The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.
{"title":"Monitoring antimalarial drug-resistance markers in Somalia.","authors":"Abdifatah Abdullahi Jalei, Kesara Na-Bangchang, Phunuch Muhamad, Wanna Chaijaroenkul","doi":"10.3347/PHD.22140","DOIUrl":"https://doi.org/10.3347/PHD.22140","url":null,"abstract":"<p><p>The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.</p>","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"61 1","pages":"78-83"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/40/bb/phd-22140.PMC10230660.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9543740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nagwa S M Aly, Hiroaki Matsumori, Thi Quyen Dinh, Akira Sato, Shin-Ichi Miyoshi, Kyung-Soo Chang, Hak Sun Yu, Fumie Kobayashi, Hye-Sook Kim
The discovery of new antimalarial drugs can be developed using asynchronized Plasmodium berghei malaria parasites in vivo in mice. Studies on a particular stage are also required to assess the effectiveness and mode of action of drugs. In this report, we used endoperoxide 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol (N-251) as a model antimalarial compound on P. chabaudi parasites. We examined the antimalarial effect of N-251 against ring-stage- and trophozoite-stage-rich P. chabaudi parasites and asynchronized P. berghei parasites using the 4-day suppressive test. The ED50 values were 27, 22, and 22 mg/kg, respectively, and the antimalarial activity of N-251 was verified in both rodent malaria parasites. To assess the stage-specific effect of N-251 in vivo, we evaluated the change of parasitemia and distribution of parasite stages using ring-stage- and trophozoite-stage-rich P. chabaudi parasites with one-day drug administration for one life cycle. We discovered that the parasitemias decreased after 13 and 9 hours post-treatment in the ring-stage- and trophozoite-stage-rich groups, respectively. Additionally, in the ring-stage-rich N-251 treated group, the ring-stage parasites hindered trophozoite parasite development. For the trophozoite-stage-rich N-251 treated group, the distribution of the trophozoite stage was maintained without a change in parasitemia until 9 hours. Because of these findings, it can be concluded that N-251 suppressed the trophozoite stage but not the ring stage. We report for the first time that N-251 specifically suppresses the trophozoite stage using P. chabaudi in mice. The results show that P. chabaudi is a reliable model for the characterization of stage-specific antimalarial effects.
{"title":"Antimalarial effect of synthetic endoperoxide on synchronized Plasmodium chabaudi infected mice.","authors":"Nagwa S M Aly, Hiroaki Matsumori, Thi Quyen Dinh, Akira Sato, Shin-Ichi Miyoshi, Kyung-Soo Chang, Hak Sun Yu, Fumie Kobayashi, Hye-Sook Kim","doi":"10.3347/PHD.22119","DOIUrl":"https://doi.org/10.3347/PHD.22119","url":null,"abstract":"<p><p>The discovery of new antimalarial drugs can be developed using asynchronized Plasmodium berghei malaria parasites in vivo in mice. Studies on a particular stage are also required to assess the effectiveness and mode of action of drugs. In this report, we used endoperoxide 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol (N-251) as a model antimalarial compound on P. chabaudi parasites. We examined the antimalarial effect of N-251 against ring-stage- and trophozoite-stage-rich P. chabaudi parasites and asynchronized P. berghei parasites using the 4-day suppressive test. The ED50 values were 27, 22, and 22 mg/kg, respectively, and the antimalarial activity of N-251 was verified in both rodent malaria parasites. To assess the stage-specific effect of N-251 in vivo, we evaluated the change of parasitemia and distribution of parasite stages using ring-stage- and trophozoite-stage-rich P. chabaudi parasites with one-day drug administration for one life cycle. We discovered that the parasitemias decreased after 13 and 9 hours post-treatment in the ring-stage- and trophozoite-stage-rich groups, respectively. Additionally, in the ring-stage-rich N-251 treated group, the ring-stage parasites hindered trophozoite parasite development. For the trophozoite-stage-rich N-251 treated group, the distribution of the trophozoite stage was maintained without a change in parasitemia until 9 hours. Because of these findings, it can be concluded that N-251 suppressed the trophozoite stage but not the ring stage. We report for the first time that N-251 specifically suppresses the trophozoite stage using P. chabaudi in mice. The results show that P. chabaudi is a reliable model for the characterization of stage-specific antimalarial effects.</p>","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"61 1","pages":"33-41"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/49/66/phd-22119.PMC10230654.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9549908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01Epub Date: 2023-02-22DOI: 10.3347/PHD.00001
