首页 > 最新文献

Environmental Science: Processes & Impacts最新文献

英文 中文
Combining sequential extractions with bulk and micro X-ray spectroscopy to elucidate iron and phosphorus speciation in sediments of an iron-treated peat lake†‡ 将顺序萃取与大量和微型 X 射线光谱相结合,以阐明经铁处理的泥炭湖沉积物中的铁和磷种类。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-12 DOI: 10.1039/D4EM00402G
Melanie A. Münch, Andreas Voegelin, Luis Carlos Colocho Hurtarte, Jörg Göttlicher and Thilo Behrends

In shallow lakes, mobilization of legacy phosphorus (P) from the sediments can be the main cause for persisting eutrophication after reduction of external P input. In-lake remediation measures can be applied to reduce internal P loading and to achieve ecosystem recovery. The eutrophic shallow peat lake Terra Nova (The Netherlands) was treated with iron (Fe) to enhance P retention in the sediment. This treatment, however, intensified seasonal internal P loading. An earlier study suggested that Fe addition led to increased P binding by easily-reducible Fe(III) associated with organic matter (OM), which readily releases P when bottom waters turn hypoxic. In this complementary study, bulk and micro Fe K-edge and P K-edge X-ray absorption spectroscopy and micro-focused X-ray fluorescence spectroscopy were applied to characterize the P hosting Fe(III) pool. Combined with sequential extraction data, the synchrotron X-ray analyses revealed that a continuum of co-precipitates of Fe(III) with calcium, phosphate, manganese and organic carbon within the OM matrix constitutes the reducible Fe(III) pool. The complementary analyses also shed new light on the interpretation of sequential extraction results, demonstrating that pyrite was not quantitatively extracted by nitric acid (HNO3) and that most of the Fe(II) extracted by hydrochloric acid (HCl) originated from phyllosilicate minerals. Formation of an amorphous inorganic–organic co-precipitate upon Fe addition constitutes an effective P sink in the studied peaty sediments. However, the high intrinsic reactivity of this nanoscale co-precipitate and its fine distribution in the OM matrix makes it very susceptible to reductive dissolution, leading to P remobilization under reducing conditions.

在浅水湖泊中,外部磷输入减少后,沉积物中遗留磷(P)的移动可能是造成持续富营养化的主要原因。可采用湖内修复措施来减少内部磷负荷,实现生态系统恢复。对富营养化的浅泥炭湖 Terra Nova(荷兰)使用铁(Fe)进行处理,以提高沉积物中的磷截留率。然而,这种处理方法加剧了季节性内部 P 负荷。早先的一项研究表明,铁的添加会导致与有机物(OM)相关的易还原铁(III)对钾的结合力增强,而有机物在底层水变为缺氧时很容易释放钾。在这项补充研究中,采用了大量和微量铁 K-edge 和 P K-edge X 射线吸收光谱以及微聚焦 X 射线荧光光谱来描述 P 承载铁(III)池的特征。结合顺序萃取数据,同步辐射 X 射线分析表明,在有机质基质中,Fe(III) 与钙、磷酸盐、锰和有机碳的共沉淀连续体构成了可还原的 Fe(III) 池。补充分析还为解释顺序萃取结果提供了新的思路,证明黄铁矿没有被硝酸(HNO3)定量萃取,盐酸(HCl)萃取的大部分铁(II)来源于植硅酸盐矿物。在所研究的泥炭沉积物中,加入铁后形成的无定形无机-有机共沉淀是一种有效的钾吸收汇。然而,这种纳米级共沉淀的高内在反应性及其在有机质基质中的精细分布使其非常容易被还原溶解,从而导致钾在还原条件下的再迁移。
{"title":"Combining sequential extractions with bulk and micro X-ray spectroscopy to elucidate iron and phosphorus speciation in sediments of an iron-treated peat lake†‡","authors":"Melanie A. Münch, Andreas Voegelin, Luis Carlos Colocho Hurtarte, Jörg Göttlicher and Thilo Behrends","doi":"10.1039/D4EM00402G","DOIUrl":"10.1039/D4EM00402G","url":null,"abstract":"<p >In shallow lakes, mobilization of legacy phosphorus (P) from the sediments can be the main cause for persisting eutrophication after reduction of external P input. In-lake remediation measures can be applied to reduce internal P loading and to achieve ecosystem recovery. The eutrophic shallow peat lake Terra Nova (The Netherlands) was treated with iron (Fe) to enhance P retention in the sediment. This treatment, however, intensified seasonal internal P loading. An earlier study suggested that Fe addition led to increased P binding by easily-reducible Fe(<small>III</small>) associated with organic matter (OM), which readily releases P when bottom waters turn hypoxic. In this complementary study, bulk and micro Fe K-edge and P K-edge X-ray absorption spectroscopy and micro-focused X-ray fluorescence spectroscopy were applied to characterize the P hosting Fe(<small>III</small>) pool. Combined with sequential extraction data, the synchrotron X-ray analyses revealed that a continuum of co-precipitates of Fe(<small>III</small>) with calcium, phosphate, manganese and organic carbon within the OM matrix constitutes the reducible Fe(<small>III</small>) pool. The complementary analyses also shed new light on the interpretation of sequential extraction results, demonstrating that pyrite was not quantitatively extracted by nitric acid (HNO<small><sub>3</sub></small>) and that most of the Fe(<small>II</small>) extracted by hydrochloric acid (HCl) originated from phyllosilicate minerals. Formation of an amorphous inorganic–organic co-precipitate upon Fe addition constitutes an effective P sink in the studied peaty sediments. However, the high intrinsic reactivity of this nanoscale co-precipitate and its fine distribution in the OM matrix makes it very susceptible to reductive dissolution, leading to P remobilization under reducing conditions.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 3","pages":" 563-585"},"PeriodicalIF":4.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/em/d4em00402g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposure to per- and polyfluoroalkyl substances (PFAS) in North Carolina homes: results from the indoor PFAS assessment (IPA) campaign. 北卡罗来纳州家庭的全氟和多氟烷基物质 (PFAS) 暴露情况:室内全氟和多氟烷基物质评估 (IPA) 活动的结果。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-11 DOI: 10.1039/d4em00525b
Naomi Y Chang, Clara M A Eichler, Elaine A Cohen Hubal, Jason D Surratt, Glenn C Morrison, Barbara J Turpin

Per and polyfluoroalkyl substances (PFAS) are ubiquitous in the indoor environment, resulting in indoor exposure. However, a dearth of concurrent indoor multi-compartment PFAS measurements, including air, has limited our understanding of the contributions of each exposure pathway to residential PFAS exposure. As part of the Indoor PFAS Assessment (IPA) Campaign, we measured 35 neutral and ionic PFAS in air, settled dust, drinking water, clothing, and on surfaces in 11 North Carolina homes. Ionic and neutral PFAS measurements reported previously and ionic PFAS measurements reported herein for drinking water (1.4-34.1 ng L-1), dust (202-1036 ng g-1), and surfaces (4.1 × 10-4-1.7 × 10-2 ng cm-2) were used to conduct a residential indoor PFAS exposure assessment. We considered inhalation of air, ingestion of drinking water and dust, mouthing of clothing (children only), and transdermal uptake from contact with dust, air, and surfaces. Average intake rates were estimated to be 3.6 ng kg-1 per day (adults) and 12.4 ng kg-1 per day (2 year-old), with neutral PFAS contributing over 80% total PFAS intake. Excluding dietary ingestion, which was not measured, inhalation contributed over 65% of PFAS intake and was dominated by neutral PFAS because fluorotelomer alcohol (FTOH) concentrations in air were several orders of magnitude greater than ionic PFAS concentrations. Perfluorooctanoic acid (PFOA) intake was 6.1 × 10-2 ng kg-1 per day (adults) and 1.5 × 10-1 ng kg-1 per day (2 year-old), and biotransformation of 8 : 2 FTOH to PFOA increased this PFOA body burden by 14% (adults) and 17% (2 year-old), suggesting inhalation may also be a meaningful contributor to ionic PFAS exposure through biotransformation.

