Pub Date : 2023-08-01Epub Date: 2023-11-21DOI: 10.1115/detc2023-116793
Huan Liu, Qiaode Jeffrey Ge, Mark P Langer
Kinematics is most commonly about the motion of unbounded spaces. This paper deals with the kinematics of bounded shapes in a plane. This paper studies the problem of motion interpolation of a planar object with its shape taken into consideration. It applies and extends a shape dependent distance measure between two positions in the context of motion interpolation. Instead of using a fixed reference frame, a shape-dependent inertia frame of reference is used for formulating the distance between positions of a rigid object in a plane. The resulting distance function is then decomposed in two orthogonal directions and is used to formulate an interpolating function for the distance functions in these two directions. This leads to a shape dependent interpolation of translational components of a planar motion. In difference to the original concept of Kazerounian and Rastegar that comes with a shape dependent measure of the angular motion, it is assumed in this paper that the angular motion is shape independent as the angular metric is dimensionless. The resulting distance measure is not only a combination of translation and rotation parameters but also depends on the area moments of inertia of the object. It derives the explicit expressions for decomposing the shape dependent distance in two orthogonal directions, which is then used to obtain shape dependent motion interpolants in these directions. The resulting interpolants have similarities to the well-known spherical linear interpolants widely used in computer graphics in that they are defined using sinusoidal functions instead of linear interpolation in Euclidean space. The path of the interpolating motion can be adjusted by different choice of shape parameters. Examples are provided to illustrate the effect of object shapes on the resulting interpolating motions.
{"title":"SHAPE DEPENDENT MOTION INTERPOLANTS FOR PLANAR OBJECTS.","authors":"Huan Liu, Qiaode Jeffrey Ge, Mark P Langer","doi":"10.1115/detc2023-116793","DOIUrl":"10.1115/detc2023-116793","url":null,"abstract":"<p><p>Kinematics is most commonly about the motion of unbounded spaces. This paper deals with the kinematics of bounded shapes in a plane. This paper studies the problem of motion interpolation of a planar object with its shape taken into consideration. It applies and extends a shape dependent distance measure between two positions in the context of motion interpolation. Instead of using a fixed reference frame, a shape-dependent inertia frame of reference is used for formulating the distance between positions of a rigid object in a plane. The resulting distance function is then decomposed in two orthogonal directions and is used to formulate an interpolating function for the distance functions in these two directions. This leads to a shape dependent interpolation of translational components of a planar motion. In difference to the original concept of Kazerounian and Rastegar that comes with a shape dependent measure of the angular motion, it is assumed in this paper that the angular motion is shape independent as the angular metric is dimensionless. The resulting distance measure is not only a combination of translation and rotation parameters but also depends on the area moments of inertia of the object. It derives the explicit expressions for decomposing the shape dependent distance in two orthogonal directions, which is then used to obtain shape dependent motion interpolants in these directions. The resulting interpolants have similarities to the well-known spherical linear interpolants widely used in computer graphics in that they are defined using sinusoidal functions instead of linear interpolation in Euclidean space. The path of the interpolating motion can be adjusted by different choice of shape parameters. Examples are provided to illustrate the effect of object shapes on the resulting interpolating motions.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"8 47","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minimally invasive endovascular therapy (MIET) is an innovative technique that utilizes percutaneous access and transcatheter implantation of medical devices to treat vascular diseases. However, conventional devices often face limitations such as incomplete or suboptimal treatment, leading to issues like recanalization in brain aneurysms, endoleaks in aortic aneurysms, and paravalvular leaks in cardiac valves. In this study, we introduce a new metastructure design for MIET employing re-entrant honeycomb structures with negative Poisson's ratio (NPR), which are initially designed through topology optimization and subsequently mapped onto a cylindrical surface. Using ferromagnetic soft materials, we developed structures with adjustable mechanical properties called magnetically activated structures (MAS). These magnetically activated structures can change shape under noninvasive magnetic fields, letting them fit against blood vessel walls to fix leaks or movement issues. The soft ferromagnetic materials allow the stent design to be remotely controlled, changed, and rearranged using external magnetic fields. This offers accurate control over stent placement and positioning inside blood vessels. We performed magneto-mechanical simulations to evaluate the proposed design's performance. Experimental tests were conducted on prototype beams to assess their bending and torsional responses to external magnetic fields. The simulation results were compared with experimental data to determine the accuracy of the magneto-mechanical simulation model for ferromagnetic soft materials. After validating the model, it was used to analyze the deformation behavior of the plane matrix and cylindrical structure designs of the Negative Poisson's Ratio (NPR) metamaterial. The results indicate that the plane matrix NPR metamaterial design exhibits concurrent vertical and horizontal expansion when subjected to an external magnetic field. In contrast, the cylindrical structure demonstrates simultaneous axial and radial expansion under the same conditions. The preliminary findings demonstrate the considerable potential and practicality of the proposed methodology in the development of magnetically activated MIET devices, which offer biocompatibility, a diminished risk of adverse reactions, and enhanced therapeutic outcomes. Integrating ferromagnetic soft materials into mechanical metastructures unlocks promising opportunities for designing stents with adjustable mechanical properties, propelling the field towards more sophisticated minimally invasive vascular interventions.
