首页 > 最新文献

Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits最新文献

英文 中文
A 66pW Discontinuous Switch-Capacitor Energy Harvester for Self-Sustaining Sensor Applications. 用于自维持传感器的66pW断续开关电容能量采集器。
Pub Date : 2016-06-01 Epub Date: 2016-09-22 DOI: 10.1109/VLSIC.2016.7573490
Xiao Wu, Yao Shi, Supreet Jeloka, Kaiyuan Yang, Inhee Lee, Dennis Sylvester, David Blaauw

We present a discontinuous harvesting approach for switch capacitor DC-DC converters that enables ultra-low power energy harvesting. By slowly accumulating charge on an input capacitor and then transferring it to a battery in burst-mode, switching and leakage losses in the DC-DC converter can be optimally traded-off with the loss due to non-ideal MPPT operation. The harvester uses a 15pW mode controller, an automatic conversion ratio modulator, and a moving sum charge pump for low startup energy upon a mode switch. In 180nm CMOS, the harvester achieves >40% end-to-end efficiency from 113pW to 1.5μW with 66pW minimum input power, marking a >10× improvement over prior ultra-low power harvesters.

我们提出了一种用于开关电容DC-DC变换器的不连续收集方法,使超低功耗能量收集成为可能。通过在输入电容上缓慢积累电荷,然后在突发模式下将其转移到电池中,DC-DC转换器中的开关和泄漏损耗可以与非理想MPPT操作造成的损耗进行最佳权衡。该收割机采用15pW模式控制器、自动转换比率调制器和移动电荷泵,用于模式切换时的低启动能量。在180nm CMOS中,在最小输入功率为66pW的情况下,从113pW到1.5μW的端到端效率达到了>40%,比现有的超低功率采集器提高了>10倍。
{"title":"A 66pW Discontinuous Switch-Capacitor Energy Harvester for Self-Sustaining Sensor Applications.","authors":"Xiao Wu,&nbsp;Yao Shi,&nbsp;Supreet Jeloka,&nbsp;Kaiyuan Yang,&nbsp;Inhee Lee,&nbsp;Dennis Sylvester,&nbsp;David Blaauw","doi":"10.1109/VLSIC.2016.7573490","DOIUrl":"https://doi.org/10.1109/VLSIC.2016.7573490","url":null,"abstract":"<p><p>We present a discontinuous harvesting approach for switch capacitor DC-DC converters that enables ultra-low power energy harvesting. By slowly accumulating charge on an input capacitor and then transferring it to a battery in burst-mode, switching and leakage losses in the DC-DC converter can be optimally traded-off with the loss due to non-ideal MPPT operation. The harvester uses a 15pW mode controller, an automatic conversion ratio modulator, and a moving sum charge pump for low startup energy upon a mode switch. In 180nm CMOS, the harvester achieves >40% end-to-end efficiency from 113pW to 1.5μW with 66pW minimum input power, marking a >10× improvement over prior ultra-low power harvesters.</p>","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"2016 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/VLSIC.2016.7573490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34898873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation. 具有环境噪声消除功能的380pW双模光唤醒接收机。
Pub Date : 2016-06-01 Epub Date: 2016-09-22 DOI: 10.1109/VLSIC.2016.7573481
Wootaek Lim, Taekwang Jang, Inhee Lee, Hun-Seok Kim, Dennis Sylvester, David Blaauw

We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.

我们提出了一种用于无线传感器节点的亚nw光唤醒接收器。唤醒接收器支持超低待机功率和高数据速率的双模式操作,同时消除带内环境噪声。在0.18µm CMOS中,接收器在常亮唤醒模式下消耗380pW,在250kbps的快速RX模式下消耗28.1µW。
{"title":"A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.","authors":"Wootaek Lim,&nbsp;Taekwang Jang,&nbsp;Inhee Lee,&nbsp;Hun-Seok Kim,&nbsp;Dennis Sylvester,&nbsp;David Blaauw","doi":"10.1109/VLSIC.2016.7573481","DOIUrl":"https://doi.org/10.1109/VLSIC.2016.7573481","url":null,"abstract":"<p><p>We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.</p>","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"2016 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/VLSIC.2016.7573481","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34898874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
IoT: The Impact of Things 物联网:事物的影响
Pub Date : 2015-06-16 DOI: 10.1109/VLSIC.2015.7231361
Jolan De Boeck
Starting from the application perspective, this paper addresses on the needs for sensor node architecture, wireless communication, security and infrastructure for IoT.