全氟烷基和多氟烷基物质(PFAS)在室内环境中无处不在,导致室内暴露。然而,由于缺乏包括空气在内的室内多室 PFAS 测量,我们对住宅 PFAS 暴露中各暴露途径的贡献了解有限。作为室内全氟辛烷磺酸评估 (IPA) 活动的一部分,我们在北卡罗来纳州的 11 个家庭中测量了空气、沉降尘埃、饮用水、衣物和物体表面中的 35 种中性和离子型全氟辛烷磺酸。之前报告的离子型和中性 PFAS 测量值以及本文报告的饮用水(1.4-34.1 纳克 L-1)、灰尘(202-1036 纳克 g-1)和表面(4.1 × 10-4-1.7 × 10-2 纳克 cm-2)离子型 PFAS 测量值被用于进行住宅室内 PFAS 暴露评估。我们考虑了吸入空气、摄入饮用水和灰尘、用嘴咬衣物(仅限儿童)以及接触灰尘、空气和物体表面时的透皮吸收。平均摄入率估计为每天 3.6 纳克/千克-1(成人)和每天 12.4 纳克/千克-1(2 岁儿童),中性全氟辛烷磺酸占全氟辛烷磺酸总摄入量的 80% 以上。由于空气中的氟代醇(FTOH)浓度比离子型全氟辛烷磺酸浓度高出几个数量级,因此除去未测定的膳食摄入量,吸入量占全氟辛烷磺酸摄入量的 65% 以上,并且以中性全氟辛烷磺酸为主。全氟辛酸(PFOA)的摄入量为每天 6.1 × 10-2 纳克/千克-1(成人)和每天 1.5 × 10-1 纳克/千克-1(2 岁儿童),8 : 2 FTOH 到 PFOA 的生物转化使 PFOA 的体内负荷增加了 14%(成人)和 17%(2 岁儿童),这表明吸入可能也是通过生物转化造成离子型 PFAS 暴露的一个重要因素。
{"title":"Exposure to per- and polyfluoroalkyl substances (PFAS) in North Carolina homes: results from the indoor PFAS assessment (IPA) campaign.","authors":"Naomi Y Chang, Clara M A Eichler, Elaine A Cohen Hubal, Jason D Surratt, Glenn C Morrison, Barbara J Turpin","doi":"10.1039/d4em00525b","DOIUrl":"10.1039/d4em00525b","url":null,"abstract":"<p><p>Per and polyfluoroalkyl substances (PFAS) are ubiquitous in the indoor environment, resulting in indoor exposure. However, a dearth of concurrent indoor multi-compartment PFAS measurements, including air, has limited our understanding of the contributions of each exposure pathway to residential PFAS exposure. As part of the Indoor PFAS Assessment (IPA) Campaign, we measured 35 neutral and ionic PFAS in air, settled dust, drinking water, clothing, and on surfaces in 11 North Carolina homes. Ionic and neutral PFAS measurements reported previously and ionic PFAS measurements reported herein for drinking water (1.4-34.1 ng L<sup>-1</sup>), dust (202-1036 ng g<sup>-1</sup>), and surfaces (4.1 × 10<sup>-4</sup>-1.7 × 10<sup>-2</sup> ng cm<sup>-2</sup>) were used to conduct a residential indoor PFAS exposure assessment. We considered inhalation of air, ingestion of drinking water and dust, mouthing of clothing (children only), and transdermal uptake from contact with dust, air, and surfaces. Average intake rates were estimated to be 3.6 ng kg<sup>-1</sup> per day (adults) and 12.4 ng kg<sup>-1</sup> per day (2 year-old), with neutral PFAS contributing over 80% total PFAS intake. Excluding dietary ingestion, which was not measured, inhalation contributed over 65% of PFAS intake and was dominated by neutral PFAS because fluorotelomer alcohol (FTOH) concentrations in air were several orders of magnitude greater than ionic PFAS concentrations. Perfluorooctanoic acid (PFOA) intake was 6.1 × 10<sup>-2</sup> ng kg<sup>-1</sup> per day (adults) and 1.5 × 10<sup>-1</sup> ng kg<sup>-1</sup> per day (2 year-old), and biotransformation of 8 : 2 FTOH to PFOA increased this PFOA body burden by 14% (adults) and 17% (2 year-old), suggesting inhalation may also be a meaningful contributor to ionic PFAS exposure through biotransformation.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic multilayer models for surface chemistry in indoor environments. 室内环境表面化学动力学多层模型。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-11 DOI: 10.1039/d4em00549j
Pascale S J Lakey, Manabu Shiraiwa

Multiphase interactions and chemical reactions at indoor surfaces are of particular importance due to their impact on air quality in indoor environments with high surface to volume ratios. Kinetic multilayer models are a powerful tool to simulate various gas-surface interactions including partitioning, diffusion and multiphase chemistry of indoor compounds by treating mass transport and chemical reactions in a number of model layers in the gas and condensed phases with a flux-based approach. We have developed a series of kinetic multilayer models that have been applied to describe multiphase chemistry and interactions indoors. They include the K2-SURF model treating the reversible adsorption of volatile organic compounds on surfaces, the KM-BL model treating diffusion through an indoor surface boundary layer, the KM-FILM model treating organic film formation by multi-layer adsorption and film growth by absorption of indoor compounds, and the KM-SUB-Skin-Clothing model treating reactions of ozone with skin lipids in skin and clothing. We also developed the effective mass accommodation coefficient that can treat surface partitioning by effectively taking into account kinetic limitations of bulk diffusion. In this study we provide detailed instructions and code annotations of these models for the model user. Example sensitivity simulations that investigate the impact of input parameters are presented to help with familiarization to the codes. The user can adapt the codes as required to model experimental and indoor field campaign measurements, can use the codes to gain insights into important reactions and processes, and can extrapolate to new conditions that may not be accessible by measurements.

