高温氧化(ChS40)和耐高温蠕变(ZhS6U、ZhS32、Renè 80)镍超合金样品,以确定它们是否适合在高达 15 A 的焊接电流下进行微等离子粉末沉积。结果发现,添加剂粉末是否适用于低惰性沉积主要取决于有限的氧杂质含量:重量平均含量不超过 0.025 重量百分比,典型细颗粒 1-3 μm 厚的近表面层中的含量不超过 0.1 重量百分比。
{"title":"New Process Requirements for Additive Powders for Microplasma Powder Deposition","authors":"O. V. Yarovytsyn, A. V. Mykytchyk, Y. V. Oliynyk","doi":"10.1007/s11106-023-00392-3","DOIUrl":"10.1007/s11106-023-00392-3","url":null,"abstract":"<p>The distribution of doping elements and impurities between the external surfaces and internal volumes of typical fine particles in samples of gas-atomized commercial additive powders of hightemperature creep-resistant (Inconel 939, ZhS32) and high-temperature oxidation-resistant (Inconel 625, Hastelloy C22) nickel superalloys was examined employing energy-dispersive X-ray analysis (EDX). Significant concentration gradients were observed between the surfaces and internal volumes of powder particles for doping elements reaching 4–5 wt.%: Re, Mo Ta, and Nb in the high-temperature creep-resistant alloys and Al, Nb, Co, Fe, V, and Mn in the Inconel 625 hightemperature oxidation-resistant alloy. Besides doping elements, concentration gradients of O, N, S, P, and Si impurities were found in the near-surface layers of the additive powders. The EDX findings and data from the reduction–extraction method were used to calculate the amounts of oxygen and nitrogen in the internal volumes and the near-surface layer of typical fine powder particles and the thickness of this layer corresponding to the increased content of impurities. The surface layer of typical fine particles was shown to increase the total weight-average content of impurities in the samples of commercial additive powders: oxygen up to 2.5 times and nitrogen up to 1.8 times. To assess the influence of impurity amounts of oxygen <0.16 wt.% and nitrogen <0.13 wt.% on the welding process properties of the atomized additive powders, additional samples of hightemperature oxidation-resistant (ChS40) and high-temperature creep-resistant (ZhS6U, ZhS32, Renè 80) nickel superalloys were tested to ascertain their suitability for microplasma powder deposition at a welding current of up to 15 A. It was found that the suitability of the additive powder for lowamperage deposition was mainly determined by the limited oxygen impurity content: weight-average content up to 0.025 wt.% and content in the 1–3 μm thick near-surface layer of a typical fine particle up to 0.1 wt.%.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"276 - 292"},"PeriodicalIF":0.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138948824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1007/s11106-023-00399-w
O. A. Rokytska, M. V. Karpets, M. I. Yakubiv, M. O. Krapivka, A. V. Samelyuk, M. P. Naumenko
The evolution of phase composition and thermal oxidation behavior of high-entropy AlCrFeCoNiMnx alloys (x = 0.5 and 1) during long-term oxidation at 900°C were studied. A single- phase ordered (B2) bcc alloy formed in the starting as-cast state regardless of manganese content. The scale phase composition varied with exposure time and manganese content. After 10 h of oxidation, high-entropy spinel-type MeMn2O4, as well as Mn3O4 and Al2O3, formed on the AlCrFeCoNiMn alloy, while only Mn3O4 and Al2O3 oxides emerged on the AlCrFeCoNiMn0.5 alloy. Increase in the oxidation time for the equiatomic alloy up to 25 h led to spinel NiMn2O4 and bixbyite FeMnO3 in the oxide scale; Mn3O4 and Al2O3 were also present. The phase composition of the oxidized layer on the AlCrFeCoNiMn0.5 alloy did not change. After 50 h, the structure of the oxide scale was similar for both alloys and consisted of NiMn2O4, FeMnO3, Mn3O4, and Al2O3 in different ratios. The oxidation kinetics of the alloys naturally depended on the manganese content: the higher the manganese content, the higher the oxidation rate. A continuous layer of the fcc solid solution rich in chromium, iron, and cobalt was observed under the scale in both alloys. An internal oxidation area was also found in the subscale layer of the AlCrFeCoNiMn alloy. Long-term (more than 50 h) oxidation at 900°C substantially changed the phase composition of the alloy matrices: the bcc (B2) solid solution underwent spinodal decomposition to form bcc and fcc phases and tetragonal σ phase. Analyses of the alloy matrices showed a sharp increase in their microhardness after annealing. This can be attributed to the formation of a significant amount of the σ phase.
