The design of a Model Predictive Control (MPC) strategy for the closed-loop operation of an Artificial Pancreas (AP) to treat type 1 diabetes mellitus is considered. The contribution of this paper is to propose a velocity-weighting mechanism, within an MPC problem's cost function, that facilitates penalizing predicted hyperglycemic blood-glucose excursions based on the predicted blood-glucose levels' rates of change. The method provides the control designer some freedom for independently shaping the AP's uphill versus downhill responses to hyperglycemic excursions; of particular emphasis in this paper is the downhill response. The proposal aims to tackle the dangerous issue of controller-induced hypoglycemia following large hyperglycemic excursions, e.g., after meals, that results in part due to the large delays of subcutaneous glucose sensing and subcutaneous insulin infusion - the case considered here. The efficacy of the proposed approach is demonstrated using the University of Virginia/Padova metabolic simulator with both unannounced and announced meal scenarios.
The design of a Model Predictive Control (MPC) strategy for the closed-loop operation of an Artificial Pancreas (AP) for treating Type 1 Diabetes Mellitus (T1DM) is considered in this paper. The contribution of this paper is to propose two changes to the usual structure of the MPC problems typically considered for control of an AP. The first proposed change is to replace the symmetric, quadratic input cost function with an asymmetric, quadratic function, allowing negative control inputs to be penalized less than positive ones. This facilitates rapid pump-suspensions in response to predicted hypoglycemia, while simultaneously permitting the design of a conservative response to hyperglycemia. The second proposed change is to penalize the velocity of the predicted glucose level, where this velocity penalty is based on a cost function that is again asymmetric, but additionally state-dependent. This facilitates the accelerated response to acute, persistent hyperglycemic events, e.g., as induced by unannounced meals. The novel functionality is demonstrated by numerical examples, and the efficacy of the proposed MPC strategy verified using the University of Padova/Virginia metabolic simulator.
Control engineering offers a systematic and efficient method to optimize the effectiveness of individually tailored treatment and prevention policies known as adaptive or "just-in-time" behavioral interventions. The nature of these interventions requires assigning dosages at categorical levels, which has been addressed in prior work using Mixed Logical Dynamical (MLD)-based hybrid model predictive control (HMPC) schemes. However, certain requirements of adaptive behavioral interventions that involve sequential decision making have not been comprehensively explored in the literature. This paper presents an extension of the traditional MLD framework for HMPC by representing the requirements of sequential decision policies as mixed-integer linear constraints. This is accomplished with user-specified dosage sequence tables, manipulation of one input at a time, and a switching time strategy for assigning dosages at time intervals less frequent than the measurement sampling interval. A model developed for a gestational weight gain (GWG) intervention is used to illustrate the generation of these sequential decision policies and their effectiveness for implementing adaptive behavioral interventions involving multiple components.
The chronic, relapsing nature of tobacco use represents a major challenge in smoking cessation treatment. Recently, novel intervention paradigms have emerged that seek to adjust treatments over time in order to meet a patient's changing needs. This article demonstrates that Hybrid Model Predictive Control (HMPC) offers an appealing framework for designing these optimized, time-varying smoking cessation interventions. HMPC is a particularly appropriate approach as it recognizes that intervention doses must be assigned in predetermined, discrete units while retaining receding-horizon, constraint-handling, and combined feedback and feedforward capabilities. Specifically, an intervention algorithm is developed here in which counseling and two pharmacotherapies are manipulated to reduce daily smoking and craving levels. The potential usefulness of such an intervention is illustrated through simulated treatment of a quit attempt in a hypothetical patient, which highlights that prioritizing reduction in craving over total daily smoking levels significantly reduces craving levels, suppresses relapse, and successfully rejects time-varying disturbances such as stress, all while adhering to several practical operational constraints and resource use considerations.