室内表面的多相相互作用和化学反应对表面与体积比高的室内环境中的空气质量具有特别重要的影响。动力学多层模型是模拟各种气体-表面相互作用(包括室内化合物的分区、扩散和多相化学反应)的有力工具,它采用基于通量的方法处理气相和凝结相中多个模型层的质量传输和化学反应。我们开发了一系列动力学多层模型,用于描述室内多相化学和相互作用。这些模型包括处理挥发性有机化合物在表面上可逆吸附的 K2-SURF 模型、处理通过室内表面边界层扩散的 KM-BL 模型、处理通过多层吸附形成有机薄膜和通过吸收室内化合物形成薄膜的 KM-FILM 模型,以及处理臭氧与皮肤和衣物中的皮肤脂质反应的 KM-SUB-Skin-Clothing 模型。我们还开发了有效质量容纳系数,通过有效地考虑体扩散的动力学限制来处理表面分区。在本研究中,我们为模型用户提供了这些模型的详细说明和代码注释。为帮助用户熟悉代码,我们还提供了研究输入参数影响的灵敏度模拟示例。用户可以根据需要调整代码,以模拟实验和室内现场活动测量结果;可以利用代码深入了解重要的反应和过程;还可以推断测量结果可能无法达到的新条件。
{"title":"Kinetic multilayer models for surface chemistry in indoor environments.","authors":"Pascale S J Lakey, Manabu Shiraiwa","doi":"10.1039/d4em00549j","DOIUrl":"10.1039/d4em00549j","url":null,"abstract":"<p><p>Multiphase interactions and chemical reactions at indoor surfaces are of particular importance due to their impact on air quality in indoor environments with high surface to volume ratios. Kinetic multilayer models are a powerful tool to simulate various gas-surface interactions including partitioning, diffusion and multiphase chemistry of indoor compounds by treating mass transport and chemical reactions in a number of model layers in the gas and condensed phases with a flux-based approach. We have developed a series of kinetic multilayer models that have been applied to describe multiphase chemistry and interactions indoors. They include the K2-SURF model treating the reversible adsorption of volatile organic compounds on surfaces, the KM-BL model treating diffusion through an indoor surface boundary layer, the KM-FILM model treating organic film formation by multi-layer adsorption and film growth by absorption of indoor compounds, and the KM-SUB-Skin-Clothing model treating reactions of ozone with skin lipids in skin and clothing. We also developed the effective mass accommodation coefficient that can treat surface partitioning by effectively taking into account kinetic limitations of bulk diffusion. In this study we provide detailed instructions and code annotations of these models for the model user. Example sensitivity simulations that investigate the impact of input parameters are presented to help with familiarization to the codes. The user can adapt the codes as required to model experimental and indoor field campaign measurements, can use the codes to gain insights into important reactions and processes, and can extrapolate to new conditions that may not be accessible by measurements.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of legacy pollutants† 阿巴拉契亚地区的家用地下水井显示了低剂量、复杂的遗留污染物混合物。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-06 DOI: 10.1039/D4EM00364K
Nicolette A. Bugher, Boya Xiong, Runako I. Gentles, Lukas D. Glist, Helen G. Siegel, Nicholaus P. Johnson, Cassandra J. Clark, Nicole C. Deziel, James E. Saiers and Desiree L. Plata

Lack of water quality data for private drinking water sources prevents robust evaluation of exposure risk for communities co-located with historically contaminated sites and ongoing industrial activity. Areas of the Appalachian region of the United States (i.e., Pennsylvania, Ohio and West Virginia) contain extensive hydraulic fracturing activity, as well as other extractive and industrial technologies, in close proximity to communities reliant on private drinking water sources, creating concern over potential groundwater contamination. In this study, we characterized volatile organic compound (VOC) occurrence at 307 private groundwater well sites within Pennsylvania, Ohio, and West Virginia. The majority (97%) of water samples contained at least one VOC, while the average number of VOCs detected at a given site was 5 ± 3. The majority of individual VOC concentrations fell below applicable U.S. Environmental Protection Agency (EPA) Maximum Contamination Levels (MCLs), except for chloroform (MCL of 80 μg L−1; n = 1 at 98 μg L−1), 1,2-dibromoethane (MCL of 0.05 μg L−1; n = 3 ranging from 0.05 to 0.35 μg L−1), and 1,2-dibromo-3-chloropropane (MCL of 0.2 μg L−1; n = 7 ranging from 0.20 to 0.58 μg L−1). To evaluate well susceptibility to VOCs from industrial activity, distance to hydraulic fracturing site was used to assess correlations with contaminant occurrences. Proximity to closest hydraulic fracturing well-site revealed no statistically significant linear relationships with either individual VOC concentrations, or frequency of VOC detections. Evaluation of other known industrial contamination sites (e.g., US EPA Superfund sites) revealed elevated levels of three VOCs (chloroform, toluene, benzene) in groundwaters within 10 km of those Superfund sites in West Virginia and Ohio, illuminating possible point source influence. Lack of correlation between VOC concentrations and proximity to specific point sources indicates complex geochemical processes governing trace VOC contamination of private drinking water sources. While individual concentrations of VOCs fell well below recommended human health levels, the low dose exposure to multiple VOCs occurring in drinking supplies for Appalachian communities was noted, highlighting the importance of groundwater well monitoring.