{"title":"High-Temperature Oxidation of High-Entropy Alcrfeconimnx Alloys","authors":"O. A. Rokytska, M. V. Karpets, M. I. Yakubiv, M. O. Krapivka, A. V. Samelyuk, M. P. Naumenko","doi":"10.1007/s11106-023-00399-w","DOIUrl":"10.1007/s11106-023-00399-w","url":null,"abstract":"<p>The evolution of phase composition and thermal oxidation behavior of high-entropy AlCrFeCoNiMn<sub><i>x</i></sub> alloys (<i>x</i> = 0.5 and 1) during long-term oxidation at 900°C were studied. A single- phase ordered (B2) bcc alloy formed in the starting as-cast state regardless of manganese content. The scale phase composition varied with exposure time and manganese content. After 10 h of oxidation, high-entropy spinel-type MeMn<sub>2</sub>O<sub>4</sub>, as well as Mn<sub>3</sub>O<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub>, formed on the AlCrFeCoNiMn alloy, while only Mn<sub>3</sub>O<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub> oxides emerged on the AlCrFeCoNiMn<sub>0.5</sub> alloy. Increase in the oxidation time for the equiatomic alloy up to 25 h led to spinel NiMn<sub>2</sub>O<sub>4</sub> and bixbyite FeMnO<sub>3</sub> in the oxide scale; Mn<sub>3</sub>O<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub> were also present. The phase composition of the oxidized layer on the AlCrFeCoNiMn<sub>0.5</sub> alloy did not change. After 50 h, the structure of the oxide scale was similar for both alloys and consisted of NiMn<sub>2</sub>O<sub>4</sub>, FeMnO<sub>3</sub>, Mn<sub>3</sub>O<sub>4</sub>, and Al<sub>2</sub>O<sub>3</sub> in different ratios. The oxidation kinetics of the alloys naturally depended on the manganese content: the higher the manganese content, the higher the oxidation rate. A continuous layer of the fcc solid solution rich in chromium, iron, and cobalt was observed under the scale in both alloys. An internal oxidation area was also found in the subscale layer of the AlCrFeCoNiMn alloy. Long-term (more than 50 h) oxidation at 900°C substantially changed the phase composition of the alloy matrices: the bcc (B2) solid solution underwent spinodal decomposition to form bcc and fcc phases and tetragonal σ phase. Analyses of the alloy matrices showed a sharp increase in their microhardness after annealing. This can be attributed to the formation of a significant amount of the σ phase.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"360 - 371"},"PeriodicalIF":0.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138951157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1007/s11106-023-00400-6
O. P. Kononiuk, I. Yu. Zavaliy, V. V. Berezovets, A. R. Kytsya, I. V. Lutsyuk, L. O. Vasylechko, M. V. Chekailo, Yu. M. Solonin
The method of reactive ball milling was used to synthesize MgH2-based composites adding nanoparticles of complex oxides RTO3 (R-rare earth and T-transition metals) as catalysts and graphite. All composites contain 5 wt.% of complex oxides Dy0.5Nd0.5FeO3 and TbFe0.5Cr0.5O3 synthesized by the sol-gel method, and some of them additionally contain 3 wt.% of graphite. The oxides have an orthorhombic perovskite structure (GdFeO3 type) and are characterized by an average particle size of 80–300 nm. The effect of perovskites on the hydrogenation of magnesium during the milling process and the improvement of hydrogen sorption-desorption kinetics is demonstrated. The Mg–Dy0.5Nd0.5FeO3 and Mg–TbFe0.5Cr0.5O3 composites absorbed 6.7 and 6.2 wt.% of hydrogen, respectively. X-ray powder diffraction after ball milling did not reveal any new compounds, except magnesium hydride. Thermal desorption from these composites occurs in two stages at temperatures above 300°C. The activation energy (Ea) of hydrogen desorption was determined by the Kissinger method. For the composite with TbFe0.5Cr0.5O3, Ea is 123 kJ/mol, and for the composite with Dy0.5Nd0.5FeO3Ea = 147 kJ/mol. These composites were also tested as materials for hydrogen generation by hydrolysis in pure water and MgCl2 water solutions. In pure water, the hydrogen yield during hydrolysis ranged from 320 to 350 ml per gram. The conversion degree was significantly improved by the addition of MgCl2. It reached 90% (~1400 ml/g) after 30 min of hydrolysis for the MgH2–nano-TbFe0.5Cr0.5O3. These characteristics show that the synthesized MgH2–nano-RTO3 composites can be used in hydrogen generation systems.