微创血管内治疗(MIET)是一种利用经皮入路和经导管植入医疗设备治疗血管疾病的创新技术。然而,传统设备往往面临治疗不彻底或治疗效果不理想等局限性,导致脑动脉瘤再闭塞、主动脉瘤内漏和心脏瓣膜瓣旁漏等问题。在这项研究中,我们为 MIET 引入了一种新的元结构设计,采用了具有负泊松比 (NPR) 的重入式蜂窝结构,这种结构最初是通过拓扑优化设计的,随后被映射到圆柱表面上。利用铁磁软材料,我们开发出了具有可调机械特性的结构,称为磁激活结构(MAS)。这些磁激活结构可在无创磁场下改变形状,使其贴合血管壁,以修复泄漏或移动问题。软铁磁材料可通过外部磁场远程控制、改变和重新排列支架设计。这样就能精确控制支架在血管内的放置和定位。我们进行了磁力学模拟,以评估拟议设计的性能。对原型梁进行了实验测试,以评估其对外部磁场的弯曲和扭转响应。模拟结果与实验数据进行了比较,以确定铁磁软材料磁力学模拟模型的准确性。在对模型进行验证后,该模型被用于分析负泊松比(NPR)超材料的平面矩阵和圆柱结构设计的变形行为。结果表明,当受到外部磁场作用时,平面矩阵 NPR 超材料设计会同时表现出垂直和水平方向的膨胀。相比之下,圆柱形结构在相同条件下同时表现出轴向和径向膨胀。初步研究结果表明,所提出的方法在开发磁激活 MIET 设备方面具有相当大的潜力和实用性,这种设备具有生物兼容性,可降低不良反应风险并提高治疗效果。将铁磁性软材料整合到机械转移结构中,为设计具有可调机械特性的支架带来了大好机会,推动该领域向更复杂的微创血管介入方向发展。
{"title":"DESIGNING PROGRAMMABLE FERROMAGNETIC SOFT METASTRUCTURES FOR MINIMALLY INVASIVE ENDOVASCULAR THERAPY.","authors":"Ran Zhuang, Jiawei Tian, Apostolos Tassiopoulos, Chander Sadasivan, Xianfeng Gu, Shikui Chen","doi":"10.1115/DETC2023-116342","DOIUrl":"10.1115/DETC2023-116342","url":null,"abstract":"<p><p>Minimally invasive endovascular therapy (MIET) is an innovative technique that utilizes percutaneous access and transcatheter implantation of medical devices to treat vascular diseases. However, conventional devices often face limitations such as incomplete or suboptimal treatment, leading to issues like recanalization in brain aneurysms, endoleaks in aortic aneurysms, and paravalvular leaks in cardiac valves. In this study, we introduce a new metastructure design for MIET employing re-entrant honeycomb structures with negative Poisson's ratio (NPR), which are initially designed through topology optimization and subsequently mapped onto a cylindrical surface. Using ferromagnetic soft materials, we developed structures with adjustable mechanical properties called magnetically activated structures (MAS). These magnetically activated structures can change shape under noninvasive magnetic fields, letting them fit against blood vessel walls to fix leaks or movement issues. The soft ferromagnetic materials allow the stent design to be remotely controlled, changed, and rearranged using external magnetic fields. This offers accurate control over stent placement and positioning inside blood vessels. We performed magneto-mechanical simulations to evaluate the proposed design's performance. Experimental tests were conducted on prototype beams to assess their bending and torsional responses to external magnetic fields. The simulation results were compared with experimental data to determine the accuracy of the magneto-mechanical simulation model for ferromagnetic soft materials. After validating the model, it was used to analyze the deformation behavior of the plane matrix and cylindrical structure designs of the Negative Poisson's Ratio (NPR) metamaterial. The results indicate that the plane matrix NPR metamaterial design exhibits concurrent vertical and horizontal expansion when subjected to an external magnetic field. In contrast, the cylindrical structure demonstrates simultaneous axial and radial expansion under the same conditions. The preliminary findings demonstrate the considerable potential and practicality of the proposed methodology in the development of magnetically activated MIET devices, which offer biocompatibility, a diminished risk of adverse reactions, and enhanced therapeutic outcomes. Integrating ferromagnetic soft materials into mechanical metastructures unlocks promising opportunities for designing stents with adjustable mechanical properties, propelling the field towards more sophisticated minimally invasive vascular interventions.