Yoon Kong
{"title":"Journey to the next horizon.","authors":"Yoon Kong","doi":"10.3347/PHD.00001","DOIUrl":"10.3347/PHD.00001","url":null,"abstract":"","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"61 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/11/e7/phd-00001.PMC10230658.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9555382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The genus Babesia includes parasites that can induce human and animal babesiosis, which are common in tropical and subtropical regions of the world. The gut microbiota has not been examined in hamsters infected by Babesia duncani. Red blood cells infected with B. duncani were injected into hamsters through intraperitoneal route. To evaluate the changes in gut microbiota, DNAs were extracted from small intestinal contents, acquired from hamsters during disease development. Then, the V4 region of the 16S rRNA gene of bacteria was sequenced using the Illumina sequencing platform. Gut microbiota alternation and composition were assessed according to the sequencing data, which were clustered with >97.0% sequence similarity to create amplicon sequence variants (ASVs). Bacteroidetes and Firmicutes were made up of the major components of the gut microbiota in all samples. The abundance of Bacteroidetes elevated after B. duncani infection than the B. duncani-free group, while Firmicutes and Desulfobacterota declined. Alpha diversity analysis demonstrated that the shown ASVs were substantially decreased in the highest parasitemia group than B. duncani-free and lower parasitemia groups. Potential biomarkers were discovered by Linear discriminant analysis Effect Size (LEfSe) analysis, which demonstrated that several bacterial families (including Muribaculaceae, Desulfovibrionaceae, Oscillospiraceae, Helicobacteraceae, Clostridia UGG014, Desulfovibrionaceae, and Lachnospiraceae) were potential biomarkers in B. duncani-infected hamsters. This research demonstrated that B. duncani infectious can modify the gut microbiota of hamsters.
{"title":"Babeisa duncani infection alters gut microbiota profile in hamsters.","authors":"Shangdi Zhang, Jinming Wang, Xiaoyun Li, Yanbo Wang, Yueli Nian, Chongge You, Dekui Zhang, Guiquan Guan","doi":"10.3347/PHD.22142","DOIUrl":"https://doi.org/10.3347/PHD.22142","url":null,"abstract":"<p><p>The genus Babesia includes parasites that can induce human and animal babesiosis, which are common in tropical and subtropical regions of the world. The gut microbiota has not been examined in hamsters infected by Babesia duncani. Red blood cells infected with B. duncani were injected into hamsters through intraperitoneal route. To evaluate the changes in gut microbiota, DNAs were extracted from small intestinal contents, acquired from hamsters during disease development. Then, the V4 region of the 16S rRNA gene of bacteria was sequenced using the Illumina sequencing platform. Gut microbiota alternation and composition were assessed according to the sequencing data, which were clustered with >97.0% sequence similarity to create amplicon sequence variants (ASVs). Bacteroidetes and Firmicutes were made up of the major components of the gut microbiota in all samples. The abundance of Bacteroidetes elevated after B. duncani infection than the B. duncani-free group, while Firmicutes and Desulfobacterota declined. Alpha diversity analysis demonstrated that the shown ASVs were substantially decreased in the highest parasitemia group than B. duncani-free and lower parasitemia groups. Potential biomarkers were discovered by Linear discriminant analysis Effect Size (LEfSe) analysis, which demonstrated that several bacterial families (including Muribaculaceae, Desulfovibrionaceae, Oscillospiraceae, Helicobacteraceae, Clostridia UGG014, Desulfovibrionaceae, and Lachnospiraceae) were potential biomarkers in B. duncani-infected hamsters. This research demonstrated that B. duncani infectious can modify the gut microbiota of hamsters.</p>","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"61 1","pages":"42-52"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/05/11/phd-22142.PMC10230653.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9555378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seogwon Lee, Myung-Hee Yi, Yun Soo Jang, Jun Ho Choi, Myungjun Kim, Soo Lim Kim, Tai-Soon Yong, Ju Yeong Kim