{"title":"Catalytic Effect of RTO3 Perovskites on Hydrogen Storage and Hydrolysis Properties of Magnesium Hydride","authors":"O. P. Kononiuk, I. Yu. Zavaliy, V. V. Berezovets, A. R. Kytsya, I. V. Lutsyuk, L. O. Vasylechko, M. V. Chekailo, Yu. M. Solonin","doi":"10.1007/s11106-023-00400-6","DOIUrl":"10.1007/s11106-023-00400-6","url":null,"abstract":"<p>The method of reactive ball milling was used to synthesize MgH<sub>2</sub>-based composites adding nanoparticles of complex oxides RTO<sub>3</sub> (R-rare earth and T-transition metals) as catalysts and graphite. All composites contain 5 wt.% of complex oxides Dy<sub>0.5</sub>Nd<sub>0.5</sub>FeO<sub>3</sub> and TbFe<sub>0.5</sub>Cr<sub>0.5</sub>O<sub>3</sub> synthesized by the sol-gel method, and some of them additionally contain 3 wt.% of graphite. The oxides have an orthorhombic perovskite structure (GdFeO<sub>3</sub> type) and are characterized by an average particle size of 80–300 nm. The effect of perovskites on the hydrogenation of magnesium during the milling process and the improvement of hydrogen sorption-desorption kinetics is demonstrated. The Mg–Dy<sub>0.5</sub>Nd<sub>0.5</sub>FeO<sub>3</sub> and Mg–TbFe<sub>0.5</sub>Cr<sub>0.5</sub>O<sub>3</sub> composites absorbed 6.7 and 6.2 wt.% of hydrogen, respectively. X-ray powder diffraction after ball milling did not reveal any new compounds, except magnesium hydride. Thermal desorption from these composites occurs in two stages at temperatures above 300°C. The activation energy (<i>E</i><sub>a</sub>) of hydrogen desorption was determined by the Kissinger method. For the composite with TbFe<sub>0.5</sub>Cr<sub>0.5</sub>O<sub>3</sub>, <i>E</i><sub>a</sub> is 123 kJ/mol, and for the composite with Dy<sub>0.5</sub>Nd<sub>0.5</sub>FeO<sub>3</sub> <i>E</i><sub>a</sub> = 147 kJ/mol. These composites were also tested as materials for hydrogen generation by hydrolysis in pure water and MgCl<sub>2</sub> water solutions. In pure water, the hydrogen yield during hydrolysis ranged from 320 to 350 ml per gram. The conversion degree was significantly improved by the addition of MgCl<sub>2</sub>. It reached 90% (~1400 ml/g) after 30 min of hydrolysis for the MgH<sub>2</sub>–nano-TbFe<sub>0.5</sub>Cr<sub>0.5</sub>O<sub>3</sub>. These characteristics show that the synthesized MgH<sub>2</sub>–nano-RTO<sub>3</sub> composites can be used in hydrogen generation systems.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"372 - 381"},"PeriodicalIF":0.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138949378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1007/s11106-023-00393-2
V. P. Serhieiev, I. V. Kononko, N. V. Boshytska, V. D. Klipov
An experimental technique was developed for the production of tableted nanostructured fibrous enterosorbent for medical applications using a nanostructured activated carbon fiber material of solid-phase pyrolytic origin, created by our research team. The properties of the main active ingredient in the pills, as an effective adsorbing component, were studied. The porous structure parameters were examined with the desiccator method based on the absorption of benzene vapors, while the specific surface area was analyzed with the Brunauer–Emmett–Teller (BET) method. Spectrophotometric methods were employed to determine the concentration of the sorbate in solutions. The microstructure of the samples was studied using a scanning electron microscope (Superprobe-733 X-ray microanalyzer, JEOL, Japan). Energy-dispersive X-ray analysis provided data on the chemical composition and biocompatibility of the samples, serving as an integral indicator. Conditions for the key stages in the enterosorbent production process were experimentally tested. The influence of different types of binders on the process properties of the tablet charge and on the characteristics of test enterosorbent pills was analyzed. The novelty of the developed process was the use of material with special characteristics, promoted by bound carbon nanoforms present in its structure, for enterosorbent production. Improvements in the process operations were proposed, such as decreasing the compaction speed and simultaneously increasing the time the tablet charge was kept under pressure, leading to the redistribution of strains. It was proposed that the compaction process be conducted using punches with a flat surface of purity class 10 to prevent sticking. Therefore, our research team developed tableted enterosorbent with typical features of its main component—nanostructured activated fibrous carbon material—as an effective adsorbent for a relatively wide range of different compounds.