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"2023 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel index finger exoskeleton mechanism for patients who suffer from brachial plexus injuries, which takes advantage of our previously proposed rigid coupling hybrid mechanism (RCHM) concept used for robotic tail mechanisms. The core idea of this concept is to drive the (i+1)-th link using the motions of the i-th link, instead of the traditional way of transmitting motion directly from the base. This specific configuration allows designing a single degree of freedom (DOF) bending mechanism using a low-profile rack and pinion mechanism and makes the proposed exoskeleton system compact, lightweight, and portable, which are highly desired features for daily usages of exoskeleton gloves. The mechanism is optimized to mimic the grasping motions of human fingers and the sensitivity analysis of its critical design variables is then conducted to explore the performance of the optimization results. The results show that for the current design, the tip position accuracy is mainly affected by the distance between the rack and the corresponding joints. A proof-of-concept prototype was built to verify the novel mobility of the proposed mechanism and to evaluate its performance on a human finger. The index finger exoskeleton experiments demonstrate the new mechanism's ability to grasp small objects.
{"title":"DESIGN, ANALYSIS, AND PROTOTYPING OF A NOVEL SINGLE DEGREE-OF-FREEDOM INDEX FINGER EXOSKELETON MECHANISM.","authors":"Wenda Xu, Yujiong Liu, Pinhas Ben-Tzvi","doi":"10.1115/detc2022-89625","DOIUrl":"https://doi.org/10.1115/detc2022-89625","url":null,"abstract":"<p><p>This paper presents a novel index finger exoskeleton mechanism for patients who suffer from brachial plexus injuries, which takes advantage of our previously proposed rigid coupling hybrid mechanism (RCHM) concept used for robotic tail mechanisms. The core idea of this concept is to drive the (<i>i</i>+1)-th link using the motions of the <i>i</i>-th link, instead of the traditional way of transmitting motion directly from the base. This specific configuration allows designing a single degree of freedom (DOF) bending mechanism using a low-profile rack and pinion mechanism and makes the proposed exoskeleton system compact, lightweight, and portable, which are highly desired features for daily usages of exoskeleton gloves. The mechanism is optimized to mimic the grasping motions of human fingers and the sensitivity analysis of its critical design variables is then conducted to explore the performance of the optimization results. The results show that for the current design, the tip position accuracy is mainly affected by the distance between the rack and the corresponding joints. A proof-of-concept prototype was built to verify the novel mobility of the proposed mechanism and to evaluate its performance on a human finger. The index finger exoskeleton experiments demonstrate the new mechanism's ability to grasp small objects.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"7 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731514/pdf/nihms-1854350.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10729959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunfei Guo, Wenda Xu, Sarthak Pradhan, Cesar Bravo, Pinhas Ben-Tzvi
Efficient human-machine interface (HMI) for exoskeletons remains an active research topic, where sample methods have been proposed including using computer vision, EEG (electroencephalogram), and voice recognition. However, some of these methods lack sufficient accuracy, security, and portability. This paper proposes a HMI referred as integrated trigger-word configurable voice activation and speaker verification system (CVASV). The CVASV system is designed for embedded systems with limited computing power that can be applied to any exoskeleton platform. The CVASV system consists of two main sections, including an API based voice activation section and a deep learning based text-independent voice verification section. These two sections are combined into a system that allows the user to configure the activation trigger-word and verify the user's command in real-time.
