首页 > 最新文献

Nucleus (Austin, Tex.)最新文献

英文 中文
Uip4p modulates nuclear pore complex function in Saccharomyces cerevisiae. Uip4p调控酿酒酵母核孔复合物功能。
Pub Date : 2022-12-01 DOI: 10.1080/19491034.2022.2034286
Pallavi Deolal, Imlitoshi Jamir, Krishnaveni Mishra

A double membrane bilayer perforated by nuclear pore complexes (NPCs) governs the shape of the nucleus, the prominent distinguishing organelle of a eukaryotic cell. Despite the absence of lamins in yeasts, the nuclear morphology is stably maintained and shape changes occur in a regulated fashion. In a quest to identify factors that contribute to regulation of nuclear shape and function in Saccharomyces cerevisiae, we used a fluorescence imaging based approach. Here we report the identification of a novel protein, Uip4p, that is required for regulation of nuclear morphology. Loss of Uip4 compromises NPC function and loss of nuclear envelope (NE) integrity. Our localization studies show that Uip4 localizes to the NE and endoplasmic reticulum (ER) network. Furthermore, we demonstrate that the localization and expression of Uip4 is regulated during growth, which is crucial for NPC distribution.

由核孔复合物(NPCs)穿孔的双层膜控制着核的形状,核是真核细胞中突出的区分细胞器。尽管在酵母中没有层板,但核形态是稳定维持的,形状变化以一种受调节的方式发生。在一个探索,以确定有助于调节核形状和功能在酿酒酵母的因素,我们使用了荧光成像为基础的方法。在这里,我们报告鉴定了一种新的蛋白,Uip4p,这是核形态调节所必需的。Uip4的缺失损害了NPC功能和核包膜完整性的丧失。我们的定位研究表明,Uip4定位于NE和内质网(ER)网络。此外,我们还证明了在生长过程中,Uip4的定位和表达受到调控,这对NPC的分布至关重要。
{"title":"Uip4p modulates nuclear pore complex function in <i>Saccharomyces cerevisiae</i>.","authors":"Pallavi Deolal,&nbsp;Imlitoshi Jamir,&nbsp;Krishnaveni Mishra","doi":"10.1080/19491034.2022.2034286","DOIUrl":"https://doi.org/10.1080/19491034.2022.2034286","url":null,"abstract":"<p><p>A double membrane bilayer perforated by nuclear pore complexes (NPCs) governs the shape of the nucleus, the prominent distinguishing organelle of a eukaryotic cell. Despite the absence of lamins in yeasts, the nuclear morphology is stably maintained and shape changes occur in a regulated fashion. In a quest to identify factors that contribute to regulation of nuclear shape and function in <i>Saccharomyces cerevisiae</i>, we used a fluorescence imaging based approach. Here we report the identification of a novel protein, Uip4p, that is required for regulation of nuclear morphology. Loss of Uip4 compromises NPC function and loss of nuclear envelope (NE) integrity. Our localization studies show that Uip4 localizes to the NE and endoplasmic reticulum (ER) network. Furthermore, we demonstrate that the localization and expression of Uip4 is regulated during growth, which is crucial for NPC distribution.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8855845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39928735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion. 人类 RNA Pol II 的空间一致性扩散取决于转录状态而非染色质运动。
Pub Date : 2022-12-01 DOI: 10.1080/19491034.2022.2088988
Roman Barth, Haitham A Shaban

Gene transcription by RNA polymerase II (RNAPol II) is a tightly regulated process in the genomic, temporal, and spatial context. Recently, we have shown that chromatin exhibits spatially coherently moving regions over the entire nucleus, which is enhanced by transcription. Yet, it remains unclear how the mobility of RNA Pol II molecules is affected by transcription regulation and whether this response depends on the coordinated chromatin movement. We applied our Dense Flow reConstruction and Correlation method to analyze nucleus-wide coherent movements of RNA Pol II in living human cancer cells. We observe a spatially coherent movement of RNA Pol II molecules over 1 μm, which depends on transcriptional activity. Inducing transcription in quiescent cells decreased the coherent motion of RNA Pol II. We then quantify the spatial correlation length of RNA Pol II in the context of DNA motion. RNA Pol II and chromatin spatially coherent motions respond oppositely to transcriptional activities. Our study holds the potential of studying the chromatin environment in different nuclear processes.