本文从应用角度出发,论述了物联网对传感器节点架构、无线通信、安全和基础设施的需求。
{"title":"IoT: The Impact of Things","authors":"Jolan De Boeck","doi":"10.1109/VLSIC.2015.7231361","DOIUrl":"https://doi.org/10.1109/VLSIC.2015.7231361","url":null,"abstract":"Starting from the application perspective, this paper addresses on the needs for sensor node architecture, wireless communication, security and infrastructure for IoT.","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"20 1","pages":"82-"},"PeriodicalIF":0.0,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75690327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
A 120nW 8b Sub-ranging SAR ADC with Signal-Dependent Charge Recycling for Biomedical Applications. 120nw8b带信号依赖电荷回收的亚测距SAR ADC,用于生物医学应用。
Pub Date : 2015-06-01 DOI: 10.1109/VLSIC.2015.7231327
Seokhyeon Jeong, Wanyeong Jung, Dongsuk Jeon, Omer Berenfeld, Hakan Oral, Grant Kruger, David Blaauw, Dennis Sylvester

We present an 8-bit sub-ranging SAR ADC designed for bursty signals having long time periods with small code spread. A modified capacitive-DAC (CDAC) saves previous sample's MSB voltage and reuses it throughout subsequent conversions. This prevents unnecessary switching of large MSB capacitors as well as conversion cycles, reducing energy consumed in the comparator and digital logic and yielding total energy savings of 2.6×. In 0.18μm CMOS, the ADC consumes 120nW at 0.6V and 100kS/s with 46.9dB SNDR.

我们提出了一个8位亚测距SAR ADC,设计用于具有长时间周期和小码宽的突发信号。改进的电容式dac (CDAC)保存了之前样本的MSB电压,并在随后的转换中重用它。这可以防止不必要的大型MSB电容器切换以及转换周期,减少比较器和数字逻辑中的能量消耗,并产生2.6倍的总节能。在0.18μm CMOS中,ADC在0.6V和100kS/s下功耗为120nW, SNDR为46.9dB。
{"title":"A 120nW 8b Sub-ranging SAR ADC with Signal-Dependent Charge Recycling for Biomedical Applications.","authors":"Seokhyeon Jeong,&nbsp;Wanyeong Jung,&nbsp;Dongsuk Jeon,&nbsp;Omer Berenfeld,&nbsp;Hakan Oral,&nbsp;Grant Kruger,&nbsp;David Blaauw,&nbsp;Dennis Sylvester","doi":"10.1109/VLSIC.2015.7231327","DOIUrl":"https://doi.org/10.1109/VLSIC.2015.7231327","url":null,"abstract":"<p><p>We present an 8-bit sub-ranging SAR ADC designed for bursty signals having long time periods with small code spread. A modified capacitive-DAC (CDAC) saves previous sample's MSB voltage and reuses it throughout subsequent conversions. This prevents unnecessary switching of large MSB capacitors as well as conversion cycles, reducing energy consumed in the comparator and digital logic and yielding total energy savings of 2.6×. In 0.18μm CMOS, the ADC consumes 120nW at 0.6V and 100kS/s with 46.9dB SNDR.</p>","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"2015 ","pages":"C60-C61"},"PeriodicalIF":0.0,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/VLSIC.2015.7231327","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10525974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
A 2.8mW/Gb/s 14Gb/s serial link transceiver in 65nm CMOS 2.8mW/Gb/s 14Gb/s串行链路收发器,65nm CMOS
Pub Date : 2015-01-01 DOI: 10.1109/VLSIC.2015.7231320
Saurabh Saxena, Guanghua Shu, R. Nandwana, Mrunmay Talegaonkar, Ahmed Elkholy, Tejasvi Anand, S. Kim, Woo-Seok Choi, P. Hanumolu
{"title":"A 2.8mW/Gb/s 14Gb/s serial link transceiver in 65nm CMOS","authors":"Saurabh Saxena, Guanghua Shu, R. Nandwana, Mrunmay Talegaonkar, Ahmed Elkholy, Tejasvi Anand, S. Kim, Woo-Seok Choi, P. Hanumolu","doi":"10.1109/VLSIC.2015.7231320","DOIUrl":"https://doi.org/10.1109/VLSIC.2015.7231320","url":null,"abstract":"","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"22 1","pages":"352-"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85466371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A 4.78mm2 fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation 一个4.78mm2的全集成神经调节SoC,结合64个采集通道,数字压缩和同步双重刺激
Pub Date : 2014-06-10 DOI: 10.1109/VLSIC.2014.6858430
D. Yeager, W. Biederman, Nathan Narevsky, Jaclyn Leverett, R. Neely, J. Carmena, E. Alon, J. Rabaey
A 65nm CMOS 4.78mm 2 integrated neuromodulation SoC consumes 417μW from a 1.2V supply while operating 64 acquisition channels with epoch compression at an average firing rate of 50Hz and engaging two stimulators with a pulse width of 250μs/phase, differential current of 150μA, and a pulse frequency of 100Hz. Compared to the state of the art, this represents the lowest area and power for the highest integration complexity achieved to date.