{"title":"INTEGRATED AND CONFIGURABLE VOICE ACTIVATION AND SPEAKER VERIFICATION SYSTEM FOR A ROBOTIC EXOSKELETON GLOVE.","authors":"Yunfei Guo, Wenda Xu, Sarthak Pradhan, Cesar Bravo, Pinhas Ben-Tzvi","doi":"10.1115/detc2020-22365","DOIUrl":"https://doi.org/10.1115/detc2020-22365","url":null,"abstract":"<p><p>Efficient human-machine interface (HMI) for exoskeletons remains an active research topic, where sample methods have been proposed including using computer vision, EEG (electroencephalogram), and voice recognition. However, some of these methods lack sufficient accuracy, security, and portability. This paper proposes a HMI referred as integrated trigger-word configurable voice activation and speaker verification system (CVASV). The CVASV system is designed for embedded systems with limited computing power that can be applied to any exoskeleton platform. The CVASV system consists of two main sections, including an API based voice activation section and a deep learning based text-independent voice verification section. These two sections are combined into a system that allows the user to configure the activation trigger-word and verify the user's command in real-time.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"10 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726174/pdf/nihms-1854345.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10321675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-01Epub Date: 2020-11-03DOI: 10.1115/detc2020-22569
Q J Ge, Zihan Yu, Mark Langer
This objective of this paper is to develop a dual quaternion based method for estimating target volumes in radiation therapy for head and neck cancer. Inaccuracies in radiation targeting are responsible for incidental exposure of healthy adjacent tissues, causing significant morbidity and mortality. This paper focuses on inaccuracies incurred when a tumor is displaced during treatment. To address this problem, the clinical target must be expanded to cover the region through which the tumor might move. The resulting expanded target is known as the Planning Target Volume (PTV). In the current practice, the rotational components of displacements are neglected, producing planning target volumes that either miss the true target motion or are larger than needed to cover the target path. By using the dual quaternion based kinematic formulation, this paper represents and captures both translational and rotational inaccuracies. It then presents a framework for calculating the PTV swept out by the target as it shifts within its range of translations and rotations.
{"title":"A DUAL QUATERNION BASED METHOD FOR ESTIMATING MARGINS FOR PLANNING TARGET VOLUMES IN RADIOTHERAPY.","authors":"Q J Ge, Zihan Yu, Mark Langer","doi":"10.1115/detc2020-22569","DOIUrl":"https://doi.org/10.1115/detc2020-22569","url":null,"abstract":"<p><p>This objective of this paper is to develop a dual quaternion based method for estimating target volumes in radiation therapy for head and neck cancer. Inaccuracies in radiation targeting are responsible for incidental exposure of healthy adjacent tissues, causing significant morbidity and mortality. This paper focuses on inaccuracies incurred when a tumor is displaced during treatment. To address this problem, the clinical target must be expanded to cover the region through which the tumor might move. The resulting expanded target is known as the Planning Target Volume (PTV). In the current practice, the rotational components of displacements are neglected, producing planning target volumes that either miss the true target motion or are larger than needed to cover the target path. By using the dual quaternion based kinematic formulation, this paper represents and captures both translational and rotational inaccuracies. It then presents a framework for calculating the PTV swept out by the target as it shifts within its range of translations and rotations.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"2020 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103220/pdf/nihms-1698350.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38966219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenda Xu, Sarthak Pradhan, Yunfei Guo, Cesar Bravo, Pinhas Ben-Tzvi
This paper presents the design of an exoskeleton glove system for people who suffer from the brachial plexus injuries in an effort to restore their lost grasping functionality. The robotic system consists of an embedded controller and a portable glove system. The glove system consists of Linear Series Elastic Actuators (SEA), Rotary SEA and optimized finger linkages to provide motion to each finger and a coupled motion of the hand and the wrist. The design is based on various functionality requirements such as being lightweight and portable for activities of daily living, especially for grasping. The contact force at each fingertip and bending angle of each finger are measured for future implementation of intelligent control algorithms for autonomous grasping. To provide better flexibility and comfort for the users, abduction and adduction of each finger as well as flexion of the thumb were taken into consideration in the design. The glove system is adjustable for different hand sizes. The micro-controllers and batteries are integrated on the forearm in order to provide a completely portable design solution.