由于缺乏私人饮用水源的水质数据,因此无法对与历史上的污染场地和正在进行的工业活动同处一地的社区的暴露风险进行可靠的评估。美国阿巴拉契亚地区(即宾夕法尼亚州、俄亥俄州和西弗吉尼亚州)有大量的水力压裂活动以及其他采掘和工业技术,这些活动都靠近依赖私人饮用水源的社区,从而引发了对潜在地下水污染的担忧。在这项研究中,我们对宾夕法尼亚州、俄亥俄州和西弗吉尼亚州的 307 个私人地下水井点的挥发性有机化合物 (VOC) 发生情况进行了描述。大多数(97%)水样至少含有一种挥发性有机化合物,而在特定地点检测到的挥发性有机化合物的平均数量为 5 ± 3。环境保护局 (EPA) 的最高污染水平 (MCL),但氯仿(MCL 为 80 μg L-1;n = 1 为 98 μg L-1)、1,2-二溴乙烷(MCL 为 0.05 μg L-1;n = 3,范围从 0.05 到 0.35 μg L-1),以及 1,2-二溴-3-氯丙烷(MCL 为 0.2 μg L-1;n = 7,范围从 0.20 到 0.58 μg L-1)。为了评估油井对工业活动产生的挥发性有机化合物的易感性,采用了与水力压裂现场的距离来评估污染物发生的相关性。结果表明,与最近的水力压裂井场的距离与单个挥发性有机化合物的浓度或挥发性有机化合物的检测频率均无统计学意义上的线性关系。对其他已知工业污染场地(如美国环保局超级基金场地)的评估显示,在西弗吉尼亚州和俄亥俄州超级基金场地 10 公里范围内的地下水中,三种挥发性有机化合物(氯仿、甲苯、苯)的浓度升高,这说明可能存在点源影响。挥发性有机化合物的浓度与特定点源的邻近程度之间缺乏相关性,这表明对私人饮用水源的痕量挥发性有机化合物污染具有复杂的地球化学过程。虽然挥发性有机化合物的单个浓度远低于建议的人体健康水平,但阿巴拉契亚社区饮用水供应中出现的多种挥发性有机化合物的低剂量暴露,突出了地下水井监测的重要性。
{"title":"Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of legacy pollutants†","authors":"Nicolette A. Bugher, Boya Xiong, Runako I. Gentles, Lukas D. Glist, Helen G. Siegel, Nicholaus P. Johnson, Cassandra J. Clark, Nicole C. Deziel, James E. Saiers and Desiree L. Plata","doi":"10.1039/D4EM00364K","DOIUrl":"10.1039/D4EM00364K","url":null,"abstract":"<p >Lack of water quality data for private drinking water sources prevents robust evaluation of exposure risk for communities co-located with historically contaminated sites and ongoing industrial activity. Areas of the Appalachian region of the United States (<em>i.e.</em>, Pennsylvania, Ohio and West Virginia) contain extensive hydraulic fracturing activity, as well as other extractive and industrial technologies, in close proximity to communities reliant on private drinking water sources, creating concern over potential groundwater contamination. In this study, we characterized volatile organic compound (VOC) occurrence at 307 private groundwater well sites within Pennsylvania, Ohio, and West Virginia. The majority (97%) of water samples contained at least one VOC, while the average number of VOCs detected at a given site was 5 ± 3. The majority of individual VOC concentrations fell below applicable U.S. Environmental Protection Agency (EPA) Maximum Contamination Levels (MCLs), except for chloroform (MCL of 80 μg L<small><sup>−1</sup></small>; <em>n</em> = 1 at 98 μg L<small><sup>−1</sup></small>), 1,2-dibromoethane (MCL of 0.05 μg L<small><sup>−1</sup></small>; <em>n</em> = 3 ranging from 0.05 to 0.35 μg L<small><sup>−1</sup></small>), and 1,2-dibromo-3-chloropropane (MCL of 0.2 μg L<small><sup>−1</sup></small>; <em>n</em> = 7 ranging from 0.20 to 0.58 μg L<small><sup>−1</sup></small>). To evaluate well susceptibility to VOCs from industrial activity, distance to hydraulic fracturing site was used to assess correlations with contaminant occurrences. Proximity to closest hydraulic fracturing well-site revealed no statistically significant linear relationships with either individual VOC concentrations, or frequency of VOC detections. Evaluation of other known industrial contamination sites (<em>e.g.</em>, US EPA Superfund sites) revealed elevated levels of three VOCs (chloroform, toluene, benzene) in groundwaters within 10 km of those Superfund sites in West Virginia and Ohio, illuminating possible point source influence. Lack of correlation between VOC concentrations and proximity to specific point sources indicates complex geochemical processes governing trace VOC contamination of private drinking water sources. While individual concentrations of VOCs fell well below recommended human health levels, the low dose exposure to multiple VOCs occurring in drinking supplies for Appalachian communities was noted, highlighting the importance of groundwater well monitoring.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2250-2263"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00364k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mobile monitoring reveals the importance of non-vehicular particulate matter sources in London† 移动监测显示了伦敦非车载颗粒物来源的重要性。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-04 DOI: 10.1039/D4EM00552J
Samuel Wilson, Naomi J. Farren, Shona E. Wilde, Rebecca L. Wagner, James D. Lee, Lauren E. Padilla, Greg Slater, Daniel Peters and David. C. Carslaw

This study uses mobile monitoring to gain a better understanding of particulate matter (PM) sources in two areas of Central and Outer London, UK. We find that, unlike emissions of nitrogen oxides (NO + NO2 = NOx), which are elevated in Central London due to the high number of diesel vehicles and congestion, fine particulate matter (PM2.5) emissions are well-controlled. This finding provides evidence for the effectiveness of vehicle particulate filters, supporting the view that their widespread adoption has mitigated PM2.5 emissions, even in the highly dieselized area of Central London. However, mobile monitoring also reveals infrequent elevated PM2.5 concentrations caused by malfunctioning vehicles. These events were confirmed through simultaneous measurements of PM2.5 and sulfur dioxide (SO2), the latter being a strong tracer of engine lubricant combustion. A single event from a gasoline car, representing just 0.15% of the driving distance in Outer London, was responsible for 7.4% of the ΔPM2.5 concentration above background levels, highlighting the ongoing importance of addressing high-emission vehicles. In a novel application of mobile monitoring, we demonstrate the ability to identify and quantify non-vehicular sources of PM. Among the sources unambiguously identified are construction activities, which result in elevated concentrations of coarse particulate matter (PMcoarse = PM10 − PM2.5). The mobile measurements clearly highlight the spatial extent of the influence of such sources, which would otherwise be difficult to determine. Furthermore, these sources are shown to be weather-dependent, with PMcoarse concentrations reduced by 62.1% during wet conditions compared to dry ones.

本研究通过移动监测来更好地了解英国伦敦中部和外围两个地区的颗粒物(PM)来源。我们发现,与氮氧化物(NO + NO2 = NOx)的排放不同,细颗粒物(PM2.5)的排放在伦敦市中心受到很好的控制。这一发现为汽车微粒过滤器的有效性提供了证据,从而支持了这样一种观点,即即使在伦敦市中心柴油化程度较高的地区,汽车微粒过滤器的广泛采用也缓解了 PM2.5 的排放。不过,移动监测也发现,车辆故障导致 PM2.5 浓度升高的情况并不常见。这些事件是通过同时测量 PM2.5 和二氧化硫 (SO2) 来确认的,后者是发动机润滑油燃烧的强烈示踪剂。一辆汽油车仅占外伦敦行驶距离的 0.15%,却导致 7.4% 的 ΔPM2.5 浓度高于背景水平,这凸显了解决高排放车辆问题的持续重要性。在移动监测的一项新应用中,我们展示了识别和量化可吸入颗粒物非车辆来源的能力。在明确识别的来源中,建筑活动导致粗颗粒物(PMcoarse = PM10 - PM2.5)浓度升高。移动测量清楚地表明了这些来源的空间影响范围,否则很难确定。此外,这些来源还与天气有关,在潮湿条件下,PMcoarse 浓度比干燥条件下降低了 62.1%。
{"title":"Mobile monitoring reveals the importance of non-vehicular particulate matter sources in London†","authors":"Samuel Wilson, Naomi J. Farren, Shona E. Wilde, Rebecca L. Wagner, James D. Lee, Lauren E. Padilla, Greg Slater, Daniel Peters and David. C. Carslaw","doi":"10.1039/D4EM00552J","DOIUrl":"10.1039/D4EM00552J","url":null,"abstract":"<p >This study uses mobile monitoring to gain a better understanding of particulate matter (PM) sources in two areas of Central and Outer London, UK. We find that, unlike emissions of nitrogen oxides (NO + NO<small><sub>2</sub></small> = NO<small><sub><em>x</em></sub></small>), which are elevated in Central London due to the high number of diesel vehicles and congestion, fine particulate matter (PM<small><sub>2.5</sub></small>) emissions are well-controlled. This finding provides evidence for the effectiveness of vehicle particulate filters, supporting the view that their widespread adoption has mitigated PM<small><sub>2.5</sub></small> emissions, even in the highly dieselized area of Central London. However, mobile monitoring also reveals infrequent elevated PM<small><sub>2.5</sub></small> concentrations caused by malfunctioning vehicles. These events were confirmed through simultaneous measurements of PM<small><sub>2.5</sub></small> and sulfur dioxide (SO<small><sub>2</sub></small>), the latter being a strong tracer of engine lubricant combustion. A single event from a gasoline car, representing just 0.15% of the driving distance in Outer London, was responsible for 7.4% of the ΔPM<small><sub>2.5</sub></small> concentration above background levels, highlighting the ongoing importance of addressing high-emission vehicles. In a novel application of mobile monitoring, we demonstrate the ability to identify and quantify non-vehicular sources of PM. Among the sources unambiguously identified are construction activities, which result in elevated concentrations of coarse particulate matter (PM<small><sub>coarse</sub></small> = PM<small><sub>10</sub></small> − PM<small><sub>2.5</sub></small>). The mobile measurements clearly highlight the spatial extent of the influence of such sources, which would otherwise be difficult to determine. Furthermore, these sources are shown to be weather-dependent, with PM<small><sub>coarse</sub></small> concentrations reduced by 62.1% during wet conditions compared to dry ones.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2145-2157"},"PeriodicalIF":4.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00552j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of a laboratory spray generation system and its use in a comparative study of hexamethylene diisocyanate (HDI) evaluation methods† 验证实验室喷雾生成系统并将其用于六亚甲基二异氰酸酯 (HDI) 评估方法的比较研究。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-04 DOI: 10.1039/D4EM00513A
Hugues Ahientio, Loïc Wingert, Sébastien Gagné, Livain Breau, Jacques Lesage and Simon Aubin