由 RNA 聚合酶 II(RNAPol II)进行的基因转录是一个在基因组、时间和空间方面都受到严格调控的过程。最近,我们发现染色质在整个细胞核中呈现出空间连贯的移动区域,转录增强了染色质的移动性。然而,RNA Pol II 分子的移动性如何受到转录调控的影响,以及这种反应是否取决于染色质的协调移动,目前仍不清楚。我们采用密集流重构和相关方法分析了活体人类癌细胞中 RNA Pol II 在整个细胞核内的连贯运动。我们观察到 RNA Pol II 分子在 ≈1 μm 范围内的空间连贯运动,这取决于转录活动。在静止细胞中诱导转录会降低 RNA Pol II 的一致性运动。然后,我们量化了 DNA 运动背景下 RNA Pol II 的空间相关长度。RNA Pol II和染色质空间相干运动对转录活动的反应是相反的。我们的研究为研究不同核过程中的染色质环境提供了可能。
{"title":"Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion.","authors":"Roman Barth, Haitham A Shaban","doi":"10.1080/19491034.2022.2088988","DOIUrl":"10.1080/19491034.2022.2088988","url":null,"abstract":"<p><p>Gene transcription by RNA polymerase II (RNAPol II) is a tightly regulated process in the genomic, temporal, and spatial context. Recently, we have shown that chromatin exhibits spatially coherently moving regions over the entire nucleus, which is enhanced by transcription. Yet, it remains unclear how the mobility of RNA Pol II molecules is affected by transcription regulation and whether this response depends on the coordinated chromatin movement. We applied our Dense Flow reConstruction and Correlation method to analyze nucleus-wide coherent movements of RNA Pol II in living human cancer cells. We observe a spatially coherent movement of RNA Pol II molecules over <math><mo>≈</mo></math>1 μm, which depends on transcriptional activity. Inducing transcription in quiescent cells decreased the coherent motion of RNA Pol II. We then quantify the spatial correlation length of RNA Pol II in the context of DNA motion. RNA Pol II and chromatin spatially coherent motions respond oppositely to transcriptional activities. Our study holds the potential of studying the chromatin environment in different nuclear processes.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40058478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. 高斯曲率稀释核层,有利于核破裂,特别是在高应变速率下。
Pub Date : 2022-12-01 DOI: 10.1080/19491034.2022.2045726
Charlotte R Pfeifer, Michael P Tobin, Sangkyun Cho, Manasvita Vashisth, Lawrence J Dooling, Lizeth Lopez Vazquez, Emma G Ricci-De Lucca, Keiann T Simon, Dennis E Discher

Nuclear rupture has long been associated with deficits or defects in lamins, with recent results also indicating a role for actomyosin stress, but key physical determinants of rupture remain unclear. Here, lamin-B filaments stably interact with the nuclear membrane at sites of low Gaussian curvature yet dilute at high curvature to favor rupture, whereas lamin-A depletion requires high strain-rates. Live-cell imaging of lamin-B1 gene-edited cancer cells is complemented by fixed-cell imaging of rupture in: iPS-derived progeria patients cells, cells within beating chick embryo hearts, and cancer cells with multi-site rupture after migration through small pores. Data fit a model of stiff filaments that detach from a curved surface.Rupture is modestly suppressed by inhibiting myosin-II and by hypotonic stress, which slow the strain-rates. Lamin-A dilution and rupture probability indeed increase above a threshold rate of nuclear pulling. Curvature-sensing mechanisms of proteins at plasma membranes, including Piezo1, might thus apply at nuclear membranes.Summary statement: High nuclear curvature drives lamina dilution and nuclear envelope rupture even when myosin stress is inhibited. Stiff filaments generally dilute from sites of high Gaussian curvature, providing mathematical fits of experiments.