一种65nm CMOS 4.78mm 2集成神经调节SoC在1.2V电源下消耗417μW,同时在平均发射速率为50Hz的条件下工作64个采集通道,使用两个脉冲宽度为250μs/相、差分电流为150μA、脉冲频率为100Hz的刺激器。与目前的技术水平相比,这代表了迄今为止实现的最高集成复杂性的最低面积和功率。
{"title":"A 4.78mm2 fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation","authors":"D. Yeager, W. Biederman, Nathan Narevsky, Jaclyn Leverett, R. Neely, J. Carmena, E. Alon, J. Rabaey","doi":"10.1109/VLSIC.2014.6858430","DOIUrl":"https://doi.org/10.1109/VLSIC.2014.6858430","url":null,"abstract":"A 65nm CMOS 4.78mm\u0000 2 \u0000integrated neuromodulation SoC consumes 417μW from a 1.2V supply while operating 64 acquisition channels with epoch compression at an average firing rate of 50Hz and engaging two stimulators with a pulse width of 250μs/phase, differential current of 150μA, and a pulse frequency of 100Hz. Compared to the state of the art, this represents the lowest area and power for the highest integration complexity achieved to date.","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"54 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85327905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Stand by Leakage Power Reduction in Nanoscale Static CMOS VLSI Multiplier Circuits Using Self Adjustable Voltage Level Circuit 利用自调电压电平电路降低纳米级静态CMOS VLSI倍增电路的待机泄漏功率
Pub Date : 2012-10-31 DOI: 10.5121/VLSIC.2012.3501
Deeprose Subedi
In this paper, we performed the comparative analysis of stand-by leakage (when the circuit is idle), delay and dynamic power (when the circuit switches) of the three different parallel digital multiplier circuits implemented with two adder modules and Self Adjustable Voltage level circuit (SVL). The adder modules chosen were 28 transistor-conventional CMOS adder and 10 transistorStatic Energy Recovery CMOS adder (SERF) circuits. The multiplier modules chosen were 4Bits Array, 4bits Carry Save and 4Bits Baugh Wooley multipliers. At first, the circuits were simulated with adder modules without applying the SVL circuit. And secondly, SVL circuit was incorporated in the adder modules for simulation. In all the multiplier architectures chosen, less standby leakage power was observed being consumed by the SERF adder based multipliers applied with SVL circuit. The stand-by leakage power dissipation is 1.16μwatts in Bits array multiplier with SERF Adder applied with SVL vs. 1.39μwatts in the same multiplier with CMOS 28T Adder applied with SVL circuit. It is 1.16μwatts in Carry Save multiplier with SERF Adder applied with SVL vs. 1.4μwatts in the same multiplier with CMOS 28T Adder applied with SVL circuit. It is 1.67μwatts in Baugh Wooley multiplier with SERF Adder applied with SVl circuit vs. 2.74μwatts in the same multiplier with CMOS 28T Adder applied with SVL circuit.
