Pub Date : 2015-04-27eCollection Date: 2015-01-01DOI: 10.1199/tab.0179
Takashi Hashimoto
Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.
{"title":"Microtubules in plants.","authors":"Takashi Hashimoto","doi":"10.1199/tab.0179","DOIUrl":"https://doi.org/10.1199/tab.0179","url":null,"abstract":"<p><p>Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"13 ","pages":"e0179"},"PeriodicalIF":0.0,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33341989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-04-24eCollection Date: 2015-01-01DOI: 10.1199/tab.0176
Karen S Browning, Julia Bailey-Serres
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
{"title":"Mechanism of cytoplasmic mRNA translation.","authors":"Karen S Browning, Julia Bailey-Serres","doi":"10.1199/tab.0176","DOIUrl":"10.1199/tab.0176","url":null,"abstract":"<p><p>Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"13 ","pages":"e0176"},"PeriodicalIF":0.0,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441251/pdf/tab.0176.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33341993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-11-17eCollection Date: 2014-01-01DOI: 10.1199/tab.0175
Christina M Choi, William M Gray, Sutton Mooney, Hanjo Hellmann
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
由于它们的无根性,植物依赖于灵活的调节系统,使它们能够在环境线索的背景下充分调节发育和生理过程。泛素蛋白酶体途径以大量蛋白质为目标进行降解,是细胞工具,为完成这一任务提供了必要的灵活性。泛素E3连接酶通过选择性结合特定底物并促进其泛素化,为该途径提供所需的特异性。已知植物中最大的E3连接酶群以CULLIN-REALLY INTERESTING NEW GENE (RING) E3连接酶(CRLs)为代表。近年来,大量的知识已经产生,揭示了这些酶在植物生命的各个方面的关键作用。本文综述了植物中不同类型的crl及其特定的复杂成分、它们所控制的各种生物过程以及影响其活性的调控步骤。
{"title":"Composition, roles, and regulation of cullin-based ubiquitin e3 ligases.","authors":"Christina M Choi, William M Gray, Sutton Mooney, Hanjo Hellmann","doi":"10.1199/tab.0175","DOIUrl":"https://doi.org/10.1199/tab.0175","url":null,"abstract":"<p><p>Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0175"},"PeriodicalIF":0.0,"publicationDate":"2014-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32906803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-10-06eCollection Date: 2014-01-01DOI: 10.1199/tab.0174
Judy Callis
The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery "half" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s.
泛素蛋白是蛋白质(包括其本身)的共价修饰物。泛素系统包括催化泛素附着到底物上所需的酶,以及与泛素化蛋白质结合并引导其最终命运的蛋白质。此外,还包括在蛋白酶体或液泡中的蛋白酶对底物进行蛋白水解的同时或独立清除泛素的活动。除了由一系列融合蛋白编码的泛素外,还有一些蛋白具有类似泛素的结构域,很可能形成泛素的β-抓褶,但不能进行共价修饰。不过,在泛素系统中,它们是蛋白质与蛋白质相互作用的平台。多个基因家族编码所有这些类型的活动。在泛素系统的 "一半 "泛素化机制中,有冗余的、部分冗余的和独特的成分,它们影响着植物的各种发育和环境反应。值得注意的是,生物和非生物胁迫反应的多个方面都需要泛素化,或受到泛素化的调节。最后,泛素系统的各个方面都具有广泛的用途:作为增强基因表达或调节蛋白质丰度的组成部分。本综述将重点关注泛素化机制:泛素、泛素合成的独特方面及其基因家族的组织、泛素激活酶(E1)、泛素连接酶(E2)和泛素连接酶(或 E3)。鉴于拟南芥中存在大量 E3s,本综述涵盖了 U 盒、HECT 和 RING 型 E3s,但基于 Cullin 的 E3s 除外。
{"title":"The ubiquitination machinery of the ubiquitin system.","authors":"Judy Callis","doi":"10.1199/tab.0174","DOIUrl":"10.1199/tab.0174","url":null,"abstract":"<p><p>The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery \"half\" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0174"},"PeriodicalIF":0.0,"publicationDate":"2014-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196676/pdf/tab.0174.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32752041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-25eCollection Date: 2014-01-01DOI: 10.1199/tab.0172
Claire Grierson, Erik Nielsen, Tijs Ketelaarc, John Schiefelbein
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology.