长期以来,核破裂一直与层粘连蛋白的缺陷有关,最近的研究结果也表明了肌动球蛋白应激的作用,但破裂的关键物理决定因素仍不清楚。在这里,纤层蛋白b丝在低高斯曲率处稳定地与核膜相互作用,但在高曲率处被稀释,有利于破裂,而纤层蛋白a的耗尽需要高应变率。lamin-B1基因编辑的癌细胞的活细胞成像辅以ips衍生的早衰患者细胞、跳动的鸡胚胎心脏细胞和通过小孔隙迁移后多点破裂的癌细胞的破裂固定细胞成像。数据符合刚性细丝从曲面分离的模型。通过抑制肌球蛋白- ii和低渗应激,可以适度抑制破裂,从而减缓应变速率。Lamin-A稀释和破裂概率确实在核拉力阈值以上增加。因此,包括Piezo1在内的质膜上蛋白质的曲率传感机制可能适用于核膜。摘要声明:高核曲率驱动层稀释和核膜破裂,即使肌球蛋白应激被抑制。硬丝通常从高高斯曲率的位置稀释,提供了实验的数学拟合。
{"title":"Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate.","authors":"Charlotte R Pfeifer,&nbsp;Michael P Tobin,&nbsp;Sangkyun Cho,&nbsp;Manasvita Vashisth,&nbsp;Lawrence J Dooling,&nbsp;Lizeth Lopez Vazquez,&nbsp;Emma G Ricci-De Lucca,&nbsp;Keiann T Simon,&nbsp;Dennis E Discher","doi":"10.1080/19491034.2022.2045726","DOIUrl":"https://doi.org/10.1080/19491034.2022.2045726","url":null,"abstract":"<p><p>Nuclear rupture has long been associated with deficits or defects in lamins, with recent results also indicating a role for actomyosin stress, but key physical determinants of rupture remain unclear. Here, lamin-B filaments stably interact with the nuclear membrane at sites of low Gaussian curvature yet dilute at high curvature to favor rupture, whereas lamin-A depletion requires high strain-rates. Live-cell imaging of lamin-B1 gene-edited cancer cells is complemented by fixed-cell imaging of rupture in: iPS-derived progeria patients cells, cells within beating chick embryo hearts, and cancer cells with multi-site rupture after migration through small pores. Data fit a model of stiff filaments that detach from a curved surface.Rupture is modestly suppressed by inhibiting myosin-II and by hypotonic stress, which slow the strain-rates. Lamin-A dilution and rupture probability indeed increase above a threshold rate of nuclear pulling. Curvature-sensing mechanisms of proteins at plasma membranes, including Piezo1, might thus apply at nuclear membranes.<b>Summary statement:</b> High nuclear curvature drives lamina dilution and nuclear envelope rupture even when myosin stress is inhibited. Stiff filaments generally dilute from sites of high Gaussian curvature, providing mathematical fits of experiments.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10740729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Pericentromeric repetitive ncRNA regulates chromatin interaction and inflammatory gene expression. 中心粒周围重复ncRNA调节染色质相互作用和炎症基因表达。
Pub Date : 2022-12-01 DOI: 10.1080/19491034.2022.2034269
Kenichi Miyata, Akiko Takahashi

Cellular senescence provokes a dramatic alteration of chromatin organization and gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies via the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained through the CCCTC-binding factor (CTCF). However, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains to be fully elucidated. A recent study by our team showed that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impair the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin at the loci of SASP genes and caused the transcription of inflammatory factors. This mechanism may promote malignant transformation.