Isocyanates are well-known irritants and sensitizers, and measuring their occupational airborne exposure is challenging due to their high chemical reactivity and semi-volatile nature. This study builds on a previous publication by our team that focused on comparing evaluation methods for isocyanates. The current research aims at developing, validating, and applying a laboratory generation system designed to replicate real-world conditions for spraying clear coats in autobody shops using hexamethylene diisocyanate (HDI)-based products. The system involved a spray gun connected to two chambers in series, enabling sample collection and analysis. The system successfully generated HDI and isocyanurate concentrations ranging from 0.008 to 0.040 mg m−3 and 0.351 to 3.45 mg m−3, respectively, with spatial homogeneity (RSD) of 5.8% and 16.5%. The particle-size distribution (MMAD) of 4 μm was measured using a cascade impactor and an electrical low-pressure impactor. The samples generated were used to correlate the amount of isocyanates collected with scanning electron microscope images of droplets on a filter. Three methods were compared to the reference method—an impinger with a backup glass fibre filter (GFF) and 1,2-methoxyphenylpiperazine (MP) based on ISO 16702/MDHS 25—in six generation experiments: (1) Swinnex cassette 13 mm GFF MP (MP-Swin); (2) closed-face cassette 37 mm GFF (end filter and inner walls) MP (MP-37); and (3) denuder and GFF dibutylamine (DBA) (ISO 17334-1 Asset). The analysis revealed clear trends regarding which sampler sections collected HDI (mainly in the vapor phase) or isocyanurate (exclusively in the particulate phase). The study found no significant bias between the tested methods (MP-Swin, MP-37, and Asset) and the reference method (impinger) for both HDI monomer and isocyanurate. The three tested methods showed limits of agreement beyond the acceptable range of ±30% (95% confidence interval), largely due to data variability, though MP-Swin and MP-37 exhibited lower variability than Asset. The results will be further evaluated in a real-world environment where similar clear coats are used.

异氰酸酯是众所周知的刺激物和致敏物质,由于其高度的化学反应性和半挥发性,测量其职业性空气暴露具有挑战性。本研究是在我们团队之前发表的一篇关于异氰酸酯评估方法比较的文章基础上进行的。目前的研究旨在开发、验证和应用实验室生成系统,该系统旨在复制汽车修理厂使用六亚甲基二异氰酸酯 (HDI) 产品喷涂清漆的实际条件。该系统包括一个与两个串联室相连的喷枪,可进行样品收集和分析。该系统成功生成的 HDI 和异氰尿酸盐浓度范围分别为 0.008 至 0.040 mg m-3 和 0.351 至 3.45 mg m-3,空间均匀性 (RSD) 分别为 5.8% 和 16.5%。使用级联冲击器和电动低压冲击器测量了 4 μm 的粒度分布(MMAD)。生成的样品用于将收集到的异氰酸酯量与过滤器上液滴的扫描电子显微镜图像相关联。根据 ISO 16702/MDHS 25 标准,在六代实验中将三种方法与参考方法(带有备用玻璃纤维过滤器 (GFF) 和 1,2-甲氧基苯基哌嗪 (MP) 的撞击器)进行了比较:(1) Swinnex 盒式 13 毫米 GFF MP(MP-Swin);(2) 封闭式盒式 37 毫米 GFF(末端过滤器和内壁)MP(MP-37);(3) 脱墨器和 GFF 二丁胺(DBA)(ISO 17334-1 Asset)。分析表明,哪些采样器部分收集 HDI(主要是气相)或异氰尿酸盐(完全是微粒相)的趋势非常明显。研究发现,对于 HDI 单体和异氰尿酸盐,测试方法(MP-Swin、MP-37 和 Asset)与参考方法(撞击器)之间没有明显偏差。虽然 MP-Swin 和 MP-37 的变异性低于 Asset,但这三种测试方法的一致性超出了 ±30%(95% 置信区间)的可接受范围,这主要是由于数据的变异性造成的。将在使用类似清漆的实际环境中对结果进行进一步评估。
{"title":"Validation of a laboratory spray generation system and its use in a comparative study of hexamethylene diisocyanate (HDI) evaluation methods†","authors":"Hugues Ahientio, Loïc Wingert, Sébastien Gagné, Livain Breau, Jacques Lesage and Simon Aubin","doi":"10.1039/D4EM00513A","DOIUrl":"10.1039/D4EM00513A","url":null,"abstract":"<p >Isocyanates are well-known irritants and sensitizers, and measuring their occupational airborne exposure is challenging due to their high chemical reactivity and semi-volatile nature. This study builds on a previous publication by our team that focused on comparing evaluation methods for isocyanates. The current research aims at developing, validating, and applying a laboratory generation system designed to replicate real-world conditions for spraying clear coats in autobody shops using hexamethylene diisocyanate (HDI)-based products. The system involved a spray gun connected to two chambers in series, enabling sample collection and analysis. The system successfully generated HDI and isocyanurate concentrations ranging from 0.008 to 0.040 mg m<small><sup>−3</sup></small> and 0.351 to 3.45 mg m<small><sup>−3</sup></small>, respectively, with spatial homogeneity (RSD) of 5.8% and 16.5%. The particle-size distribution (MMAD) of 4 μm was measured using a cascade impactor and an electrical low-pressure impactor. The samples generated were used to correlate the amount of isocyanates collected with scanning electron microscope images of droplets on a filter. Three methods were compared to the reference method—an impinger with a backup glass fibre filter (GFF) and 1,2-methoxyphenylpiperazine (MP) based on ISO 16702/MDHS 25—in six generation experiments: (1) Swinnex cassette 13 mm GFF MP (MP-Swin); (2) closed-face cassette 37 mm GFF (end filter and inner walls) MP (MP-37); and (3) denuder and GFF dibutylamine (DBA) (ISO 17334-1 Asset). The analysis revealed clear trends regarding which sampler sections collected HDI (mainly in the vapor phase) or isocyanurate (exclusively in the particulate phase). The study found no significant bias between the tested methods (MP-Swin, MP-37, and Asset) and the reference method (impinger) for both HDI monomer and isocyanurate. The three tested methods showed limits of agreement beyond the acceptable range of ±30% (95% confidence interval), largely due to data variability, though MP-Swin and MP-37 exhibited lower variability than Asset. The results will be further evaluated in a real-world environment where similar clear coats are used.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 1","pages":" 119-132"},"PeriodicalIF":4.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodology for estimating indoor sources contributing to PM2.5† 估算导致 PM2.5 的室内来源的方法。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-01 DOI: 10.1039/D4EM00538D
Shiva Nourani, Ana María Villalobos and Héctor Jorquera