在本文中,我们对采用两个加法器模块和自调电压电平电路(SVL)实现的三种不同并联数字乘法器电路的待机漏电(电路空闲时)、延迟和动态功率(电路开关时)进行了比较分析。所选加法器模块为28个晶体管-传统CMOS加法器和10个晶体管静态能量恢复CMOS加法器(SERF)电路。选择的乘法器模块有4Bits Array、4Bits Carry Save和4Bits Baugh Wooley乘法器。首先,在不使用SVL电路的情况下,使用加法器模块对电路进行仿真。其次,在加法器模块中加入SVL电路进行仿真。在所有选择的乘法器结构中,观察到使用SVL电路的基于SERF加法器的乘法器消耗较少的待机泄漏功率。采用SERF加法器的Bits阵列乘法器的待机泄漏功耗为1.16μwatts,而采用SVL电路的CMOS 28T加法器的待机泄漏功耗为1.39μwatts。采用SERF加法器的进位保存乘法器的功率为1.16μ瓦,而采用SVL电路的CMOS 28T加法器的进位保存乘法器功率为1.4μ瓦。采用SVl电路的SERF加法器的Baugh Wooley乘法器功率为1.67μ瓦,而采用SVl电路的CMOS 28T加法器功率为2.74μ瓦。
{"title":"Stand by Leakage Power Reduction in Nanoscale Static CMOS VLSI Multiplier Circuits Using Self Adjustable Voltage Level Circuit","authors":"Deeprose Subedi","doi":"10.5121/VLSIC.2012.3501","DOIUrl":"https://doi.org/10.5121/VLSIC.2012.3501","url":null,"abstract":"In this paper, we performed the comparative analysis of stand-by leakage (when the circuit is idle), delay and dynamic power (when the circuit switches) of the three different parallel digital multiplier circuits implemented with two adder modules and Self Adjustable Voltage level circuit (SVL). The adder modules chosen were 28 transistor-conventional CMOS adder and 10 transistorStatic Energy Recovery CMOS adder (SERF) circuits. The multiplier modules chosen were 4Bits Array, 4bits Carry Save and 4Bits Baugh Wooley multipliers. At first, the circuits were simulated with adder modules without applying the SVL circuit. And secondly, SVL circuit was incorporated in the adder modules for simulation. In all the multiplier architectures chosen, less standby leakage power was observed being consumed by the SERF adder based multipliers applied with SVL circuit. The stand-by leakage power dissipation is 1.16μwatts in Bits array multiplier with SERF Adder applied with SVL vs. 1.39μwatts in the same multiplier with CMOS 28T Adder applied with SVL circuit. It is 1.16μwatts in Carry Save multiplier with SERF Adder applied with SVL vs. 1.4μwatts in the same multiplier with CMOS 28T Adder applied with SVL circuit. It is 1.67μwatts in Baugh Wooley multiplier with SERF Adder applied with SVl circuit vs. 2.74μwatts in the same multiplier with CMOS 28T Adder applied with SVL circuit.","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"48 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2012-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91396268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Leakage Power Reduction and Analysis of CMOS Sequential Circuits CMOS顺序电路的泄漏功率降低及分析
Pub Date : 2012-02-29 DOI: 10.5121/VLSIC.2012.3102
M. Rani
{"title":"Leakage Power Reduction and Analysis of CMOS Sequential Circuits","authors":"M. Rani","doi":"10.5121/VLSIC.2012.3102","DOIUrl":"https://doi.org/10.5121/VLSIC.2012.3102","url":null,"abstract":"","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"15 1","pages":"13-23"},"PeriodicalIF":0.0,"publicationDate":"2012-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91397283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Area Efficient 3.3GHZ Phase Locked Loop with Four Multiple Output Using 45NM VLSI Technology 面积高效的3.3GHZ锁相环,采用45NM VLSI技术
Pub Date : 2011-03-24 DOI: 10.5121/VLSIC.2011.2110
U. Belorkar, S. Ladhake
{"title":"Area Efficient 3.3GHZ Phase Locked Loop with Four Multiple Output Using 45NM VLSI Technology","authors":"U. Belorkar, S. Ladhake","doi":"10.5121/VLSIC.2011.2110","DOIUrl":"https://doi.org/10.5121/VLSIC.2011.2110","url":null,"abstract":"","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"39 1","pages":"116-126"},"PeriodicalIF":0.0,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91396263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A fully integrated 0.13 μm CMOS low-IF DBS satellite tuner using automatic signal-path gain and bandwidth calibration 一种完全集成的0.13 μm CMOS低中频DBS卫星调谐器,采用自动信号路径增益和带宽校准