细胞衰老引起染色质组织和促炎因子基因表达谱的显著改变,从而通过衰老相关分泌表型(SASP)促进各种与年龄相关的病理。染色质组织和整体基因表达是通过ccctc结合因子(CTCF)维持的。然而,CTCF调控的分子机制及其与SASP基因表达的关系仍未完全阐明。我们团队最近的一项研究表明,非编码RNA (ncRNA)来源于正常沉默的周中心粒重复序列,直接损害CTCF的DNA结合。这种CTCF干扰增加了SASP基因位点染色质的可及性,并引起炎症因子的转录。这一机制可能促进恶性转化。
{"title":"Pericentromeric repetitive ncRNA regulates chromatin interaction and inflammatory gene expression.","authors":"Kenichi Miyata,&nbsp;Akiko Takahashi","doi":"10.1080/19491034.2022.2034269","DOIUrl":"https://doi.org/10.1080/19491034.2022.2034269","url":null,"abstract":"<p><p>Cellular senescence provokes a dramatic alteration of chromatin organization and gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies via the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained through the CCCTC-binding factor (CTCF). However, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains to be fully elucidated. A recent study by our team showed that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impair the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin at the loci of SASP genes and caused the transcription of inflammatory factors. This mechanism may promote malignant transformation.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8855862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39632604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filament assembly of the C. elegans lamin in the absence of helix 1A. 螺旋1A缺失时秀丽隐杆线虫纤层蛋白的细丝组装。
Pub Date : 2022-12-01 DOI: 10.1080/19491034.2022.2032917
Rebecca de Leeuw, Rafael Kronenberg-Tenga, Matthias Eibauer, Ohad Medalia

Lamins are the major constituent of the nuclear lamina, a protein meshwork underlying the inner nuclear membrane. Nuclear lamins are type V intermediate filaments that assemble into ~3.5 nm thick filaments. To date, only the conditions for the in vitro assembly of Caenorhabditis elegans lamin (Ce-lamin) are known. Here, we investigated the assembly of Ce-lamin filaments by cryo-electron microscopy and tomography. We show that Ce-lamin is composed of ~3.5 nm protofilaments that further interact in vitro and are often seen as 6-8 nm thick filaments. We show that the assembly of lamin filaments is undisturbed by the removal of flexible domains, that is, the intrinsically unstructured head and tail domains. In contrast, much of the coiled-coil domains are scaffold elements that are essential for filament assembly. Moreover, our results suggest that Ce-lamin helix 1A has a minor scaffolding role but is important to the lateral assembly regulation of lamin protofilaments.

核膜层蛋白是核膜层的主要组成部分,核膜层是核膜下的一种蛋白质网。核层状纤维是V型中间纤维,聚集成约3.5 nm厚的纤维。迄今为止,只有秀丽隐杆线虫层蛋白(Ce-lamin)的体外组装条件是已知的。在这里,我们用冷冻电子显微镜和断层扫描研究了Ce-lamin细丝的组装。我们发现Ce-lamin由~3.5 nm的原丝组成,这些原丝在体外进一步相互作用,通常被视为6-8 nm厚的纤维。我们表明,层状蛋白细丝的组装不受柔性结构域(即本质上非结构化的头部和尾部结构域)去除的干扰。相反,许多盘绕线圈结构域是灯丝组装必不可少的支架元件。此外,我们的研究结果表明,Ce-lamin螺旋1A具有次要的支架作用,但对lamin原丝的横向组装调节很重要。
{"title":"Filament assembly of the <i>C. elegans</i> lamin in the absence of helix 1A.","authors":"Rebecca de Leeuw,&nbsp;Rafael Kronenberg-Tenga,&nbsp;Matthias Eibauer,&nbsp;Ohad Medalia","doi":"10.1080/19491034.2022.2032917","DOIUrl":"https://doi.org/10.1080/19491034.2022.2032917","url":null,"abstract":"<p><p>Lamins are the major constituent of the nuclear lamina, a protein meshwork underlying the inner nuclear membrane. Nuclear lamins are type V intermediate filaments that assemble into ~3.5 nm thick filaments. To date, only the conditions for the <i>in vitro</i> assembly of <i>Caenorhabditis elegans</i> lamin (<i>Ce</i>-lamin) are known. Here, we investigated the assembly of <i>Ce</i>-lamin filaments by cryo-electron microscopy and tomography. We show that <i>Ce</i>-lamin is composed of ~3.5 nm protofilaments that further interact <i>in vitro</i> and are often seen as 6-8 nm thick filaments. We show that the assembly of lamin filaments is undisturbed by the removal of flexible domains, <i>that is,</i> the intrinsically unstructured head and tail domains. In contrast, much of the coiled-coil domains are scaffold elements that are essential for filament assembly. Moreover, our results suggest that <i>Ce</i>-lamin helix 1A has a minor scaffolding role but is important to the lateral assembly regulation of lamin protofilaments.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39773087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evolution and diversification of the nuclear envelope. 核包膜的进化和多样化。
Pub Date : 2021-12-01 DOI: 10.1080/19491034.2021.1874135
Norma E Padilla-Mejia, Alexandr A Makarov, Lael D Barlow, Erin R Butterfield, Mark C Field

Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and  to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.

真核细胞产生于大约 15 亿年前,内膜系统是其核心特征,促进了细胞内隔室的进化。内膜包括划分细胞质和核质的核膜(NE)。核膜具有普遍特征:双脂质双层膜、核孔复合体(NPC)以及与内质网的连续性,这表明了共同的进化起源。然而,尽管各种核活动的机制各不相同,但各系之间的专业化程度仍不清楚。有几种不同的分子进化模式促进了细胞器的多样化,为了了解哪种模式适用于东北核,我们利用来自模式系统的纯化核包膜蛋白质组数据集进行了比较分析。我们发现,在广泛保守的蛋白质中,核心核功能的富集程度低于特定品系的蛋白质群,但富集了核心核功能。这一点以及对其他证据的考虑表明,尽管有共同的起源,但核细胞膜已进化为一个高度多样化的细胞器,具有显著的品系特异性功能。
{"title":"Evolution and diversification of the nuclear envelope.","authors":"Norma E Padilla-Mejia, Alexandr A Makarov, Lael D Barlow, Erin R Butterfield, Mark C Field","doi":"10.1080/19491034.2021.1874135","DOIUrl":"10.1080/19491034.2021.1874135","url":null,"abstract":"<p><p>Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and  to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38811891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial for the SEB 2020 special issue 'dynamic organisation of the nucleus across kingdoms'. SEB 2020特刊“跨王国核的动态组织”的社论。
Pub Date : 2021-12-01 DOI: 10.1080/19491034.2021.1883294
David E Evans
This special issue is a collection of papers submitted by authors invited to participate in the 2020 Society for Experimental Biology meeting on the theme of 'Dynamic Organisation of the Nucleus Across Kingdoms', co-organized by Roland Foisner, Philippe Colas, David Evans and Katja Graumann. The conference presentations were postponed to 2021 (https://www.sebiology. org/events/event/seb-antwerp-2021) due to the impact of Covid-19, but these collected papers written in the summer and autumn of 2020 present the cross-kingdom insights and novel findings that were central to the aim of the meeting. The meeting is the 3rd in a series [1, 2] intended to highlight the immense value of sharing knowledge of the nucleus across kingdoms. Here we present a combination of review and original results and methods providing new insights into the field in a landmark year. Understanding the origins of the structural components of the nucleus underpins many of our efforts to advance understanding of mechanisms and function. This collection of papers provides significant insights – both across kingdoms [3] and in detailed reviews of the current state of knowledge in higher plants [4, 5]. One of the fascinations of studying the dynamic structure of the nucleus is the way in which a range of conserved functions are carried out by such a diversity of lineage-specific components. While a small number of highly conserved proteins point back to their presence in the Last Eukaryotic Common Ancestor, many show a surprising diversification and even functionally conserved proteins show a wide range of structural characteristics. Indeed, from this collection of papers, the reader can only wonder whether the statement of PadillaMeija et al. [3] that ‘findings suggest a rather surprising level of divergence associated with a structure that, in a very real sense, defines the eukaryotic cell’ is, in fact, an understatement. While recognizing the limitations imposed by the challenges of defining the nuclear proteome, Padilla-Meija and coworkers [3] provide detailed comparative insights into its evolution using carefully selected data from protozoans to mammals. Through a comparative analysis of previously described datasets from model systems and by expansion of this data, for instance, by searching using queries from Trypanosoma brucei, they provide a valuable coverage of nuclear constituents, structure and function, providing insights and a data set of great value for further exploration. Nuclear Envelope Associated (NEA) proteins provide particular challenges. Some are also found in other cellular locations, others are synthesized at the NE; others are multifunctional, with only a small part of their activity at the NE and many have only been characterized in one model organism while their functions in others are uncertain. There is much to be done! Two other papers in the collection expand the overview of Padilla-Meija to consider advances in knowledge of the plant nuclear prot