Quantifying source contributions to indoor PM2.5 levels by indoor PM2.5 sources has been limited by the costs associated with chemical speciation analyses of indoor PM2.5 samples. Here, we propose a new methodology to estimate this contribution. We applied FUzzy SpatioTemporal Apportionment (FUSTA) to a database of indoor and outdoor PM2.5 concentrations in school classrooms plus surface meteorological data to determine the main spatiotemporal patterns (STPs) of PM2.5. We found four dominant STPs in outdoor PM2.5, and we denoted them as regional, overnight mix, traffic, and secondary PM2.5. For indoor PM2.5, we found the same four outdoor STPs plus another STP with a distinctive temporal evolution characteristic of indoor-generated PM2.5. Concentration peaks were evident for this indoor STP due to children's activities and classroom housekeeping, and there were minimum contributions on sundays when schools were closed. The average indoor-generated estimated contribution to PM2.5 was 5.7 μg m−3, which contributed to 17% of the total PM2.5, and if we consider only school hours, the respective figures are 8.1 μg m−3 and 22%. A cluster-wise indoor–outdoor PM2.5 regression was applied to estimate STP-specific infiltration factors (Finf) per school. The median and interquartile range (IQR) values for Finf are 0.83 [0.7–0.89], 0.76 [0.68–0.84], 0.72 [0.64–0.81], and 0.7 [0.62–0.9], for overnight mix, secondary, traffic, and regional sources, respectively. This cost-effective methodology can identify the indoor-generated contributions to indoor PM2.5, including their temporal variability.

由于对室内 PM2.5 样品进行化学成分分析所需的成本,量化室内 PM2.5 源对室内 PM2.5 水平的贡献一直受到限制。在此,我们提出了一种估算这种贡献的新方法。我们将 FUzzy 时空分布(FUSTA)应用于学校教室的室内外 PM2.5 浓度数据库和地面气象数据,以确定 PM2.5 的主要时空模式(STPs)。我们发现了室外PM2.5的四种主要时空模式,并将其分别命名为区域、夜间混合、交通和二次PM2.5。对于室内 PM2.5,我们发现了同样的四种室外 STP,外加另一种具有室内产生的 PM2.5 的独特时间演变特征的 STP。由于儿童活动和教室内务,该室内STP的浓度峰值很明显,而在学校放假的周日,浓度峰值最小。室内产生的PM2.5估计平均为5.7微克/立方米,占PM2.5总量的17%,如果只考虑上学时间,则分别为8.1微克/立方米和22%。通过对室内-室外PM2.5进行分组回归,估算出每所学校的STP特定渗透因子(Finf)。对于隔夜混合源、二次源、交通源和区域源,Finf 的中位数和四分位距(IQR)值分别为 0.83 [0.7-0.89]、0.76 [0.68-0.84]、0.72 [0.64-0.81] 和 0.7 [0.62-0.9]。这种具有成本效益的方法可以确定室内产生的 PM2.5 的贡献,包括其时间变化。
{"title":"A methodology for estimating indoor sources contributing to PM2.5†","authors":"Shiva Nourani, Ana María Villalobos and Héctor Jorquera","doi":"10.1039/D4EM00538D","DOIUrl":"10.1039/D4EM00538D","url":null,"abstract":"<p >Quantifying source contributions to indoor PM<small><sub>2.5</sub></small> levels by indoor PM<small><sub>2.5</sub></small> sources has been limited by the costs associated with chemical speciation analyses of indoor PM<small><sub>2.5</sub></small> samples. Here, we propose a new methodology to estimate this contribution. We applied FUzzy SpatioTemporal Apportionment (FUSTA) to a database of indoor and outdoor PM<small><sub>2.5</sub></small> concentrations in school classrooms plus surface meteorological data to determine the main spatiotemporal patterns (STPs) of PM<small><sub>2.5</sub></small>. We found four dominant STPs in outdoor PM<small><sub>2.5</sub></small>, and we denoted them as regional, overnight mix, traffic, and secondary PM<small><sub>2.5</sub></small>. For indoor PM<small><sub>2.5,</sub></small> we found the same four outdoor STPs plus another STP with a distinctive temporal evolution characteristic of indoor-generated PM<small><sub>2.5</sub></small>. Concentration peaks were evident for this indoor STP due to children's activities and classroom housekeeping, and there were minimum contributions on sundays when schools were closed. The average indoor-generated estimated contribution to PM<small><sub>2.5</sub></small> was 5.7 μg m<small><sup>−3</sup></small>, which contributed to 17% of the total PM<small><sub>2.5</sub></small>, and if we consider only school hours, the respective figures are 8.1 μg m<small><sup>−3</sup></small> and 22%. A cluster-wise indoor–outdoor PM<small><sub>2.5</sub></small> regression was applied to estimate STP-specific infiltration factors (<em>F</em><small><sub>inf</sub></small>) per school. The median and interquartile range (IQR) values for <em>F</em><small><sub>inf</sub></small> are 0.83 [0.7–0.89], 0.76 [0.68–0.84], 0.72 [0.64–0.81], and 0.7 [0.62–0.9], for overnight mix, secondary, traffic, and regional sources, respectively. This cost-effective methodology can identify the indoor-generated contributions to indoor PM<small><sub>2.5</sub></small>, including their temporal variability.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2288-2296"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00538d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative read-across structure–property relationship (q-RASPR): a novel approach to estimate the bioaccumulative potential for diverse classes of industrial chemicals in aquatic organisms † 定量读取-交叉结构-属性关系(q-RASPR):一种估算不同类别工业化学品在水生生物体内生物累积潜力的新方法。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-01 DOI: 10.1039/D4EM00374H
Prodipta Bhattacharyya, Pabitra Samanta, Ankur Kumar, Shubha Das and Probir Kumar Ojha

The Bioconcentration Factor (BCF) is used to evaluate the bioaccumulation potential of chemical substances in reference organisms, and it directly correlates with ecotoxicity. Traditional in vivo BCF estimation methods are costly, time-consuming, and involve animal sacrifice. Many in silico technologies are used to avoid the problems associated with in vivo testing. This study aims to develop a quantitative read across structure–property relationship (q-RASPR) model using a structurally diverse dataset consisting of 1303 compounds by combining quantitative structure–property relationship (QSPR) and read-across (RA) algorithms. The model incorporates simple, interpretable, and reproducible 2D molecular descriptors along with RASAR descriptors. The PLS-based q-RASPR model demonstrated robust performance with internal validation metrics (R2 = 0.727 and Q2(LOO) = 0.723) and external validation metrics (Q2F1 = 0.739, Q2F2 = 0.739, and CCC = 0.858). These results indicate that the q-RASPR model is statistically superior to the corresponding QSPR model. Furthermore, screening of 1694 compounds from the Pesticide Properties Database (PPDB) was performed using the PLS-based q-RASPR model for assessing the eco-toxicological bioaccumulative potential of various compounds, ensuring the external predictability of the developed model and confirming the real-world application of the developed model. This model offers a reliable tool for predicting the BCF of new or untested compounds, thereby helping to develop safe and environment-friendly chemicals.