Pub Date : 2007-01-01 DOI: 10.1109/vlsic.2006.1705300
A. Maxim, R. Poorfard, Richard A. Johnson, P. Crawley, J. Kao, Z. Dong, M. Chennam, T. Nutt, D. Trager, M. Reid
This paper presents the first low-IF fully integrated receiver for DBS satellite TV applications realized in 0.13 μm CMOS. A wideband ring oscillator based frequency synthesizer having a large frequency step was used to downconvert a cluster of channels to a coarsely defined low-IF frequency, while the second downconversion to baseband was performed in the digital domain. Eliminating the oscillator inductors reduced the parasitic magnetic coupling from the digital core, allowing a single-chip integration of the sensitive tuner and the noisy digital demodulator. A significant die area reduction was achieved by using a single oscillator to cover the entire satellite TV spectrum, while a noise attenuator was cascaded with the PLL loop filter to reduce the equivalent tuning gain. The low-IF architecture allowed a discrete-step AGC that improves both tuner noise and linearity performance. Tuner gain and IF corner frequency were calibrated using replica ring oscillators that are tuned up to the onset of oscillations. The tuner specifications include: 90 dB gain range, 9 dB noise figure at max gain, +25 dBm IIP3 at min gain, 1.3°rms integrated phase noise, <50 dBc spurs, 0.7 W power consumption from dual 1.8/3.3-V supplies, and 1.8 x 1.2 mm 2 die area.
本文提出了首个采用0.13 μm CMOS实现的低中频全集成DBS卫星电视接收机。采用一种基于大频率步进的宽带环形振荡器频率合成器将一组信道下变频到粗略定义的低中频频率,同时在数字域进行第二次下变频到基带。消除振荡器电感减少了来自数字核心的寄生磁耦合,使敏感调谐器和噪声数字解调器的单芯片集成成为可能。通过使用单个振荡器覆盖整个卫星电视频谱,实现了显着的芯片面积减少,而噪声衰减器与锁相环滤波器级联以降低等效调谐增益。低中频架构允许离散步进AGC,提高调谐器噪声和线性性能。调谐器增益和中频角频率使用被调谐到振荡开始的复制环振荡器进行校准。调谐器规格包括:90db增益范围,最大增益时9db噪声系数,最小增益时+ 25dbm IIP3, 1.3°rms集成相位噪声,<50 dBc杂散,双1.8/3.3 v电源功耗0.7 W, 1.8 x 1.2 mm 2芯片面积。
{"title":"A fully integrated 0.13 μm CMOS low-IF DBS satellite tuner using automatic signal-path gain and bandwidth calibration","authors":"A. Maxim, R. Poorfard, Richard A. Johnson, P. Crawley, J. Kao, Z. Dong, M. Chennam, T. Nutt, D. Trager, M. Reid","doi":"10.1109/vlsic.2006.1705300","DOIUrl":"https://doi.org/10.1109/vlsic.2006.1705300","url":null,"abstract":"This paper presents the first low-IF fully integrated receiver for DBS satellite TV applications realized in 0.13 μm CMOS. A wideband ring oscillator based frequency synthesizer having a large frequency step was used to downconvert a cluster of channels to a coarsely defined low-IF frequency, while the second downconversion to baseband was performed in the digital domain. Eliminating the oscillator inductors reduced the parasitic magnetic coupling from the digital core, allowing a single-chip integration of the sensitive tuner and the noisy digital demodulator. A significant die area reduction was achieved by using a single oscillator to cover the entire satellite TV spectrum, while a noise attenuator was cascaded with the PLL loop filter to reduce the equivalent tuning gain. The low-IF architecture allowed a discrete-step AGC that improves both tuner noise and linearity performance. Tuner gain and IF corner frequency were calibrated using replica ring oscillators that are tuned up to the onset of oscillations. The tuner specifications include: 90 dB gain range, 9 dB noise figure at max gain, +25 dBm IIP3 at min gain, 1.3°rms integrated phase noise, <50 dBc spurs, 0.7 W power consumption from dual 1.8/3.3-V supplies, and 1.8 x 1.2 mm 2 die area.","PeriodicalId":74899,"journal":{"name":"Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits","volume":"85 1 1","pages":"897-921"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87668541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Symposium on VLSI Circuits : [proceedings]. Symposium on VLSI Circuits
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1