{"title":"A NOVEL DESIGN OF A ROBOTIC GLOVE SYSTEM FOR PATIENTS WITH BRACHIAL PLEXUS INJURIES.","authors":"Wenda Xu, Sarthak Pradhan, Yunfei Guo, Cesar Bravo, Pinhas Ben-Tzvi","doi":"10.1115/detc2020-22348","DOIUrl":"https://doi.org/10.1115/detc2020-22348","url":null,"abstract":"<p><p>This paper presents the design of an exoskeleton glove system for people who suffer from the brachial plexus injuries in an effort to restore their lost grasping functionality. The robotic system consists of an embedded controller and a portable glove system. The glove system consists of Linear Series Elastic Actuators (SEA), Rotary SEA and optimized finger linkages to provide motion to each finger and a coupled motion of the hand and the wrist. The design is based on various functionality requirements such as being lightweight and portable for activities of daily living, especially for grasping. The contact force at each fingertip and bending angle of each finger are measured for future implementation of intelligent control algorithms for autonomous grasping. To provide better flexibility and comfort for the users, abduction and adduction of each finger as well as flexion of the thumb were taken into consideration in the design. The glove system is adjustable for different hand sizes. The micro-controllers and batteries are integrated on the forearm in order to provide a completely portable design solution.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"10 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726175/pdf/nihms-1854342.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10364151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susan S Xu, Zhipeng Lei, Ziqing Zhuang, Michael Bergman
In surgical settings, infectious particulate wound contamination is a recognized cause of post-operative infections. Powered air-purifying respirators (PAPRs) are widely used by healthcare workers personal protection against infectious aerosols. Healthcare infection preventionists have expressed concern about the possibility that infectious particles expelled from PAPR exhalation channels could lead to healthcare associated infections, especially in operative settings where sterile procedural technique is emphasized. This study used computational fluid dynamics (CFD) modeling to simulate and visualize the distribution of particles exhaled by the PAPR wearer. In CFD simulations, the outward release of the exhaled particles, i.e., ratio of exhaled particle concentration outside the PAPR to that of inside the PAPR, was determined. This study also evaluated the effect of particle sizes, supplied air flow rates, and breathing work rates on outward leakage. This simulation study for the headform and loose-fitting PAPR system included the following four main steps: (1) preprocessing (establishing a geometrical model of a headform wearing a loose-fitting PAPR by capturing a 3D image), (2) defining a mathematical model for the headform and PAPR system, and (3) running a total 24 simulations with four particle sizes, three breathing workloads and two supplied-air flow rates (4×3×2=24) applied on the digital model of the headform and PAPR system, and (4) post-processing the simulation results to visually display the distribution of exhaled particles inside the PAPR and determine the particle concentration of outside the PAPR compared with the concentration inside. We assume that there was no ambient particle, and only exhaled particles existed. The results showed that the ratio of the exhaled particle concentration outside to inside the PAPR were influenced by exhaled particle sizes, breathing workloads, and supplied-air flow rates. We found that outward concentration leakage from PAPR wearers was approximately 9% with a particle size of 0.1 and 1 μm at the light breathing and 205 L/min supplied-air flow rates, which is similar to the respiratory physiology of a health care worker in operative settings, The range of the ratio of exhaled particle concentration leaking outside the PAPR to the exhaled particle concentration inside the PAPR is from 7.6% to 49. We found that supplied air flow rates and work rates have significant impact on outward leakage, the outward concentration leakage increased as particle size decreased, breathing workload increased, and supplied-air flow rate decreased. The results of our simulation study should help provide a foundation for future clinical studies.