生物富集系数(BCF)用于评估化学物质在参照生物体内的生物累积潜力,它与生态毒性直接相关。传统的体内生物富集系数估算方法成本高、耗时长,而且需要牺牲动物。为了避免与体内测试相关的问题,人们采用了许多硅学技术。本研究旨在利用由 1303 种化合物组成的结构多样化数据集,结合定量结构-性质关系(QSPR)和横向读取(RA)算法,开发一种定量横向读取结构-性质关系(q-RASPR)模型。该模型结合了简单、可解释、可重复的二维分子描述符和 RASAR 描述符。基于 PLS 的 q-RASPR 模型在内部验证指标(R2 = 0.727 和 Q2(LOO) = 0.723)和外部验证指标(Q2F1 = 0.739、Q2F2 = 0.739 和 CCC = 0.858)上都表现出稳健的性能。这些结果表明,q-RASPR 模型在统计学上优于相应的 QSPR 模型。此外,利用基于 PLS 的 q-RASPR 模型对农药特性数据库(PPDB)中的 1694 种化合物进行了筛选,以评估各种化合物的生态毒理学生物累积潜力,从而确保了所开发模型的外部可预测性,并证实了所开发模型在现实世界中的应用。该模型为预测新化合物或未测试化合物的生物累积系数提供了可靠的工具,从而有助于开发安全、环保的化学品。
{"title":"Quantitative read-across structure–property relationship (q-RASPR): a novel approach to estimate the bioaccumulative potential for diverse classes of industrial chemicals in aquatic organisms †","authors":"Prodipta Bhattacharyya, Pabitra Samanta, Ankur Kumar, Shubha Das and Probir Kumar Ojha","doi":"10.1039/D4EM00374H","DOIUrl":"10.1039/D4EM00374H","url":null,"abstract":"<p >The Bioconcentration Factor (BCF) is used to evaluate the bioaccumulation potential of chemical substances in reference organisms, and it directly correlates with ecotoxicity. Traditional <em>in vivo</em> BCF estimation methods are costly, time-consuming, and involve animal sacrifice. Many <em>in silico</em> technologies are used to avoid the problems associated with <em>in vivo</em> testing. This study aims to develop a quantitative read across structure–property relationship (q-RASPR) model using a structurally diverse dataset consisting of 1303 compounds by combining quantitative structure–property relationship (QSPR) and read-across (RA) algorithms. The model incorporates simple, interpretable, and reproducible 2D molecular descriptors along with RASAR descriptors. The PLS-based q-RASPR model demonstrated robust performance with internal validation metrics (<em>R</em><small><sup>2</sup></small> = 0.727 and <em>Q</em><small><sup>2</sup></small><small><sub>(LOO)</sub></small> = 0.723) and external validation metrics (<em>Q</em><small><sup>2</sup></small><small><sub>F1</sub></small> = 0.739, <em>Q</em><small><sup>2</sup></small><small><sub>F2</sub></small> = 0.739, and CCC = 0.858). These results indicate that the q-RASPR model is statistically superior to the corresponding QSPR model. Furthermore, screening of 1694 compounds from the Pesticide Properties Database (PPDB) was performed using the PLS-based q-RASPR model for assessing the eco-toxicological bioaccumulative potential of various compounds, ensuring the external predictability of the developed model and confirming the real-world application of the developed model. This model offers a reliable tool for predicting the BCF of new or untested compounds, thereby helping to develop safe and environment-friendly chemicals.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 1","pages":" 76-90"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species. 商业厨房操作会产生多种气相活性氮。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-01 DOI: 10.1039/d4em00491d
Leigh R Crilley, Jenna C Ditto, Melodie Lao, Zilin Zhou, Jonathan P D Abbatt, Arthur W H Chan, Trevor C VandenBoer

Gas-phase reactive nitrogen species (Nr) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total Nr (tNr) budget and contributions of key species NO, NO2, acidic Nr (primarily HONO) and basic Nr (primarily NH3) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tNr was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic Nr levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NOx, HONO and Nr,base fractions, there was on average 5 ppbv of Nr unaccounted for, expected to be dominated by neutral Nr species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major Nr species from cooking and cleaning that contributed to Nr,base and the neutral fraction of tNr. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C1-12H3-24O1-4N1-3), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tNr budget, including HONO, acetonitrile and basic Nr species, we observed stable levels day and night despite the high air change rate during the day (>27 h-1). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.

气相活性氮物种(Nr)是影响室内空气质量的重要因素。烹饪和清洁是室内的重要直接来源,其排放量会因活动和使用的材料而异。商业厨房经常会有大量的烹饪和清洁活动,因此是探索这些来源的排放因子的理想研究场所。在此,我们使用新型仪器对商业厨房进行了为期两周的检测,得出了总氮氧化物(tNr)预算以及主要物种一氧化氮(NO)、二氧化氮(NO2)、酸性氮氧化物(主要是 HONO)和碱性氮氧化物(主要是 NH3)的贡献。一般来说,在上午观测到的 tNr 最高,由氮氧化物(NO)驱动,表明厨房里有烹饪活动。尽管厨房内的空气变化率很高,但全天观测到的 HONO 和基本 Nr 水平却出乎意料地稳定。将测量到的 NOx、HONO 和 Nr、碱组分相加后,平均有 5 ppbv 的 Nr 未被计算在内,预计主要是中性 Nr 物种。利用质子转移反应质谱仪(PTR-MS)的同位测量,我们提出了烹饪和清洁过程中产生的这些主要 Nr 物种的特性,这些 Nr 物种对 Nr 碱和 tNr 的中性部分有贡献。当特别关注厨房中的烹饪活动时,PTR-MS 观察到了大量含氮物质。在肉类烹饪过程中,可重复观察到含氧 N 类离子(C1-12H3-24O1-4N1-3),与已知的酰胺分子式一致,可能是很好的烹饪示踪剂。在清洁过程中,观察到氯胺的含量出乎意料地高,其中一氯胺占主导地位,它直接从基于 HOCl 的清洁剂中释放出来,或通过与还原 N 物种的表面反应释放出来。对于 tNr 预算中的许多物种,包括 HONO、乙腈和碱性 Nr 物种,尽管白天的换气率很高(>27 h-1),但我们还是观测到了日夜稳定的水平。这些物种的稳定水平表明,有大量的地表储层是重要的室内源,它们会随着通风被带到室外。
{"title":"Commercial kitchen operations produce a diverse range of gas-phase reactive nitrogen species.","authors":"Leigh R Crilley, Jenna C Ditto, Melodie Lao, Zilin Zhou, Jonathan P D Abbatt, Arthur W H Chan, Trevor C VandenBoer","doi":"10.1039/d4em00491d","DOIUrl":"10.1039/d4em00491d","url":null,"abstract":"<p><p>Gas-phase reactive nitrogen species (N<sub>r</sub>) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total N<sub>r</sub> (tN<sub>r</sub>) budget and contributions of key species NO, NO<sub>2</sub>, acidic N<sub>r</sub> (primarily HONO) and basic N<sub>r</sub> (primarily NH<sub>3</sub>) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tN<sub>r</sub> was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic N<sub>r</sub> levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NO<sub><i>x</i></sub>, HONO and N<sub>r,base</sub> fractions, there was on average 5 ppbv of N<sub>r</sub> unaccounted for, expected to be dominated by neutral N<sub>r</sub> species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major N<sub>r</sub> species from cooking and cleaning that contributed to N<sub>r,base</sub> and the neutral fraction of tN<sub>r</sub>. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C<sub>1-12</sub>H<sub>3-24</sub>O<sub>1-4</sub>N<sub>1-3</sub>), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tN<sub>r</sub> budget, including HONO, acetonitrile and basic N<sub>r</sub> species, we observed stable levels day and night despite the high air change rate during the day (>27 h<sup>-1</sup>). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mobility of biochar-derived dissolved organic matter and its effects on sulfamerazine transport through saturated soil porous media† 生物炭溶解有机物的流动性及其对磺胺甲基嘧啶在饱和土壤多孔介质中迁移的影响。
IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-10-31 DOI: 10.1039/D4EM00143E
Mengya Liu, Xiaochen Liu, Yalu Hu, Qiang Zhang, Usman Farooq, Zhichong Qi and Laotao Lu

