The detection of the region of interests (ROIs) on Whole Slide Images (WSIs) is one of the primary steps in computer-aided cancer diagnosis and grading. Early and accurate identification of invasive cancer regions in WSI is critical in the improvement of breast cancer diagnosis and further improvements in patient survival rates. However, invasive cancer ROI segmentation is a challenging task on WSI because of the low contrast of invasive cancer cells and their high similarity in terms of appearance, to non-invasive regions. In this paper, we propose a CNN based architecture for generating ROIs through segmentation. The network tackles the constraints of data-driven learning and working with very low-resolution WSI data in the detection of invasive breast cancer. Our proposed approach is based on transfer learning and the use of dilated convolutions. We propose a highly modified version of U-Net based auto-encoder, which takes as input an entire WSI with a resolution of 320×320. The network was trained on low-resolution WSI from four different data cohorts and has been tested for inter as well as intra- dataset variance. The proposed architecture shows significant improvements in terms of accuracy for the detection of invasive breast cancer regions.
Seizure detection is a major goal for simplifying the workflow of clinicians working on EEG records. Current algorithms can only detect seizures effectively for patients already presented to the classifier. These algorithms are hard to generalize outside the initial training set without proper regularization and fail to capture seizures from the larger population. We proposed a data processing pipeline for seizure detection on an intra-patient dataset from the world's largest public EEG seizure corpus. We created spatially and session invariant features by forcing our networks to rely less on exact combinations of channels and signal amplitudes, but instead to learn dependencies towards seizure detection. For comparison, the baseline results without any additional regularization on a deep learning model achieved an F1 score of 0.544. By using random rearrangements of channels on each minibatch to force the network to generalize to other combinations of channels, we increased the F1 score to 0.629. By using random rescale of the data within a small range, we further increased the F1 score to 0.651 for our best model. Additionally, we applied adversarial multi-task learning and achieved similar results. We observed that session and patient specific dependencies were causing overfitting of deep neural networks, and the most overfitting models learnt features specific only to the EEG data presented. Thus, we created networks with regularization that the deep learning did not learn patient and session-specific features. We are the first to use random rearrangement, random rescale, and adversarial multitask learning to regularize intra-patient seizure detection and have increased sensitivity to 0.86 comparing to baseline study.
Whole-slide imaging (WSI) is the digitization of conventional glass slides. Automatic computer-aided diagnosis (CAD) based on WSI enables digital pathology and the integration of pathology with other data like genomic biomarkers. Numerous computational algorithms have been developed for WSI, with most of them taking the image patches cropped from the highest resolution as the input. However, these models exploit only the local information within each patch and lost the connections between the neighboring patches, which may contain important context information. In this paper, we propose a novel multi-scale convolutional network (ConvNet) to utilize the built-in image pyramids of WSI. For the concentric image patches cropped at the same location of different resolution levels, we hypothesize the extra input images from lower magnifications will provide context information to enhance the prediction of patch images. We build corresponding ConvNets for feature representation and then combine the extracted features by 1) late fusion: concatenation or averaging the feature vectors before performing classification, 2) early fusion: merge the ConvNet feature maps. We have applied the multi-scale networks to a benchmark breast cancer WSI dataset. Extensive experiments have demonstrated that our multiscale networks utilizing the WSI image pyramids can achieve higher accuracy for the classification of breast cancer. The late fusion method by taking the average of feature vectors reaches the highest accuracy (81.50%), which is promising for the application of multi-scale analysis of WSI.
Using a wearable electromyography (EMG) and an accelerometer sensor, classification of subject activity state (i.e., walking, sitting, standing, or ankle circles) enables detection of prolonged "negative" activity states in which the calf muscles do not facilitate blood flow return via the deep veins of the leg. By employing machine learning classification on a multi-sensor wearable device, we are able to classify human subject state between "positive" and "negative" activities, and among each activity state, with greater than 95% accuracy. Some negative activity states cannot be accurately discriminated due to their similar presentation from an accelerometer (i.e., standing vs. sitting); however, it is desirable to separate these states to better inform the risk of developing a Deep Vein Thrombosis (DVT). Augmentation with a wearable EMG sensor improves separability of these activities by 30%.