{"title":"COMPUTATIONAL FLUID DYNAMICS SIMULATION OF FLOW OF EXHALED PARTICLES FROM POWERED-AIR PURIFYING RESPIRATORS.","authors":"Susan S Xu, Zhipeng Lei, Ziqing Zhuang, Michael Bergman","doi":"10.1115/detc2019-97826","DOIUrl":"10.1115/detc2019-97826","url":null,"abstract":"<p><p>In surgical settings, infectious particulate wound contamination is a recognized cause of post-operative infections. Powered air-purifying respirators (PAPRs) are widely used by healthcare workers personal protection against infectious aerosols. Healthcare infection preventionists have expressed concern about the possibility that infectious particles expelled from PAPR exhalation channels could lead to healthcare associated infections, especially in operative settings where sterile procedural technique is emphasized. This study used computational fluid dynamics (CFD) modeling to simulate and visualize the distribution of particles exhaled by the PAPR wearer. In CFD simulations, the outward release of the exhaled particles, i.e., ratio of exhaled particle concentration outside the PAPR to that of inside the PAPR, was determined. This study also evaluated the effect of particle sizes, supplied air flow rates, and breathing work rates on outward leakage. This simulation study for the headform and loose-fitting PAPR system included the following four main steps: (1) preprocessing (establishing a geometrical model of a headform wearing a loose-fitting PAPR by capturing a 3D image), (2) defining a mathematical model for the headform and PAPR system, and (3) running a total 24 simulations with four particle sizes, three breathing workloads and two supplied-air flow rates (4×3×2=24) applied on the digital model of the headform and PAPR system, and (4) post-processing the simulation results to visually display the distribution of exhaled particles inside the PAPR and determine the particle concentration of outside the PAPR compared with the concentration inside. We assume that there was no ambient particle, and only exhaled particles existed. The results showed that the ratio of the exhaled particle concentration outside to inside the PAPR were influenced by exhaled particle sizes, breathing workloads, and supplied-air flow rates. We found that outward concentration leakage from PAPR wearers was approximately 9% with a particle size of 0.1 and 1 μm at the light breathing and 205 L/min supplied-air flow rates, which is similar to the respiratory physiology of a health care worker in operative settings, The range of the ratio of exhaled particle concentration leaking outside the PAPR to the exhaled particle concentration inside the PAPR is from 7.6% to 49. We found that supplied air flow rates and work rates have significant impact on outward leakage, the outward concentration leakage increased as particle size decreased, breathing workload increased, and supplied-air flow rate decreased. The results of our simulation study should help provide a foundation for future clinical studies.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"1 V001T02A048","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193452/pdf/nihms-1881039.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9510512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moneer Helu, Don Libes, Joshua Lubell, Kevin Lyons, K C Morris
Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies.
{"title":"ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT.","authors":"Moneer Helu, Don Libes, Joshua Lubell, Kevin Lyons, K C Morris","doi":"10.1115/DETC2016-59721","DOIUrl":"https://doi.org/10.1115/DETC2016-59721","url":null,"abstract":"<p><p>Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"1B ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/DETC2016-59721","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35118242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. M. Loschak, Alperen Değirmenci, Yaroslav Tenzer, R. Howe
In this paper we present the design, fabrication, and testing of a robot for automatically positioning ultrasound imaging catheters. Our system will point ultrasound (US) catheters to provide real-time imaging of anatomical structures and working instruments during minimally invasive surgeries. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a four DOF robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables three DOF for pitch, yaw, and roll of the imager. This transmission is translated by the fourth DOF. An accuracy analysis was conducted to calculate the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5° and the translational joint must be accurate within 1.4 mm. Motion tests were then conducted to validate the accuracy of the robot. The average resulting errors in positioning of the rotational joints were measured to be 0.28°-0.38° with average measured backlash error 0.44°. Average translational positioning and backlash errors were measured to be significantly lower than the reported accuracy of the position sensor. The resulting joint motion errors were well within the required specifications for accurate robot motion. Such effective navigation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases.
{"title":"A 4-DOF Robot for Positioning Ultrasound Imaging Catheters.","authors":"P. M. Loschak, Alperen Değirmenci, Yaroslav Tenzer, R. Howe","doi":"10.1115/DETC2015-47693","DOIUrl":"https://doi.org/10.1115/DETC2015-47693","url":null,"abstract":"In this paper we present the design, fabrication, and testing of a robot for automatically positioning ultrasound imaging catheters. Our system will point ultrasound (US) catheters to provide real-time imaging of anatomical structures and working instruments during minimally invasive surgeries. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a four DOF robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables three DOF for pitch, yaw, and roll of the imager. This transmission is translated by the fourth DOF. An accuracy analysis was conducted to calculate the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5° and the translational joint must be accurate within 1.4 mm. Motion tests were then conducted to validate the accuracy of the robot. The average resulting errors in positioning of the rotational joints were measured to be 0.28°-0.38° with average measured backlash error 0.44°. Average translational positioning and backlash errors were measured to be significantly lower than the reported accuracy of the position sensor. The resulting joint motion errors were well within the required specifications for accurate robot motion. Such effective navigation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases.","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80633104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is "muscle moment arm," a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.
{"title":"WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES.","authors":"Michael A Sherman, Ajay Seth, Scott L Delp","doi":"10.1115/DETC2013-13633","DOIUrl":"https://doi.org/10.1115/DETC2013-13633","url":null,"abstract":"<p><p>Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is \"muscle moment arm,\" a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.</p>","PeriodicalId":74514,"journal":{"name":"Proceedings of the ... ASME Design Engineering Technical Conferences. ASME Design Engineering Technical Conferences","volume":"2013 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/DETC2013-13633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33243559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}