Dissolved organic matter (DOM) released from biochar may impact antibiotic mobility and environmental fate in subsurface environments. Here, DOM samples derived from biochars (BDOM) generated by pyrolyzing corn straw at 300, 450, and 600 °C were employed to elucidate the mobility characteristics of these organic substances and their influences on the transport of sulfamerazine (SMZ, a typical sulfonamide antibiotic) in soil porous media. The results demonstrated that BDOM produced at a lower pyrolysis temperature exhibited greater mobility owing to the weaker hydrophobic and H-bonding interactions between BDOM and soil particles. Additionally and importantly, BDOM facilitated the promotion of SMZ mobility owing to the increased electrostatic repulsion between SMZ forms and soil grains, the steric hindrance effect induced by the deposition of organic matter, and the competitive retention between SMZ molecules and BDOM. Meanwhile, the promotion effects of BDOM enhanced with improving pyrolysis temperature owing to the promoted deposition of organic matter on soil surfaces and the strengthened electrostatic repulsion. Moreover, the facilitated effects of BDOM on SMZ mobility declined as the solution pH values were raised from 5.0 to 9.0 or the flow rate increased from 0.18 to 0.51 cm min−1. This trend was due to decreased deposition competition and the steric effect caused by decreased retention of BDOM on soil particles. Furthermore, the cation-bridging effect emerged as an important mechanism contributing to the promotion effects of BDOM when the solution contained divalent cations (Cu2+ or Ca2+). Moreover, a two-site non-equilibrium model was used to interpret the controlling mechanisms for the effects of BDOM on the transport of SMZ. Findings from this work highlight that biochar-derived dissolved organic matter can remarkably affect the environmental behaviors of antibiotics in aquatic environments.

生物炭释放的溶解有机物(DOM)可能会影响抗生素在地下环境中的迁移性和环境归宿。在此,研究人员利用在 300、450 和 600 °C 下热解玉米秸秆产生的生物炭(BDOM)中的 DOM 样品,来阐明这些有机物质的迁移特性及其对磺胺类抗生素磺胺甲基嘧啶(SMZ,一种典型的磺胺类抗生素)在土壤多孔介质中迁移的影响。结果表明,由于 BDOM 与土壤颗粒之间的疏水作用和 H 键作用较弱,在较低的热解温度下产生的 BDOM 表现出更大的流动性。此外,重要的是,由于 SMZ-形式与土壤颗粒之间的静电斥力增加、有机物沉积引起的立体阻碍效应以及 SMZ 分子与 BDOM 之间的竞争性滞留,BDOM 促进了 SMZ 的流动性。同时,随着热解温度的提高,BDOM 的促进作用也会增强,这是由于有机物在土壤表面的沉积作用和静电排斥作用增强所致。此外,当溶液 pH 值从 5.0 升至 9.0 或流速从 0.18 厘米/分钟升至 0.51 厘米/分钟时,BDOM 对 SMZ 移动性的促进作用下降。这一趋势是由于沉积竞争的减少以及 BDOM 在土壤颗粒上的滞留减少所导致的立体效应。此外,当溶液中含有二价阳离子(Cu2+ 或 Ca2+)时,阳离子桥接效应成为 BDOM 起促进作用的重要机制。此外,还使用了一个双位点非平衡模型来解释 BDOM 对 SMZ 运输影响的控制机制。这项研究的结果表明,生物炭衍生的溶解有机物可显著影响抗生素在水生环境中的环境行为。
{"title":"Mobility of biochar-derived dissolved organic matter and its effects on sulfamerazine transport through saturated soil porous media†","authors":"Mengya Liu, Xiaochen Liu, Yalu Hu, Qiang Zhang, Usman Farooq, Zhichong Qi and Laotao Lu","doi":"10.1039/D4EM00143E","DOIUrl":"10.1039/D4EM00143E","url":null,"abstract":"<p >Dissolved organic matter (DOM) released from biochar may impact antibiotic mobility and environmental fate in subsurface environments. Here, DOM samples derived from biochars (BDOM) generated by pyrolyzing corn straw at 300, 450, and 600 °C were employed to elucidate the mobility characteristics of these organic substances and their influences on the transport of sulfamerazine (SMZ, a typical sulfonamide antibiotic) in soil porous media. The results demonstrated that BDOM produced at a lower pyrolysis temperature exhibited greater mobility owing to the weaker hydrophobic and H-bonding interactions between BDOM and soil particles. Additionally and importantly, BDOM facilitated the promotion of SMZ mobility owing to the increased electrostatic repulsion between SMZ<small><sup>−</sup></small> forms and soil grains, the steric hindrance effect induced by the deposition of organic matter, and the competitive retention between SMZ molecules and BDOM. Meanwhile, the promotion effects of BDOM enhanced with improving pyrolysis temperature owing to the promoted deposition of organic matter on soil surfaces and the strengthened electrostatic repulsion. Moreover, the facilitated effects of BDOM on SMZ mobility declined as the solution pH values were raised from 5.0 to 9.0 or the flow rate increased from 0.18 to 0.51 cm min<small><sup>−1</sup></small>. This trend was due to decreased deposition competition and the steric effect caused by decreased retention of BDOM on soil particles. Furthermore, the cation-bridging effect emerged as an important mechanism contributing to the promotion effects of BDOM when the solution contained divalent cations (Cu<small><sup>2+</sup></small> or Ca<small><sup>2+</sup></small>). Moreover, a two-site non-equilibrium model was used to interpret the controlling mechanisms for the effects of BDOM on the transport of SMZ. Findings from this work highlight that biochar-derived dissolved organic matter can remarkably affect the environmental behaviors of antibiotics in aquatic environments.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2264-2278"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Science: Processes & Impacts
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1