{"title":"Root hairs.","authors":"Claire Grierson, Erik Nielsen, Tijs Ketelaarc, John Schiefelbein","doi":"10.1199/tab.0172","DOIUrl":"10.1199/tab.0172","url":null,"abstract":"<p><p>Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0172"},"PeriodicalIF":0.0,"publicationDate":"2014-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075452/pdf/tab.0172.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32468547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-13eCollection Date: 2014-01-01DOI: 10.1199/tab.0173
Yunde Zhao
lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development.
{"title":"Auxin biosynthesis.","authors":"Yunde Zhao","doi":"10.1199/tab.0173","DOIUrl":"https://doi.org/10.1199/tab.0173","url":null,"abstract":"<p><p>lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0173"},"PeriodicalIF":0.0,"publicationDate":"2014-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32445753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-02-17eCollection Date: 2014-01-01DOI: 10.1199/tab.0170
Nobutoshi Yamaguchi, Cara M Winter, Miin-Feng Wu, Chang Seob Kwon, Dilusha A William, Doris Wagner
The ability of proteins to associate with genomic DNA in the context of chromatin is critical for many nuclear processes including transcription, replication, recombination, and DNA repair. Chromatin immunoprecipication (ChIP) is a practical and useful technique for characterizing protein / DNA association in vivo. The procedure generally includes six steps: (1) crosslinking the protein to the DNA; (2) isolating the chromatin; (3) chromatin fragmentation; (4) imunoprecipitation with antibodies against the protein of interest; (5) DNA recovery; and (6) PCR identification of factor associated DNA sequences. In this protocol, we describe guidelines, experimental setup, and conditions for ChIP in intact Arabidopsis tissues. This protocol has been used to study association of histone modifications, of chromatin remodeling ATPases, as well as of sequence-specific transcription factors with the genomic DNA in various Arabidopsis thaliana tissues. The protocol described focuses on ChIP-qPCR, but can readily be adapted for use in ChIP-chip or ChIP-seq experiments. The entire procedure can be completed within 3 days.
{"title":"PROTOCOLS: Chromatin Immunoprecipitation from Arabidopsis Tissues.","authors":"Nobutoshi Yamaguchi, Cara M Winter, Miin-Feng Wu, Chang Seob Kwon, Dilusha A William, Doris Wagner","doi":"10.1199/tab.0170","DOIUrl":"https://doi.org/10.1199/tab.0170","url":null,"abstract":"The ability of proteins to associate with genomic DNA in the context of chromatin is critical for many nuclear processes including transcription, replication, recombination, and DNA repair. Chromatin immunoprecipication (ChIP) is a practical and useful technique for characterizing protein / DNA association in vivo. The procedure generally includes six steps: (1) crosslinking the protein to the DNA; (2) isolating the chromatin; (3) chromatin fragmentation; (4) imunoprecipitation with antibodies against the protein of interest; (5) DNA recovery; and (6) PCR identification of factor associated DNA sequences. In this protocol, we describe guidelines, experimental setup, and conditions for ChIP in intact Arabidopsis tissues. This protocol has been used to study association of histone modifications, of chromatin remodeling ATPases, as well as of sequence-specific transcription factors with the genomic DNA in various Arabidopsis thaliana tissues. The protocol described focuses on ChIP-qPCR, but can readily be adapted for use in ChIP-chip or ChIP-seq experiments. The entire procedure can be completed within 3 days.","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0170"},"PeriodicalIF":0.0,"publicationDate":"2014-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32195159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-02-12eCollection Date: 2014-01-01DOI: 10.1199/tab.0171
Dong-Hwan Kim, Sibum Sung
Plants have evolved a number of monitoring systems to sense their surroundings and to coordinate their growth and development accordingly. Vernalization is one example, in which flowering is promoted after plants have been exposed to a long-term cold temperature (i.e. winter). Vernalization results in the repression of floral repressor genes that inhibit the floral transition in many plant species. Here, we describe recent advances in our understanding of the vernalization-mediated promotion of flowering in Arabidopsis and other flowering plants. In Arabidopsis, the vernalization response includes the recruitment of chromatin-modifying complexes to floral repressors and thus results in the enrichment of repressive histone marks that ensure the stable repression of floral repressor genes. Changes in histone modifications at floral repressor loci are stably maintained after cold exposure, establishing the competence to flower the following spring. We also discuss similarities and differences in regulatory circuits in vernalization responses among Arabidopsis and other plants.