{"title":"Editorial for the SEB 2020 special issue 'dynamic organisation of the nucleus across kingdoms'.","authors":"David E Evans","doi":"10.1080/19491034.2021.1883294","DOIUrl":"https://doi.org/10.1080/19491034.2021.1883294","url":null,"abstract":"This special issue is a collection of papers submitted by authors invited to participate in the 2020 Society for Experimental Biology meeting on the theme of 'Dynamic Organisation of the Nucleus Across Kingdoms', co-organized by Roland Foisner, Philippe Colas, David Evans and Katja Graumann. The conference presentations were postponed to 2021 (https://www.sebiology. org/events/event/seb-antwerp-2021) due to the impact of Covid-19, but these collected papers written in the summer and autumn of 2020 present the cross-kingdom insights and novel findings that were central to the aim of the meeting. The meeting is the 3rd in a series [1, 2] intended to highlight the immense value of sharing knowledge of the nucleus across kingdoms. Here we present a combination of review and original results and methods providing new insights into the field in a landmark year. Understanding the origins of the structural components of the nucleus underpins many of our efforts to advance understanding of mechanisms and function. This collection of papers provides significant insights – both across kingdoms [3] and in detailed reviews of the current state of knowledge in higher plants [4, 5]. One of the fascinations of studying the dynamic structure of the nucleus is the way in which a range of conserved functions are carried out by such a diversity of lineage-specific components. While a small number of highly conserved proteins point back to their presence in the Last Eukaryotic Common Ancestor, many show a surprising diversification and even functionally conserved proteins show a wide range of structural characteristics. Indeed, from this collection of papers, the reader can only wonder whether the statement of PadillaMeija et al. [3] that ‘findings suggest a rather surprising level of divergence associated with a structure that, in a very real sense, defines the eukaryotic cell’ is, in fact, an understatement. While recognizing the limitations imposed by the challenges of defining the nuclear proteome, Padilla-Meija and coworkers [3] provide detailed comparative insights into its evolution using carefully selected data from protozoans to mammals. Through a comparative analysis of previously described datasets from model systems and by expansion of this data, for instance, by searching using queries from Trypanosoma brucei, they provide a valuable coverage of nuclear constituents, structure and function, providing insights and a data set of great value for further exploration. Nuclear Envelope Associated (NEA) proteins provide particular challenges. Some are also found in other cellular locations, others are synthesized at the NE; others are multifunctional, with only a small part of their activity at the NE and many have only been characterized in one model organism while their functions in others are uncertain. There is much to be done! Two other papers in the collection expand the overview of Padilla-Meija to consider advances in knowledge of the plant nuclear prot","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2021.1883294","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25333017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical constraints in polymer modeling of chromatin associations with the nuclear periphery at kilobase scale. 在千碱基尺度上,染色质与核周边结合的聚合物建模中的物理限制。
Pub Date : 2021-12-01 DOI: 10.1080/19491034.2020.1868105
Annaël Brunet, Nicolas Destainville, Philippe Collas

Interactions of chromatin with the nuclear lamina imposes a radial genome distribution important for nuclear functions. How physical properties of chromatin affect these interactions is unclear. We used polymer simulations to model how physical parameters of chromatin affect its interaction with the lamina. Impact of polymer stiffness is greater than stretching on its configurations at the lamina; these are manifested as trains describing extended interactions, and loops describing desorbed regions . Conferring an attraction potential leads to persistent interaction and adsorption-desorption regimes manifested by fluctuations between trains and loops. These are modulated by polymer stiffness and stretching, with a dominant impact of stiffness on resulting structural configurations. We infer that flexible euchromatin is more prone to stochastic interactions with lamins than rigid heterochromatin characterizing constitutive LADs. Our models provide insights on the physical properties of chromatin as a polymer which affect the dynamics and patterns of interactions with the nuclear lamina.