Cockroaches can cause allergic sensitization in humans via contact with their feces or frass. Antibiotics can affect concentration of major allergen and total bacteria production in German cockroaches (Blattella germanica). This study examined the ability of antibiotic-treated German cockroaches to induce allergic airway inflammation and the effect of antibiotics on their lipopolysaccharide and Bla g1, 2, and 5 expression levels. Specifically, we measured the ability of German cockroach extract (with or without prior antibiotic exposure) to induce allergic inflammation in human bronchial epithelial cells and a mouse model of asthma. Bacterial 16S rRNA and lipopolysaccharide levels were lower in ampicillin-treated cockroaches than in the control group. The Bla g1, Bla g2, and Bla g5 expression in ampicillin-treated cockroaches decreased at both the protein and RNA levels. In human bronchial epithelial cell lines BEAS-2B exposed to the ampicillin-treated extract, expression levels of interleukin-6 and interleukin-8 were lower than that in the control group. The total cell count and eosinophil count in bronchoalveolar lavage fluid was also lower in mice exposed to the ampicillin-treated extract than in those exposed to normal cockroach extract. Mouse lung histopathology showed reduced immune cell infiltration and mucus production in the ampicillin group. Our results showed that ampicillin treatment reduced the symbiont bacterial population and major allergen levels in German cockroaches, leading to reduced airway inflammation in mice. These results can facilitate the preparation of protein extracts for immunotherapy or diagnostics applications.
{"title":"Ampicillin treated German cockroach extract leads to reduced inflammation in human lung cells and a mouse model of Asthma.","authors":"Seogwon Lee, Myung-Hee Yi, Yun Soo Jang, Jun Ho Choi, Myungjun Kim, Soo Lim Kim, Tai-Soon Yong, Ju Yeong Kim","doi":"10.3347/PHD.22147","DOIUrl":"https://doi.org/10.3347/PHD.22147","url":null,"abstract":"<p><p>Cockroaches can cause allergic sensitization in humans via contact with their feces or frass. Antibiotics can affect concentration of major allergen and total bacteria production in German cockroaches (Blattella germanica). This study examined the ability of antibiotic-treated German cockroaches to induce allergic airway inflammation and the effect of antibiotics on their lipopolysaccharide and Bla g1, 2, and 5 expression levels. Specifically, we measured the ability of German cockroach extract (with or without prior antibiotic exposure) to induce allergic inflammation in human bronchial epithelial cells and a mouse model of asthma. Bacterial 16S rRNA and lipopolysaccharide levels were lower in ampicillin-treated cockroaches than in the control group. The Bla g1, Bla g2, and Bla g5 expression in ampicillin-treated cockroaches decreased at both the protein and RNA levels. In human bronchial epithelial cell lines BEAS-2B exposed to the ampicillin-treated extract, expression levels of interleukin-6 and interleukin-8 were lower than that in the control group. The total cell count and eosinophil count in bronchoalveolar lavage fluid was also lower in mice exposed to the ampicillin-treated extract than in those exposed to normal cockroach extract. Mouse lung histopathology showed reduced immune cell infiltration and mucus production in the ampicillin group. Our results showed that ampicillin treatment reduced the symbiont bacterial population and major allergen levels in German cockroaches, leading to reduced airway inflammation in mice. These results can facilitate the preparation of protein extracts for immunotherapy or diagnostics applications.</p>","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"61 1","pages":"60-71"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/99/d9/phd-22147.PMC10230651.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9555379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-31DOI: 10.1525/9780520945784-009
{"title":"5. Parasites in Control","authors":"","doi":"10.1525/9780520945784-009","DOIUrl":"https://doi.org/10.1525/9780520945784-009","url":null,"abstract":"","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"53 26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77961480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-31DOI: 10.1525/9780520945784-010
{"title":"6. In the House of Mirrors","authors":"","doi":"10.1525/9780520945784-010","DOIUrl":"https://doi.org/10.1525/9780520945784-010","url":null,"abstract":"","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83199309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}