{"title":"Genetic and epigenetic mechanisms underlying vernalization.","authors":"Dong-Hwan Kim, Sibum Sung","doi":"10.1199/tab.0171","DOIUrl":"https://doi.org/10.1199/tab.0171","url":null,"abstract":"<p><p>Plants have evolved a number of monitoring systems to sense their surroundings and to coordinate their growth and development accordingly. Vernalization is one example, in which flowering is promoted after plants have been exposed to a long-term cold temperature (i.e. winter). Vernalization results in the repression of floral repressor genes that inhibit the floral transition in many plant species. Here, we describe recent advances in our understanding of the vernalization-mediated promotion of flowering in Arabidopsis and other flowering plants. In Arabidopsis, the vernalization response includes the recruitment of chromatin-modifying complexes to floral repressors and thus results in the enrichment of repressive histone marks that ensure the stable repression of floral repressor genes. Changes in histone modifications at floral repressor loci are stably maintained after cold exposure, establishing the competence to flower the following spring. We also discuss similarities and differences in regulatory circuits in vernalization responses among Arabidopsis and other plants. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0171"},"PeriodicalIF":0.0,"publicationDate":"2014-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0171","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32195160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1-4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis.
{"title":"Cellulose synthesis and its regulation.","authors":"Shundai Li, Logan Bashline, Lei Lei, Ying Gu","doi":"10.1199/tab.0169","DOIUrl":"https://doi.org/10.1199/tab.0169","url":null,"abstract":"<p><p>Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1-4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0169"},"PeriodicalIF":0.0,"publicationDate":"2014-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32064734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cytokinins are N (6) substituted adenine derivatives that affect many aspects of plant growth and development, including cell division, shoot initiation and growth, leaf senescence, apical dominance, sink/source relationships, nutrient uptake, phyllotaxis, and vascular, gametophyte, and embryonic development, as well as the response to biotic and abiotic factors. Molecular genetic studies in Arabidopsis have helped elucidate the mechanisms underlying the function of this phytohormone in plants. Here, we review our current understanding of cytokinin biosynthesis and signaling in Arabidopsis, the latter of which is similar to bacterial two-component phosphorelays. We discuss the perception of cytokinin by the ER-localized histidine kinase receptors, the role of the AHPs in mediating the transfer of the phosphoryl group from the receptors to the response regulators (ARRs), and finally the role of the large ARR family in cytokinin function. The identification and genetic manipulation of the genes involved in cytokinin metabolism and signaling have helped illuminate the roles of cytokinins in Arabidopsis. We discuss these diverse roles, and how other signaling pathways influence cytokinin levels and sensitivity though modulation of the expression of cytokinin signaling and metabolic genes.
{"title":"Cytokinins.","authors":"Joseph J Kieber, G Eric Schaller","doi":"10.1199/tab.0168","DOIUrl":"https://doi.org/10.1199/tab.0168","url":null,"abstract":"<p><p>Cytokinins are N (6) substituted adenine derivatives that affect many aspects of plant growth and development, including cell division, shoot initiation and growth, leaf senescence, apical dominance, sink/source relationships, nutrient uptake, phyllotaxis, and vascular, gametophyte, and embryonic development, as well as the response to biotic and abiotic factors. Molecular genetic studies in Arabidopsis have helped elucidate the mechanisms underlying the function of this phytohormone in plants. Here, we review our current understanding of cytokinin biosynthesis and signaling in Arabidopsis, the latter of which is similar to bacterial two-component phosphorelays. We discuss the perception of cytokinin by the ER-localized histidine kinase receptors, the role of the AHPs in mediating the transfer of the phosphoryl group from the receptors to the response regulators (ARRs), and finally the role of the large ARR family in cytokinin function. The identification and genetic manipulation of the genes involved in cytokinin metabolism and signaling have helped illuminate the roles of cytokinins in Arabidopsis. We discuss these diverse roles, and how other signaling pathways influence cytokinin levels and sensitivity though modulation of the expression of cytokinin signaling and metabolic genes. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0168"},"PeriodicalIF":0.0,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32062659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}