染色质与核层的相互作用施加了对核功能重要的径向基因组分布。染色质的物理性质如何影响这些相互作用尚不清楚。我们使用聚合物模拟来模拟染色质的物理参数如何影响其与层的相互作用。聚合物的刚度比拉伸对其层位的影响更大;它们表现为描述扩展相互作用的列车,和描述解吸区域的循环。赋予吸引力势能导致持续的相互作用和吸附-解吸机制,表现为列车和环线之间的波动。这些是由聚合物的刚度和拉伸调节的,刚度对产生的结构构型有主要影响。我们推断,柔性的常染色质比刚性的异染色质更容易与层状蛋白随机相互作用。我们的模型提供了对染色质作为聚合物的物理特性的见解,这些特性会影响与核层相互作用的动力学和模式。
{"title":"Physical constraints in polymer modeling of chromatin associations with the nuclear periphery at kilobase scale.","authors":"Annaël Brunet,&nbsp;Nicolas Destainville,&nbsp;Philippe Collas","doi":"10.1080/19491034.2020.1868105","DOIUrl":"https://doi.org/10.1080/19491034.2020.1868105","url":null,"abstract":"<p><p>Interactions of chromatin with the nuclear lamina imposes a radial genome distribution important for nuclear functions. How physical properties of chromatin affect these interactions is unclear. We used polymer simulations to model how physical parameters of chromatin affect its interaction with the lamina. Impact of polymer stiffness is greater than stretching on its configurations at the lamina; these are manifested as trains describing extended interactions, and loops describing desorbed regions . Conferring an attraction potential leads to persistent interaction and adsorption-desorption regimes manifested by fluctuations between trains and loops. These are modulated by polymer stiffness and stretching, with a dominant impact of stiffness on resulting structural configurations. We infer that flexible euchromatin is more prone to stochastic interactions with lamins than rigid heterochromatin characterizing constitutive LADs. Our models provide insights on the physical properties of chromatin as a polymer which affect the dynamics and patterns of interactions with the nuclear lamina.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1868105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38811655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Stochastic gene expression and chromosome interactions in protecting the human active X from silencing by XIST. 随机基因表达和染色体相互作用在保护人类活性X免受XIST沉默中的作用。
Pub Date : 2021-12-01 DOI: 10.1080/19491034.2020.1850981
Barbara R Migeon

Mammals use X chromosome inactivation to compensate for the sex difference in numbers of X chromosomes. A relatively unexplored question is how the active X is protected from inactivation by its own XIST gene, the long non-coding RNA, which initiates silence of the inactive X.  Previous studies of autosomal duplications show that human chromosome 19 plays a critical role in protecting the active X. I proposed that it genetically interacts with the X chromosome to repress XIST function on the future active X.  Here, I show that the type of  chromosome 19 duplication influences the outcome of the interaction: the presence of three chromosome 19s is tolerated whereas duplications affecting only one chromosome 19 are not. The different outcomes have mechanistic implications for how chromosome 19 interacts with the future active X, pointing to a role for stochastic gene expression and possibly physical interaction.