我们的研究团队利用一种固相热解纳米结构活性碳纤维材料,开发了一种用于生产医疗用片状纳米结构纤维肠道吸附剂的实验技术。研究了药丸中作为有效吸附成分的主要活性成分的特性。根据苯蒸汽的吸收情况,采用干燥器法对多孔结构参数进行了检测,而比表面积则采用布鲁瑙尔-艾美特-泰勒(BET)法进行了分析。分光光度法用于测定溶液中吸附剂的浓度。使用扫描电子显微镜(Superprobe-733 X 射线显微分析仪,日本 JEOL 公司)研究了样品的微观结构。能量色散 X 射线分析提供了有关样品化学成分和生物相容性的数据,可作为一项综合指标。实验测试了肠吸附剂生产过程中关键阶段的条件。分析了不同类型的粘合剂对片剂装填工艺性能和试验肠溶丸特性的影响。所开发工艺的新颖之处在于使用具有特殊特性的材料生产肠道吸附剂,其结构中存在的结合碳纳米形式促进了这种材料的使用。提出了改进工艺操作的建议,如降低压实速度,同时增加片剂在压力下的保持时间,从而导致应变的重新分布。还有人建议在压制过程中使用纯度为 10 级的平面冲头,以防止粘连。因此,我们的研究团队开发出了具有其主要成分--纳米结构活性纤维碳材料--典型特征的片状肠吸附剂,作为吸附范围相对较广的不同化合物的有效吸附剂。
{"title":"Properties of Nanostructured Carbon Fiber Material and Process Features of Its Use in Producing Tableted Enterosorbent for Medical Applications","authors":"V. P. Serhieiev, I. V. Kononko, N. V. Boshytska, V. D. Klipov","doi":"10.1007/s11106-023-00393-2","DOIUrl":"10.1007/s11106-023-00393-2","url":null,"abstract":"<p>An experimental technique was developed for the production of tableted nanostructured fibrous enterosorbent for medical applications using a nanostructured activated carbon fiber material of solid-phase pyrolytic origin, created by our research team. The properties of the main active ingredient in the pills, as an effective adsorbing component, were studied. The porous structure parameters were examined with the desiccator method based on the absorption of benzene vapors, while the specific surface area was analyzed with the Brunauer–Emmett–Teller (BET) method. Spectrophotometric methods were employed to determine the concentration of the sorbate in solutions. The microstructure of the samples was studied using a scanning electron microscope (Superprobe-733 X-ray microanalyzer, JEOL, Japan). Energy-dispersive X-ray analysis provided data on the chemical composition and biocompatibility of the samples, serving as an integral indicator. Conditions for the key stages in the enterosorbent production process were experimentally tested. The influence of different types of binders on the process properties of the tablet charge and on the characteristics of test enterosorbent pills was analyzed. The novelty of the developed process was the use of material with special characteristics, promoted by bound carbon nanoforms present in its structure, for enterosorbent production. Improvements in the process operations were proposed, such as decreasing the compaction speed and simultaneously increasing the time the tablet charge was kept under pressure, leading to the redistribution of strains. It was proposed that the compaction process be conducted using punches with a flat surface of purity class 10 to prevent sticking. Therefore, our research team developed tableted enterosorbent with typical features of its main component—nanostructured activated fibrous carbon material—as an effective adsorbent for a relatively wide range of different compounds.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"293 - 301"},"PeriodicalIF":0.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138819861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}