哺乳动物利用X染色体失活来弥补X染色体数量上的性别差异。一个相对未被探索的问题是,活性X是如何被其自身的XIST基因保护而不被失活的,XIST基因是长链非编码RNA,它启动了失活X的沉默。先前对常染色体复制的研究表明,人类19号染色体在保护活性X中起着关键作用。我提出它与X染色体遗传相互作用以抑制未来活性X上的XIST功能。我表明19号染色体复制的类型影响相互作用的结果:3条19号染色体的存在是可以容忍的,而只影响一条19号染色体的复制则不能容忍。不同的结果对19号染色体如何与未来的活性X相互作用具有机制意义,指出了随机基因表达和可能的物理相互作用的作用。
{"title":"Stochastic gene expression and chromosome interactions in protecting the human active X from silencing by <i>XIST</i>.","authors":"Barbara R Migeon","doi":"10.1080/19491034.2020.1850981","DOIUrl":"https://doi.org/10.1080/19491034.2020.1850981","url":null,"abstract":"<p><p>Mammals use X chromosome inactivation to compensate for the sex difference in numbers of X chromosomes. A relatively unexplored question is how the active X is protected from inactivation by its own XIST gene, the long non-coding RNA, which initiates silence of the inactive X.  Previous studies of autosomal duplications show that human chromosome 19 plays a critical role in protecting the active X. I proposed that it genetically interacts with the X chromosome to repress XIST function on the future active X.  Here, I show that the type of  chromosome 19 duplication influences the outcome of the interaction: the presence of three chromosome 19s is tolerated whereas duplications affecting only one chromosome 19 are not. The different outcomes have mechanistic implications for how chromosome 19 interacts with the future active X, pointing to a role for stochastic gene expression and possibly physical interaction.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1850981","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38619639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Modeling the 3D genome of plants. 植物三维基因组建模
Pub Date : 2021-12-01 DOI: 10.1080/19491034.2021.1927503
Marco Di Stefano, Hans-Wilhelm Nützmann

Chromosomes are the carriers of inheritable traits and define cell function and development. This is not only based on the linear DNA sequence of chromosomes but also on the additional molecular information they are associated with, including the transcription machinery, histone modifications, and their three-dimensional folding. The synergistic application of experimental approaches and computer simulations has helped to unveil how these organizational layers of the genome interplay in various organisms. However, such multidisciplinary approaches are still rarely explored in the plant kingdom. Here, we provide an overview of our current knowledge on plant 3D genome organization and review recent efforts to integrate cutting-edge experiments from microscopy and next-generation sequencing approaches with theoretical models. Building on these recent approaches, we propose possible avenues to extend the application of theoretical modeling in the characterization of the 3D genome organization in plants.

染色体是遗传性状的载体,决定着细胞的功能和发育。这不仅基于染色体的线性 DNA 序列,还基于与染色体相关的其他分子信息,包括转录机制、组蛋白修饰及其三维折叠。实验方法和计算机模拟的协同应用有助于揭示基因组的这些组织层如何在各种生物体内相互作用。然而,这种多学科方法在植物界仍鲜有应用。在此,我们概述了目前有关植物三维基因组组织的知识,并回顾了最近将显微镜和下一代测序方法的尖端实验与理论模型相结合的努力。在这些最新方法的基础上,我们提出了在表征植物三维基因组组织时扩展理论建模应用的可能途径。
{"title":"Modeling the 3D genome of plants.","authors":"Marco Di Stefano, Hans-Wilhelm Nützmann","doi":"10.1080/19491034.2021.1927503","DOIUrl":"10.1080/19491034.2021.1927503","url":null,"abstract":"<p><p>Chromosomes are the carriers of inheritable traits and define cell function and development. This is not only based on the linear DNA sequence of chromosomes but also on the additional molecular information they are associated with, including the transcription machinery, histone modifications, and their three-dimensional folding. The synergistic application of experimental approaches and computer simulations has helped to unveil how these organizational layers of the genome interplay in various organisms. However, such multidisciplinary approaches are still rarely explored in the plant kingdom. Here, we provide an overview of our current knowledge on plant 3D genome organization and review recent efforts to integrate cutting-edge experiments from microscopy and next-generation sequencing approaches with theoretical models. Building on these recent approaches, we propose possible avenues to extend the application of theoretical modeling in the characterization of the 3D genome organization in plants.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39036374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nucleus (Austin, Tex.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1